Thème des travaux : Contributions à la Recherche d Information Contextuelle à Large Échelle et à l Extraction des Connaissances

Dimension: px
Commencer à balayer dès la page:

Download "Thème des travaux : Contributions à la Recherche d Information Contextuelle à Large Échelle et à l Extraction des Connaissances"

Transcription

1 Khedija AROUR BOUABID Docteur en Informatique Maître-Assistante Institut National des Sciences Appliquées et de Technologie de Tunis Membre du laboratoire LIPAH Thème des travaux : Contributions à la Recherche d Information Contextuelle à Large Échelle et à l Extraction des Connaissances Décembre 2014

2 État Civil Nom et prénom : AROUR BOUABID Khedija Date et lieu de naissance : 03/03/1965 à Tunis, Tunisie Nationalité : Tunisienne Situation familiale : Mariée, trois enfants Adresse personnelle : 16, Rue la Corniche 2083, El Ghazalla, Ariana, Tunisie Tel : (+216) (+216) Adresse professionnelle : Département de Génie Informatique et de Mathématiques Institut National des Sciences Appliquées et de Technologie de Tunis Centre Urbain Nord BP Tunis Cedex, Tunisie Tel : (+216) poste 1013 Fax : (+216) Arabe : Lu, écrit, parlé. Français : Lu, écrit, parlé. Anglais : Lu, écrit, parlé. Langues

3 Activités professionnelles 3 Formation et diplômes 1996 Décembre 1996 Thèse de doctorat en Informatique (Faculté des Sciences de Tunis, Université Tunis ElManar) Mention Très Honorable Titre de la thèse "Extraction et Organisation des Fichiers de Signatures pour une Base de Données Rectangulaire" 1992 Ingénieur en Informatique, (Faculté des Sciences de Tunis), Juillet 1992 Titre du Mémoire "Conception d un système de gestion de bases de données réparties" 1986 Baccalauréat section Math-Sciences (Lycée Rue de Pacha Tunis), Juillet 1986 Activités professionnelles Septembre 2002-Présent Octobre 2000-Septembre 2002 Septembre 1997-Octobre 2000 Octobre 1992-Septembre 1997 Maître-Assistante à l Institut National des Sciences Appliquées et de Technologie de Tunis Maître-Assistante à l Institut Supérieur des Sciences Appliquées et de Technologie de Mateur Assistante à l Institut Préparatoire aux Études d Ingénieurs de Mateur Ingénieur en Informatique à la Faculté des Sciences de Tunis

4 Activités Pédagogiques

5 Activités pédagogiques 5 Activités pédagogiques Enseignement J ai commencé ma carrière d enseignante au niveau de l enseignement supérieur en septembre 1997 en tant qu assistante à l Institut Préparatoire aux Études d accès au cycle d Ingénieurs de Mateur. J ai intégré le corps des maîtres-assistants en 2001 à l Institut Supérieur des Sciences Appliquées et de Technologie de Mateur (ISSATM), puis à partir de 2002 à l Institut National des Sciences Appliquées et de Technologie de Tunis (INSAT). J ai enseigné en tant que vacataire, successivement, dans les institutions suivantes : FST ( ), ISI ( ) et ISI Gabes (Décembre 2008). Mes enseignements ont couvert différents cycles, à savoir : Préparatoire, Maîtrise, Licence, Ingénieur, DESS et Mastère de recherche. Le tableau ci-dessous synthétise mes activités d enseignement durant la période

6 Activités pédagogiques 6 Années Modules Niveau Lieu Type Volume Enseignement Horaire Systèmes à Large Échelle 5 ème Année INSAT Cours 22h50 et Cloud Computing Ingénieur TP 15h Architectures et 4 ème Année INSAT Cours 11h25 Algorithmique parallèles Ingénieur TD 11h25 TP 15h Algorithmique 3 ème Année INSAT Cours 22h50 Avancée Ingénieur Programmation 2 ème Année INSAT Cours 22h50 Orientée Objet Préparatoire TD 22h Systèmes à Large Échelle 5 ème Année INSAT Cours 30h00 Ingénieur Data Mining Mastère FST Cours 16h00 parallèle M Complexité 3 ème Année INSAT Cours 15h00 des algorithmes Ingénieur TD 15h Architectures et 5 ème Année INSAT Cours 15h00 Algorithmique parallèles Ingénieur TD 15h Fichiers et 2 ème Année INSAT Cours 22h50 Bases de Données Préparatoire TD 22h Fichiers et Licence ISSATM cours 22h50 Bases de Données TD 22h Algorithmique 1 ère année INSAT Cours 22h50 et programmation MPI TD 30h Systèmes 3 ème Année FST TD/TP 39h00 d exploitation Ingénieur / Maîtrise Langage Maple 1 ère année IPEIM Cours Intégré 15h00 Préparatoire TP 15h00 Table 2 Tableau synoptique de mes enseignements

7 Activités pédagogiques 7 Premier cycle Intitulé : Algorithmique et programmation Auditoire : 1 ère année MPI (INSAT) Volume horaire : 22H50 Cours, 30H00 TD Période : Semestre 2 Description : Ce module introduit des notions algorithmiques (actions et objets élémentaires, schémas conditionnels, schémas itératifs, etc.) avec une initiation à la programmation procédurale en utilisant le langage C. Après une introduction sur l historique du langage C, nous présentons les types de base ainsi que les opérateurs du langage C. Ensuite, nous étudions le passage des différents schémas algorithmiques vers le langage C. La structure de tableau est ensuite abordée et sa connexion avec la notion de pointeur est explicitée. La dernière partie de ce module aborde l aspect programmation modulaire via la structuration d un programme en fonctions. L accent est mis, dans cette partie, sur les différents modes de passage de paramètres. Plan (défini en 1997 par une commission de mise en place du plan d études de l IN- SAT) 1. Introduction à la programmation 2. Structures de données élémentaires 3. Transformation des schémas algorithmiques 4. Les procédures et les fonctions 5. Les tableaux, les pointeurs et les structures complexes 6. Les algorithmes de tri Références bibliographiques J. Courtin. Initiation à l algorithmique et aux structures de données. Dunod, Paris, B.W. Kernighan & D.M. Ritchie. Le langage C. 2 ème édition, Masson, Intitulé : Langage Maple Auditoire : 1 ère année MPI (IPEIM) Volume horaire : 15H00 Cours, 15H00 TD Période : Semestre 2 Description : Le but de ce module est de faire une présentation, aussi exhaustive que possible, du logiciel de calcul formel Maple. Les systèmes de calculs formels sont des systèmes qui ont révolutionné les méthodes de travail des scientifiques. C est donc un moyen pour les étudiants comme pour les chercheurs de programmer des calculs sans trop de difficultés. Grâce aux fonctions qu il intègre, Maple permet d effectuer des calculs en précision quelconque, des résolutions d équations, des tracés de courbes ou de surfaces, de l algèbre linéaire, etc. Il intègre aussi un langage de programmation (tests, boucles, procédures et fonctions) permettant de créer ses propres outils. Plan (défini par une commission nationale) 1. Introduction et présentation générale de Maple 2. Syntaxe et représentation des données 3. Affectation 4. Fonctions et expressions 5. Les objets de Maple 6. Programmation sous Maple

8 Activités pédagogiques 8 7. Programmation structurée sous Maple Références bibliographiques D. Krob et S. Legros. Le système Maple : Introduction au calcul symbolique et aux mathématiques expérimentales. International Thomson Publishing, France, Jack M. Cornil et P. Testud. Maple V Release 4 : Introduction raisonnée à l usage de l étudiant, de l ingénieur et du chercheur. Springer, Intitulé : Fichiers et bases de données Auditoire : 2 ème année du cycle préparatoire en informatique industrielle et automatique (INSAT) Volume horaire : 22H50 Cours, 30H00 TD Période : Semestre 1 Description : Après une introduction à la terminologie des fichiers et des bases de données ainsi que les fonctionnalités des SGF et des SGBD, nous abordons la modélisation d un schéma de base de données via le modèle Entité-Association (EA). Avant d aborder l implantation en modèle relationnel, nous nous intéressons à la normalisation du schéma d une base de données. Dans le cadre du modèle relationnel, nous introduisons la notion de langage de définition de données. L aspect interrogation d une base de données relationnelle, via le langage SQL, constitue la dernière partie de ce module. Plan (défini en 1997 par une commission de mise en place du plan d études de l IN- SAT) 1. Concepts généraux sur les fichiers 2. Représentation des enregistrements 3. Organisations des fichiers 4. Concepts généraux des bases de données et des systèmes de gestion de bases de données 5. Modèle Entité-Association (EA) 6. Normalisation 7. Implantation d une base de données selon le modèle relationnel (a) La partie structurelle : les relations (b) Le langage de définition de données (DDL) (c) Les règles de normalisation (d) Traduction / transformation du modèle EA en modèle relationnel 8. Le langage SQL Références bibliographiques J.D. Ullman. Principles of Database systems. Second Edition, Computer Science Press, G. Gardarin. Bases de données relationnelles. Eyrolles, C. Date. An introduction to Database systems. Volume 1, 4 th edition, Addison-Wesley, A. Meier. Introduction pratique aux bases de données relationnelles. Springer, Intitulé : Programmation Orientée Objet Auditoire : 2 ème Année cycle préparatoire Génie Logiciel (INSAT) Volume horaire : 22H50 Cours, 22H50 TD Période : Semestre 1

9 Activités pédagogiques 9 Description : Ce module a pour objectif de situer le paradigme orienté objet (OO) par rapport au paradigme procédural et d enseigner les principes de la programmation orientée objet (encapsulation, héritage et polymorphisme). Il propose d explorer les différentes notions de l orienté objet indépendamment des langages de programmation. Par la suite, nous présentons et comparons la façon dont plusieurs langages orientés objets, à savoir C++, Java, Smalltalk et Python, supportent les différents concepts du paradigme orienté objet. Plan (défini en 2009 par une commission de renouvellement du plan d études de l INSAT) 1. Conception de systèmes d information avec le paradigme objet 2. Notions de classe, d objet, de méthode, de propriété et de constructeurs 3. Surcharge 4. Héritage (a) Le polymorphisme (b) Les classes abstraites (c) Les interfaces 5. Relations entre classes (a) Associations (b) Cardinalités et contraintes d association (c) Composition et agrégation 6. Typage dynamique en OO 7. Clonage en OO Références bibliographiques C. Horstman. JAVA concepts. Wiley, E. B. Koffman & P. A. Wolfgang. Objects, Abstraction, Data Structures and Design using Java 5.0. Wiley, 2 nd edition, H. Bersini. La programmation orientée objet : Cours et exercices en UML 2 avec Java 5, C# 2, C++, Python, PHP 5 et LINQ. Eyrolles, 2008.

10 Activités pédagogiques 10 Deuxième cycle Intitulé : Architectures et Algorithmique Parallèles Auditoire : 4 ème année cycle Ingénieur en Génie logiciel (GL4) et 5 ème année cycle Ingénieur en Réseau et Télécommunication (RT5) (INSAT) Volume horaire : 11H25 Cours, 11H25 TD et 15H00 TP (pour les GL4) Période : Semestre 1 pour les RT5 et Semestre 2 pour les GL4 Description : Ce module présente les concepts et techniques de l algorithmique parallèle, en relation étroite avec le modèle d architecture considéré. Il vise également à décrire la pratique de la programmation parallèle. Une étude des mesures et d analyse de performance ainsi que la mise en œuvre d algorithmes parallèles avec envoi de messages et utilisation de variables partagées sont considérées. Plan (défini en 2009 par une commission de renouvellement du plan d études de l INSAT) 1. Introduction au parallélisme 2. Classification des architectures parallèles 3. Sources du parallélisme 4. Méthodologie de parallélisation d algorithmes séquentiels 5. Applications : cas des algorithmes de tri, multiplication matricielle Références bibliographiques P. Kuonen. La programmation parallèle, Notes de cours EPFL, A. Legrand & Y. Robert. Algorithmique Parallèle : Cours et Exercices Corrigés. Dunod, R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan & J. McDonald. Parallel Programming in OpenMP. Morgan Kaufmann, D. E. Culler. Parallel Computer Architecture : A Hardware/Software Approach. Morgan Kaufmann, M. Cosnard & D. Trystram. Algorithmes et Architectures Parallèles. InterEditions, Intitulé : Complexité des algorithmes (défini en 1997 par une commission de mise en place du plan d études de l INSAT) Auditoire : 3 ème année Ingénieur Génie Logiciel (INSAT) Volume horaire : 30H00 Cours Intégré Période : Semestre 2 Description : La résolution efficace de problèmes exige la conception d algorithmes adéquats. L évaluation des performances de ces derniers est donc primordiale. L objectif de ce module concerne l analyse de la complexité des algorithmes, qu ils soient itératifs ou récursifs. Plan 1. Introduction 2. Concepts de base 3. Notations de Landau 4. Calcul de complexité : cas des algorithmes itératifs 5. Calcul de complexité : cas des algorithmes récursifs 6. Algorithmes exacts et d approximation

11 Activités pédagogiques 11 Références bibliographiques L. Gérard. Algorithmique combinatoire - Méthodes constructives. Dunod, C. Pair, R. Mohr & R. Schott. Construire les algorithmes. Dunod, D. Krob. Algorithmique et Structures des Données. Ellipses, A. V. Aho, J. E. Hopcroft et J. D. Ullman. The Design and Analysis of Computer Algorithms, Addison Wesley, Intitulé : Algorithmique avancée Auditoire : 3 ème année Ingénieur Génie Logiciel (INSAT) Volume horaire : 22H50 Cours Période : Semestre 2 Description : Ce module est un approfondissement des concepts et techniques de l algorithmique vus en première année. De nombreux algorithmes et techniques seront présentés et étudiés, de façon à bien comprendre leur conception et leur analyse. Une double problématique de l algorithmique sera envisagée : trouver une méthode de résolution exacte ou approchée d un problème donné. Plan (défini en 2009 par une commission de renouvellement du plan d études de l INSAT) 1. Structures de données avancées 2. La récursivité, le paradigme «diviser pour régner» 3. Analyse des algorithmes de type «diviser pour régner» 4. Algorithmes gloutons 5. Programmation dynamique 6. Backtracking 7. Branch and Bound Références bibliographiques E. E.Horowitz, S. Sahni & S. Rajasekaran. Computer Algorithms. Computer Science Press, L. Gérard. Algorithmique combinatoire - Méthodes constructives. Dunod, C. Pair, R. Mohr et R. Schott. Construire les algorithmes. Dunod, D. Krob. Algorithmique et Structures des Données. Ellipses, E. Donald Knuth. Sorting and searching. The Art of Computer Programming. Addison Wesley, Intitulé : Systèmes à Large Échelle et Cloud Computing Auditoire : 5 ème année cycle Ingénieur en Génie logiciel (GL5) Volume horaire : 22H50 Cours, 15H00 TP Période : Semestre 1 Description : L objectif de ce module est de présenter les principes des systèmes distribués à large échelle, tels que les systèmes pair-à-pair et le cloud. Partant des applications pair-à-pair existantes, nous discutons des problèmes posés par la mise en œuvre de telles applications : routage, choix des pairs, agrégation des résultats, etc. Ensuite, nous présentons différentes solutions à ces problèmes, en considérant aussi bien les réseaux non-structurés que les réseaux structurés. La deuxième partie de ce module se concentre sur le Cloud Computing. À partir du concept de

12 Activités pédagogiques 12 virtualisation, les principaux types de Cloud sont présentés à travers les offres de fournisseurs de Cloud. En complément, un ensemble de travaux pratiques sera réalisé sur différents environnements (Peersim, NS2, Xen, VmWare, OpenStack), le déploiement d applications sur Google App Engine et/ou sur Windows AZURE. Plan (défini en 2009 par une commission de renouvellement du plan d études de l INSAT) 1. Définitions et caractéristiques des systèmes à large échelle 2. Les défis des systèmes à large échelle 3. Les systèmes Pair-à-Pair (P2P) Caractéristiques des systèmes P2P Les modèles d architectures des systèmes P2P Protocoles de routage pour les systèmes P2P 4. Le Cloud Computing La virtualisation Définition du cloud computing Apports et problématiques des Clouds Les différentes couches d un Cloud Modèles de Clouds Études et applications sur différentes plates-formes de Cloud Références bibliographiques F. Borko & E. Armando. Handbook of Cloud Computing. Springer Science & Business Media, J. Rhoton. Cloud Computing Explained : Implementation Handbook for Enterprises. Recursive Press, P. H. Feiler, K. Sullivan, K. C. Wallnau, R. P. Gabriel & J. B. Goodenough. Ultra- Large-Scale Systems : The Software Challenge of the Future. Software Engineering Institute, Troisième cycle Au niveau des enseignements de 3 ème cycle et en collaboration avec le Pr. Sadok Ben Yahia de la FST, j ai assuré le cours "Data Mining Parallèle" dans le cadre du Mastère de Recherche en Informatique (option Génie Logiciel) de la Faculté des Sciences de Tunis. J ai dispensé ce même module à l ISI Tunis dans le cadre du Mastère de Recherche en Informatique (option Génie Logiciel). Intitulé : Data mining parallèle Auditoire : 1 ère Année Mastère en Informatique (FST et ISI) Volume horaire : 16H00 Cours Période : Semestre 2 Description : L objectif de ce module est de présenter les défis des algorithmes de fouille de données. En effet, les algorithmes de découverte de règles associatives se caractérisent par leur aspect itératif, ce qui leur confère une complexité exponentielle. Plusieurs approches cherchent à améliorer les performances de ces algorithmes. En effet, tout en profitant des avancées du calcul parallèle, plusieurs algorithmes parallèles de découverte de règles associatives ont été développés.

13 Activités pédagogiques 13 Plan (Préparé par moi même) 1. Data Mining séquentiel : problèmes de performance 2. Data Mining Haute Performance : Techniques et algorithmes 3. Algorithmes de fouille de données sur les machines multi-cœurs et les machines à base de GPU Références bibliographiques M. J. A. Berry & G. S. Linoff. Data Mining Techniques : For Marketing, Sales, and Customer Relationship Management. Wiley, J. M. Adamo. Data Mining for Association Rules and Sequential Patterns : Sequential and Parallel Algorithms. Springer, M. J. Zaki & C. Ho. Large-Scale Parallel Data Mining. Lecture Notes in Computer Science, Springer, Activités d encadrement pédagogique Années PFE Ingénieur PFE Technicien Mini-Projets Mastère spécialisé /Maîtrise Présent > 100 > 50 > 50 2

14 Charges administratives et pédagogiques 14 Charges administratives et pédagogiques 1. Membre des jurys de soutenance des Projets de Fin d études (Ingénieur, Licence) du Département Génie Informatique et Mathématiques de l INSAT (depuis l année universitaire ). 2. Membre de la commission de passage au cycle ingénieur à l INSAT (année universitaire ). 3. Présidente du Jury d examen de la section Génie Logiciel (GL5) à l INSAT (années universitaires , , , , ). 4. Présidente de Jury d examen de la section Génie Logiciel (GL4) à l INSAT (années universitaires ). 5. Membre la commission de Mastères de recherche de la FST (depuis l année universitaire ). 6. Membre invité des jurys de soutenances de mémoires de Mastères de recherche de la FST (depuis l année universitaire ). 7. Membre de la commission de renouvellement du plan d études Génie Logiciel (cycle ingénieur) de l INSAT (année universitaire ). 8. Membre de la commission de recrutement des experts et assistants contractuels au Département Génie Informatique et Mathématiques de l INSAT (années universitaires , ). 9. Membre de la commission nationale de recrutement des Technologues en Informatique (années universitaires et ).

15 Charges administratives et pédagogiques 15 Activités de recherche

16 Activités de recherche 16 Résumé des activités de recherche Initiées en 1992, mes activités de recherche ont été menées au sein de deux laboratoires de recherche : le Laboratoire en Informatique, Algorithmique, Programmation et Heuristique (LIPAH) de la Faculté des Sciences de Tunis dont je suis membre, et le Laboratoire d Informatique et des Systèmes Industriels (LISI) de l Institut National des Sciences Appliquées et de Technologie de Tunis. Après ma thèse, l ensemble de mes activités de recherche se subdivise en deux grands axes que nous allons détailler ci dessous. Ces axes portent sur la Recherche d Information à Large Échelle et l Extraction de Connaissances. Chaque axe est articulé autour d un certain nombre de thématiques. Durant ma thèse, j ai travaillé sur la définition et la conception d une méthode d indexation à base de fichiers de signatures et la décomposition rectangulaire, pour faciliter l accès à l information. Travail de thèse : Extraction et organisation de fichiers de signatures pour une base de données rectangulaires ( ) Le travail de ma thèse de doctorat a porté sur l étude des méthodes d indexation des bases de documents. En effet, le problème de recherche d information a pris de nouvelles orientations avec l apparition des bases de données non formatées, qui se caractérisent par des formes variables de l information stockée. À travers mes travaux de thèse, nous avons proposé une approche de structuration des données, pour ensuite définir une représentation intermédiaire facilitant l accès et la recherche de ces données. La méthode de fichiers de signatures est une méthode d accès qui est utilisée pour chercher ou manipuler ces données. Le principal facteur qui a motivé nos recherches est le coût d accès aux bases de données volumineuses et aux bases de données intégrées [?]. Pour maîtriser ce coût d accès, nous avons utilisé le concept de fichiers de signature [?]. Un fichier de signatures est un mécanisme de filtrage permettant de réduire la quantité des données manipulées lors de l évaluation de requêtes. Ainsi, à l aide des signatures, nous pouvons obtenir une représentation condensée d un ensemble des données. Cette représentation nous permettra, lors d une recherche, de ne pas explorer l ensemble de données dans son intégralité. À cet égard, nous avons défini une approche de décomposition rectangulaire des bases de données, pour structurer les informations afin d explorer les liens qui existent entre les rectangles [?]. Pour cela, nous avons fait les propositions suivantes : Mise en place d une stratégie de structuration d une base de données relationnelle ou documentaire. Cette stratégie est basée essentiellement sur la décomposition rectangulaire [?,?]. Définition et implantation d une méthode d accès aux données [?]. Utilisation de plusieurs niveaux de filtrage. La structuration rectangulaire que nous avons proposée nous a permis de : Réduire le nombre de fausses alarmes. Cette réduction provient du fait que la signature est calculée sur un nombre réduit de valeurs (domaine d un rectangle). Le nombre de signatures élémentaires, regroupées pour former la signature globale, est moins important, et ainsi les poids des signatures du filtre sont réduits. Réduire l espace de recherche. L utilisation des signatures permet d avoir un niveau de filtrage qui minimise le nombre de rectangles à examiner lors du processus de recherche. Choisir les poids des signatures et les tailles des rectangles. Aucune restriction n est imposée pour uniformiser aussi bien la taille des rectangles (cardinalité), que leurs poids. La nature de la classification a permis de minimiser le poids des signatures associées.

17 Activités de recherche 17 Travail post-thèse : Contributions à la recherche d information à large échelle (à partir de 1999) À partir des années 2000, mes travaux de recherche se sont orientés vers le domaine de la Recherche d Information, avec un double objectif à savoir tenir compte d une part de l utilisateur et de ses spécificités, et le passage à l échelle, d autre part. Devant la dimension des larges volumes de données, il est devenu impossible (sauf pour certains cas spécifiques) de stocker les gros volumes de données de manière centralisée. Le recours à des systèmes distribués avec l usage de serveurs, est donc devenu une nécessité. Ainsi, un système de recherche d information se trouve composé de deux entités : des clients et des serveurs. Cette vision a créé un déséquilibre entre ces deux entités, dans le sens où toute la charge (stockage et traitement) est assurée par une seule entité, à savoir le serveur. Pour rétablir un équilibre entre ces deux entités, les systèmes à large échelle ont été et sont fortement utilisés. Parmi ces systèmes, nous trouvons en particulier, les systèmes pairà-pair (P2P) non structurés. Ces systèmes se distinguent des environnements distribués classiques par le fait qu aucune entité ne détient une vision globale de la totalité du système. Une des applications caractéristique de ces systèmes est la Recherche d Information à Large Échelle (RILE), dont l une des plus importantes variantes est la Recherche d Information dans un contexte P2P (RIP2P). D une manière générale, la Recherche d Information à Large Échelle (RILE), induit deux acteurs principaux, à savoir l utilisateur du système et le Système de Recherche d Inforamtion (SRI). Concernant l utilisateur, son principal souci est d avoir l information la plus appropriée et la plus adéquate à ses besoins dans un délai raisonnable. Par contr, un SRI doit faire face à plusieurs contraintes, comme : l hétérogénéité des collections et des données, la localisation des données, le passage à l échelle, la diversité des modèles et des méthodes de recherche et le coût de leur mise en œuvre. Cependant, il faut noter que ces contraintes sont orthogonales par rapport aux soucis de l utilisateur. En effet, le problème clé est comment un système aussi ouvert que large peut satisfaire l utilisateur aussi bien d un point de vue de l efficience que d efficacité?. Ainsi, nous sommes faces à plusieurs défis dont les principaux : Le passage à l échelle : l obstacle du passage à l échelle est d autant plus difficile à franchir qu il concerne simultanément le volume de données à manipuler, les sources très largement distribuées et les besoins en information qui sont très exigeants. La performance : ce défis constitue un point particulièrement difficile qui justifie le recours à de lourds investissements de la part des acteurs du domaine. Le degré d autonomie : une autonomie doit être accordée aux utilisateurs, malgré l ouverture du système où aucune entité centrale ne détient une vision globale. Ces défis sont à la base de la définition de notre problématique de recherche sur la RILE, qui concerne la mise en place d une synergie entre les techniques classiques de RI et les techniques d extraction de connaissances utilisées pour la "contextualisation" de la recherche. La plupart des Systèmes de Recherche d Information à Large Échelle (SRILE) traitent les requêtes des utilisateurs de manière identique sans tenir compte de leurs spécificités. Ils sont beaucoup plus préoccupés par rendre, le plus rapidement possible, une réponse aux utilisateurs. L hypothèse sous-jacente de notre proposition est qu au fur et à mesure des interactions des utilisateurs avec le système, cette synergie permettra de découvrir des connaissances sur les utilisateurs qui peuvent être utiles au système de recherche d information. Ainsi, notre intérêt pour la recherche d information à large échelle nous a donc conduit à intégrer les connaissances sous forme de profils (les intérêts) utilisateurs

18 Activités de recherche 18 représentant son contexte. L idée de base est que les profils des utilisateurs jouent un rôle important dans le succès de la Recherche d information (RI) puisqu ils modélisent et représentent les contextes et les besoins réels des utilisateurs [?,?,?]. De notre point de vue, une telle démarche s inscrit dans une double problématique : (i) définir les algorithmes adéquats pour la fouille de corpus de grandes tailles en prenant en compte le problème d adaptation et d optimisation du processus d extraction de profils sans recourir à une globalisation de l information ; et, (ii) le déploiement des connaissances découvertes dans des applications réelles manifestant des besoins et des défis différents, telles que la recherche d information contextuelle. En effet, l intérêt des approches de data mining est de mieux comprendre les utilisateurs, caractériser les interactions entre les différents objets manipulés. Ainsi, pour capter les profils des utilisateurs, des algorithmes d extraction de connaissances sont exploités. Notre soucis est de considérer le profil comme une corrélation entre plusieurs objets manipulés lors des recherches antérieures et considérer plusieurs profils représentant le même utilisateur dont le but est d être plus efficace en recherche d information. À travers ces travaux, nous visons deux objectifs essentiels : (i) augmenter l efficacité et l efficience de toute opération de recherche d information dans le cadre d un système à Large Échelle ; et, (ii) améliorer les performances des méthodes d Extraction des Connaissances. Comme le montre la Figure 1, nos travaux de recherche se déclinent par des investigations diverses réparties en deux axes : la Recherche dinformation Contextuelle (RIC) et l Extraction de Connaissances. Où d une part, l extraction de connaissances sera au service de la contextualisation en recherche d information et d autre part les connaissances peuvent impacter Impact la qualité de la recherche d information. Dans le premier axe, nous avons abordé trois thématiques : la modélisation d un contexte, son exploitation et enfin son évaluation. Extraction de Connaissances Modélisation Exploitation Évaluation Structure de Données Parallélisation Figure 1 Cadre de recherche et positionnement des contributions Dans le second axe, nous nous sommes intéressés à la problématique de l extraction des connaissances. Nous comptons exploiter les techniques d extraction de connaissances pour générer les profils utilisateurs qui seront utilisés dans tout processus de la RILE. Notre objectif principal consiste à proposer des solutions

19 Activités de recherche 19 pouvant accélérer le processus de génération des profils utilisateurs, en agissant à la fois sur la réduction de l espace de recherche (utilisation de structures de données condensées) que sur l exploitation des potentialités offertes par les nouveaux supports d exécution (les processeurs multi-cœurs et graphiques). Nos principales contributions par rapport aux deux axes présentés ci-dessus peuvent être résumées comme suit : 1. Axe 1 : Recherche d Information Contextuelle Proposition d une approche de modélisation de profils utilisateurs pour générer leurs contextes. Adaptation du modèle proposé dans différents processus de recherche d information à large échelle. Mise en place d un protocole d évaluation de ce type de systèmes à large échelle et d un mécanisme d évolution des profils utilisateurs. 2. Axe 2 : Extraction des connaissances Amélioration des performances des algorithmes d extraction de connaissances par la proposition de structures de données adéquates. Amélioration des performances des algorithmes d extraction de connaissances, en exploitant les potentialités de calcul des nouvelles architectures des processeurs. Axe 1 : Recherche d information contextuelle La recherche d information distribuée contextuelle constitue un domaine d investigation en perpétuelle évolution, où nous assistons à une très forte introduction de la technologie P2P. Les réseaux P2P constituent l une des infrastructures les plus prometteuses dans le développement des solutions distribuées, puisqu ils proposent un partage économique des ressources d information. Toutefois, la recherche P2P est révélatrice de nouveaux problèmes relatifs à la dynamicité des pairs dans ces réseaux, au passage à l échelle, à l hétérogénéité, à l absence de la centralisation et à l autonomie [?,?]. Les pairs se connectent et se déconnectent à volonté du réseau, ce qui donne une forte dynamicité à la structure du réseau. De plus, la recherche d information en contexte P2P n a pas connu une évolution quant aux techniques d indexation de contenu, sa distribution sur les différents pairs, sa localisation et sa sélection, et par conséquent sur la combinaison de résultats provenant des différents pairs sélectionnés. Nos travaux s inscrivent précisément dans le courant de la recherche d information contextuelle, visant l adaptation du processus de recherche d information aux spécificités des utilisateurs. Cette spécificité porte sur l utilisateur, qui est au centre de l activité de recherche d information, par le biais de son profil ou de ses intérêts. L objectif est de mettre en place des techniques permettant d intégrer la notion de contexte utilisateur (son profil) à différents niveaux d un processus de Recherche d Information (RI). Premièrement, en amont du processus de RI, en construisant une représentation, qui soit la plus fidèle possible aux intérêts de l utilisateur. Deuxièmement, en aval, en personnalisant l information trouvée aux besoins et préférences de l utilisateur. Une problématique importante, qui est par ailleurs peu traitée dans la littérature, reste l évolution de profils des utilisateurs par rapport à leurs recherches, afin qu ils restent représentatifs de leurs comportements, qu ils ne deviennent pas omnipotents, et plus généralement qu ils ne dégradent pas l efficacité et l efficience d un SRI, mais plutôt les améliorent. Pour répondre à cette problématique, nos recherches se sont orientées vers une approche de gestion de profils utilisateurs et de leur évolution, en étudiant notamment les conséquences de la modification des profils sur les performances globales d un SRI. Les propositions que nous avons faites et qui prennent en compte des éléments des profils utilisateurs, s inscrivent majoritairement dans un type d approche qui consiste à étendre les traitements de RI. De nou-

20 Activités de recherche 20 velles données liées aux contextes sont exploitées mais les traitements restent identiques pour toutes les recherches effectuées. Un autre type d approche cherche cependant à modifier les traitements appliqués. Ces travaux se déclinent par des investigations diverses, focalisées sur la clarification et la formalisation des besoins en information, ainsi que sur la modélisation du contexte de recherche selon différentes dimensions. Ensuite, comme un modèle n est viable que lorsqu il est reconnu efficace selon des normes et méthodologies d évaluation standardisées, nous avons proposé la mise en place d un cadre d évaluation d un SRILE [?,?]. La prise en compte du contexte dans les SRI implique à la fois d identifier puis de modéliser les différents aspects du contexte. Les problèmes que nous avons abordé dans le cadre de cet axe sont : Proposition d un modèle contextuel pour la RILE [?]. Exploitation et adaptation de ce modèle dans les deux phases importantes de la RILE, à savoir la sélectivité des meilleures collections (i.e. le routage) [?,?,?] et l agrégation des résultats [?]. Définition d un cadre d évaluation permettant la validation de nos contributions dans le domaine [?]. Proposition de mécanismes d évolution des profils utilisateurs [?]. Axe 2 : Extraction des Connaissances Il s agit de proposer des méthodes et des techniques capables de traiter de grandes masses de données (traces de navigation) pour extraire de la connaissance dans des délais raisonnables pour les utilisateurs et les exploiter d une manière efficace dans une ou plusieurs phases de la RI. L usage général des techniques de fouille de traces de navigation (fichiers logs), dans des applications réelles, ne pourra se faire que si les deux exigences suivantes sont satisfaites : (i) proposer des approches avec un niveau d efficacité assez élevé du point de vue structure de données et algorithmique ; et, (ii) intégrer les approches proposées dans le processus de RILE. De ce fait, nous nous sommes focalisés sur la proposition d approches d extraction de connaissances en agissant d une part, sur la définition de nouvelles structures de données compactes, et sur l adaptation algorithmique aux nouvelles architectures des processeurs multi-cœurs et les processeurs GPU, d autre part. Ainsi, le choix de la structure de données la plus adéquate possible est fondamental puisque celleci influe sur les performances de l algorithme adopté. Le besoin de disposer de structures compactes a motivé de nombreux chercheurs qui ont proposé de nouvelles structures, notamment pour réduire les accès disque. Deux grandes classes de structures émergent : les structures de données pour la représentation de la base initiale et les structures de données pour la génération et le stockage des données intermédiaires candidats (comme les candidats pour les algorithmes classiques d extraction des connaissances). Notre principale contribution au niveau de cette thématique de cet axe, se présente par la définition de nouvelles structures binaires et arborescentes de représentation condensée d une base initiale, sans avoir recours à la représentation les données intermédiaires [?,?,?]. Dans ce travail, nous discutons de la conception et de l utilisation des nouvelles structures de données compactes pour améliorer l efficacité de l exploitation des motifs intéressants (comme les itemsets fréquents) en réponse à plusieurs problèmes clés à savoir : Réduire le nombre des entrées/sorties. Éviter les structures intermédiaires dans la génération des fréquents. Avoir des structures capables de traiter des faibles valeurs de contraintes (faible support). Mettre en place des structures adéquates aux nouveaux supports d exécution. La deuxième thématique de cet axe de recherche porte sur la parallélisation des algorithmes d extraction des connaissances. En effet, suite à l augmentation et à la diversité des données disponibles et l expansion des supports de stockage, les algorithmes séquentiels d extraction des connaissances se sont avérés

Curriculum Vitae. Ghada Gasmi Épouse Mathlouthi. Docteur en Informatique et assistante à l INSAT

Curriculum Vitae. Ghada Gasmi Épouse Mathlouthi. Docteur en Informatique et assistante à l INSAT Curriculum Vitae Ghada Gasmi Épouse Mathlouthi Docteur en Informatique et assistante à l INSAT 1 Table des matières Informations personnelles 1 Cursus universitaire 1 Activités de recherche 3 Axes de recherche................................

Plus en détail

Renseignements personnels

Renseignements personnels Wafa Mekki Curriculum Vitae Renseignements personnels Date et lieu de naissance: 22 Novembre 1986 à Sfax, Tunisie Nationnalité: Tunisienne Etat civil: Mariée Adresse: Route Manzel Chaker Km 5, 3013, Sfax,

Plus en détail

CURRICULUM VITAE. Informations Personnelles

CURRICULUM VITAE. Informations Personnelles CURRICULUM VITAE Informations Personnelles NOM: BOURAS PRENOM : Zine-Eddine STRUCTURE DE RATTACHEMENT: Département de Mathématiques et d Informatique Ecole Préparatoire aux Sciences et Techniques Annaba

Plus en détail

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr

IT203 : Systèmes de gestion de bases de données. A. Zemmari zemmari@labri.fr IT203 : Systèmes de gestion de bases de données A. Zemmari zemmari@labri.fr 1 Informations pratiques Intervenants : Cours : (A. Zemmari zemmari@labri.fr) TDs, TPs : S. Lombardy et A. Zemmari Organisation

Plus en détail

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Unité Systèmes d'information CM : 45h - TD : 60h - TP : 12h - Coeff 2 Systèmes de Gestion de Bases de Données Modéliser

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Curriculum Vitae. Formation. Années Nature des études Diplômes 1983-1989 Etudes primaires à l école Juin 89 : Diplôme des études primaires

Curriculum Vitae. Formation. Années Nature des études Diplômes 1983-1989 Etudes primaires à l école Juin 89 : Diplôme des études primaires Curriculum Vitae Nom : KHAYATI Prénom : Naoufel Date et lieu de naissance : 25 juillet 1978 à Tébourba. Adresse 1 : Apt 24, Bloc 4, Rue Benbla, Cité Romana, 1068, Tunis. Adresse 2 : 7 Avenue Essafsaf,

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

BASE DE DONNEES. OlivierCuré [ocure@univ-mlv.fr]

BASE DE DONNEES. OlivierCuré [ocure@univ-mlv.fr] BASE DE DONNEES 1 Contact Olivier Curé ocure@univ-mlv.fr http://www.univ-mlv.fr/~ocure Copernic 4B060 2 Objectifs du cours Présentation des concepts liés aux bases de données, aux modèles des bases de

Plus en détail

Master CCI. Compétences Complémentaires en Informatique. Livret de l étudiant

Master CCI. Compétences Complémentaires en Informatique. Livret de l étudiant Master CCI Compétences Complémentaires en Informatique Livret de l étudiant 2014 2015 Master CCI Le Master CCI (Compétences Complémentaires en Informatique) permet à des étudiants de niveau M1 ou M2 dans

Plus en détail

Langage dédié pour le pilotage de solveurs de contraintes

Langage dédié pour le pilotage de solveurs de contraintes LABORATOIRE D INFORMATIQUE DE NANTES-ATLANTIQUE UMR 6241 ÉCOLE DOCTORALE STIM, N. 503 «Sciences et technologies de l information et des mathématiques» Sujet de thèse pour 2010 Langage dédié pour le pilotage

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

Bases de données et SGBDR

Bases de données et SGBDR Bases de données et SGBDR A. Zemmari zemmari@labri.fr 1 Bibliographie Bases de données relationnelles (Les systèmes et leurs langages). G. Gardarin Eyrolles Bases de données et systèmes relationnels. C.

Plus en détail

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec PiRiA contact : patrick.hède@cea.fr Commissariat à l'energie Atomique GdR isis : Passage à l'échelle dans la recherche

Plus en détail

INFORMATIQUE. Licence 3 e année (L3) & Master (M1-M2) Centre d Etudes Suisse Romande Formation universitaire

INFORMATIQUE. Licence 3 e année (L3) & Master (M1-M2) Centre d Etudes Suisse Romande Formation universitaire Centre d Etudes Suisse Romande Formation universitaire INFORMATIQUE Licence 3 e année (L3) & Master (M1-M2) En collaboration avec l Université de Franche-Comté CTU de Besançon Unidistance 2 GÉNÉRALITÉS

Plus en détail

SCIENCES & TECHNOLOGIES - SANTÉ ET STAPS LICENCE MATHÉMATIQUES. www.univ-littoral.fr

SCIENCES & TECHNOLOGIES - SANTÉ ET STAPS LICENCE MATHÉMATIQUES. www.univ-littoral.fr SCIENCES & TECHNOLOGIES - SANTÉ ET STAPS LICENCE www.univ-littoral.fr OBJECTIFS DE LA FORMATION L objectif de la licence Mathématiques est, non seulement de donner une solide formation initiale en mathématiques

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Etude d Algorithmes Parallèles de Data Mining

Etude d Algorithmes Parallèles de Data Mining REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE

Plus en détail

201-8F4-ST Mathématiques appliquées à l informatique

201-8F4-ST Mathématiques appliquées à l informatique DESCRIPTION DES COURS DE FORMATION SPÉCIFIQUE TECHNIQUES DE L INFORMATIQUE (420.A0) 201-8F4-ST Mathématiques appliquées à l informatique Préalable : Mathématique TS ou SN 5 e ou équivalent Ce cours a pour

Plus en détail

FSAB 1402 - Suggestions de lecture

FSAB 1402 - Suggestions de lecture FSAB 1402 - Suggestions de lecture 2006 Concepts, techniques and models of computer programming Cours 1 - Intro Chapitre 1 (sections 1.1, 1.2, 1.3, pages 1-3) Introduction aux concepts de base Chapitre

Plus en détail

Une méthode d apprentissage pour la composition de services web

Une méthode d apprentissage pour la composition de services web Une méthode d apprentissage pour la composition de services web Soufiene Lajmi * Chirine Ghedira ** Khaled Ghedira * * Laboratoire SOIE (ENSI) University of Manouba, Manouba 2010, Tunisia Soufiene.lajmi@ensi.rnu.tn,

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

Bases de données Cours 1 : Généralités sur les bases de données

Bases de données Cours 1 : Généralités sur les bases de données Cours 1 : Généralités sur les bases de données POLYTECH Université d Aix-Marseille odile.papini@univ-amu.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 1 Qu est ce qu une

Plus en détail

IDENTITÉ FORMATION POSITION ACTUELLE EXPERIENCES PROFESSIONNELLES

IDENTITÉ FORMATION POSITION ACTUELLE EXPERIENCES PROFESSIONNELLES Mohammad HAJJAR Professeur Laboratoire GRIT Institut Universitaire de Technologies Université Libanaise IDENTITÉ Adresse: IUT - BP 813 - Saida - Liban Téléphones: 961 71 133 237 961 7 240 793 Fax: 961

Plus en détail

INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : MOBILITE ET CLOUD COMPUTING

INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : MOBILITE ET CLOUD COMPUTING INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : MOBILITE ET CLOUD COMPUTING Préparez ce diplôme à l école de d ingénierie de l IGA OBJECTIFS DE LA FORMATION Dans un contexte de mutation économique et

Plus en détail

OMGL UE Modélisation de données 2 / 41

OMGL UE Modélisation de données 2 / 41 Module OMGL UE Modélisation de données Analyse et Conception des Systèmes d Information Modélisation des données J. Christian Attiogbé Septembre 2008, maj 11/2009, 08/2010 OMGL UE Modélisation de données

Plus en détail

Introduction aux bases de données

Introduction aux bases de données Introduction aux bases de données Références bibliographiques Jeff Ullman,Jennifer Widom, «A First Course in Database systems», Prentice-Hall, 3rd Edition, 2008 Hector Garcia-Molina, Jeff Ullman, Jennifer

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

Conception de la base de données

Conception de la base de données Rapport T.E.R HLIN405 Conception de la base de données des projets de licence deuxième et troisième année Réalisé par Achraf Tajani Cvete Maceski Mohamed Bareche Sous l encadrement de Christian Retoré

Plus en détail

Cours Bases de données

Cours Bases de données Informations sur le cours Cours Bases de données 9 (10) séances de 3h Polycopié (Cours + TD/TP) 3 année (MISI) Antoine Cornuéjols www.lri.fr/~antoine antoine.cornuejols@agroparistech.fr Transparents Disponibles

Plus en détail

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML

Durée ou Modalité: Examen! MOTS CLES : Architecture d application, Internet, Web2, RIA, Service Oriented Architecture, XML DEPARTEMENT INFORMATIQUE ET GESTION S 9 PIGUE9.1 ARCHITECTURE DES SYSTEMES D INFORMATION & INTERNET! COORDINATEUR : Christophe FIORIO! EQUIPE PEDAGOGIQUE : Christophe FIORIO, Tiberiu STRATULAT! VOLUME

Plus en détail

Curriculum Vitae. (Analyste programmeur Ingénieur réseaux et télécoms) INFORMATIONS GENERALES. Nom et prénom : El Haddad Mohamed Karim

Curriculum Vitae. (Analyste programmeur Ingénieur réseaux et télécoms) INFORMATIONS GENERALES. Nom et prénom : El Haddad Mohamed Karim Curriculum Vitae (Analyste programmeur Ingénieur réseaux et télécoms) INFORMATIONS GENERALES Nom et prénom : El Haddad Mohamed Karim Date et lieu de naissance : le 04 / 06 / 1981 à Tunis Situation familiale

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Routage sémantique des requêtes dans les systèmes pair-à-pair

Routage sémantique des requêtes dans les systèmes pair-à-pair Routage sémantique des requêtes dans les systèmes pair-à-pair Taoufik YEFERNY * Khedija AROUR ** Yahya SLIMANI * * Faculté des Sciences de Tunis Campus Universitaire, Tunis 1060, Tunisie yeferny.taoufik@gmail.com

Plus en détail

1. Les fondements de l informatique 13

1. Les fondements de l informatique 13 Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

OFFRE DE FORMATION L.M.D.

OFFRE DE FORMATION L.M.D. REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE OFFRE DE FORMATION L.M.D. MASTER PROFESSIONNEL ET ACADEMIQUE Systèmes d Information

Plus en détail

Systèmes d information et bases de données (niveau 1)

Systèmes d information et bases de données (niveau 1) Systèmes d information et bases de données (niveau 1) Cours N 1 Violaine Prince Plan du cours 1. Bibliographie 2. Introduction aux bases de données 3. Les modèles 1. Hiérarchique 2. Réseau 3. Relationnel

Plus en détail

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base)

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) 1. Généralités sur l'information et sur sa Représentation 1.1 Informations et données : a. Au sen de la vie : C

Plus en détail

Extraction de règles d association pour la prédiction de valeurs manquantes

Extraction de règles d association pour la prédiction de valeurs manquantes Cari 2004 7/10/04 12:00 Page 487 Extraction de règles d association pour la prédiction de valeurs manquantes Sylvie Jami 1, Tao-Yan Jen 2, Dominique Laurent 3, George Loizou 1, Oumar Sy 3,4 1. Birkbeck

Plus en détail

INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : SYSTEMES INFORMATIQUES D AIDE A LA DECISION

INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : SYSTEMES INFORMATIQUES D AIDE A LA DECISION INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : SYSTEMES INFORMATIQUES D AIDE A LA DECISION Préparez ce diplôme à l école de d ingénierie de l IGA OBJECTIFS DE LA FORMATION Le système décisionnel est

Plus en détail

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

Introduction au développement du logiciel

Introduction au développement du logiciel Introduction au développement du logiciel Vers le génie logiciel Université de Nantes Master Miage M1 Plan 1 Introduction 2 Génie logiciel 3 Projet informatique 4 Méthode de développement 5 Qualité Bibliographie

Plus en détail

Salah Eddine MERZOUK Doctorant SeT ATER IMaP

Salah Eddine MERZOUK Doctorant SeT ATER IMaP Curriculum Vitae Salah Eddine MERZOUK Doctorant SeT ATER IMaP Informations personnelles Situation actuelle Doctorant au sein du laboratoire Système et Transport (SeT) de l Université de Technologie de

Plus en détail

I. Bases de données. Exemples classiques d'applications BD. Besoins de description

I. Bases de données. Exemples classiques d'applications BD. Besoins de description I. Bases de données Exemples classiques d'applications BD Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Gestion des personnels, étudiants, cours, inscriptions,...

Plus en détail

ift287 - Exploitation de bases de données relationnelles et orientées objet

ift287 - Exploitation de bases de données relationnelles et orientées objet Département d informatique ift287 - Exploitation de bases de données relationnelles et orientées objet Plan de cours Hiver 2012 Enseignant : Marc Frappier Courriel : marc.frappier@usherbrooke.ca Téléphone

Plus en détail

Etat de l art sur l utilisation des techniques Web Sémantique en ECD

Etat de l art sur l utilisation des techniques Web Sémantique en ECD Etat de l art sur l utilisation des techniques Web Sémantique en ECD Hicham Behja ENSAM Meknès(1,2,3) Brigitte Trousse Projet AxIS INRIA Sophia Antipolis (2) Abdelaziz Marzak Faculté des sciences Casablanca

Plus en détail

IFT 187 Éléments de bases de données

IFT 187 Éléments de bases de données Département d informatique IFT 187 Éléments de bases de données Plan de cours Automne 2014 Enseignants Marc Frappier Courriel : marc.frappier@usherbrooke.ca Local : D4-1010-08 Téléphone : (819) 821-8000

Plus en détail

COMPUTER SCIENCE Paris 7 Denis Diderot

COMPUTER SCIENCE Paris 7 Denis Diderot COMPUTER SCIENCE Paris 7 Denis Diderot LICENCE 1 SEMESTER 2 (Spring) o Initiation à la programmation 2 o Concepts informatiques o Internet et outils o Mathématiques élémentaires 2 COURSE DESCRIPTION Initiation

Plus en détail

1993 Baccalauréat (S). Mention Assez Bien. FORMATION

1993 Baccalauréat (S). Mention Assez Bien. FORMATION Sana GUETAT Avenue Olivier Messiaen, 72085 Le Mans cedex 9 (33) 02 43 83 35 34- Fax : (33) 02 43 83 31 35 Sana.Guetat@univ-lemans.fr http://www.univ-lemans.fr FORMATION 2008 Doctorat en Sciences de Gestion,

Plus en détail

Une extension pour RDF/RDFS utilisant des relations procédurales

Une extension pour RDF/RDFS utilisant des relations procédurales Une extension pour RDF/RDFS utilisant des relations procédurales Jean-François Baget * * INRIA Sophia-Antipolis & LIRMM(CNRS - UM2) LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5 baget@lirmm.fr RÉSUMÉ.

Plus en détail

Module IUP3 Bases de Données Avancées. Esther Pacitti

Module IUP3 Bases de Données Avancées. Esther Pacitti Module IUP3 Bases de Données Avancées Esther Pacitti Objectifs générales du Module Réviser les principales concepts de BD relationnelle et la langage algébrique et SQL (interrogation et màj) Comprendre

Plus en détail

Table des matières. Remerciements... Avant-propos... 1. Introduction... 7

Table des matières. Remerciements... Avant-propos... 1. Introduction... 7 Remerciements..................................................... VI Avant-propos...................................................... 1 À qui s adresse cet ouvrage?..........................................

Plus en détail

MASTER MENTION INFORMATIQUE SPÉCIALITÉ PROGRAMMATION ET LOGICIELS SÛRS. Présentation. Objectifs. Compétences visées. Organisation. Stage.

MASTER MENTION INFORMATIQUE SPÉCIALITÉ PROGRAMMATION ET LOGICIELS SÛRS. Présentation. Objectifs. Compétences visées. Organisation. Stage. MASTER MENTION INFORMATIQUE SPÉCIALITÉ PROGRAMMATION ET LOGICIELS SÛRS RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine : Sciences, Technologies, Santé Mention : INFORMATIQUE Spécialité :

Plus en détail

Bases de données avancées Introduction

Bases de données avancées Introduction Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)

Plus en détail

SUPPLEMENT AU DIPLOME

SUPPLEMENT AU DIPLOME SUPPLEMENT AU DIPLOME Préambule : «Le présent supplément au diplôme suit le modèle élaboré par la Commission européenne, le Conseil de l Europe et l UNESCO/CEPES. Le supplément vise à fournir des données

Plus en détail

Cahier des charges Offre de formation LMD :

Cahier des charges Offre de formation LMD : REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de L Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene Faculté d Electronique

Plus en détail

Construction et enrichissement d une ontologie à partir d un corpus de textes

Construction et enrichissement d une ontologie à partir d un corpus de textes Lyon - France Construction et enrichissement d une ontologie à partir d un corpus de textes Rokia BENDAOUD LORIA Campus Scientifique - BP 239 54506 VANDOEUVRE-lès-NANCY CEDEX {Rokia.Bendaoud}@loria.fr

Plus en détail

INTRODUCTION 1. QU EST-CE QU UNE BASE DE DONNÉES?

INTRODUCTION 1. QU EST-CE QU UNE BASE DE DONNÉES? INTRODUCTION 1. QU EST-CE QU UNE BASE DE DONNÉES? Les bases de données ont pris aujourd hui une place essentielle dans l informatique, plus particulièrement en gestion. Au cours des trente dernières années,

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Une proposition d extension de GML pour un modèle générique d intégration de données spatio-temporelles hétérogènes

Une proposition d extension de GML pour un modèle générique d intégration de données spatio-temporelles hétérogènes 303 Schedae, 2007 Prépublication n 46 Fascicule n 2 Une proposition d extension de GML pour un modèle générique d intégration de données spatio-temporelles hétérogènes Samya Sagar, Mohamed Ben Ahmed Laboratoire

Plus en détail

Alexandra DESMOULIN Docteur en informatique

Alexandra DESMOULIN Docteur en informatique Alexandra DESMOULIN Docteur en informatique Adresse Professionnelle: IRISA/Université de RENNES 1 Campus de Beaulieu 35042 RENNES Cedex - France Tél: 02 99 84 72 64 E-mail : adesmoul@irisa.fr Adresse Personnelle:

Plus en détail

IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France VERS DES SERVICES WEB ADAPTES : COMMENT INTEGRER LE CONTEXTE DANS LES DIFFERENTES ARCHITECTURES DE SERVICES WEB? Bouchra SOUKKARIEH, Dana KUKHUN, Florence SEDES {sokarieh,kukhun,sedes}@irit.fr IRIT, Université

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Formation de recherche. Master MI (MoSIG), 2e année, spécialité Informatique UFRIMAG (UJF) & Ensimag (Grenoble INP)

Formation de recherche. Master MI (MoSIG), 2e année, spécialité Informatique UFRIMAG (UJF) & Ensimag (Grenoble INP) Formation de recherche Master MI (MoSIG), 2e année, spécialité Informatique UFRIMAG (UJF) & Ensimag (Grenoble INP) Massih-Reza Amini mars 2015 Qu est ce qu une thèse de doctorat? Un travail de 36 mois

Plus en détail

Recherche et exploitation de l information pour son mémoire. Master Pro OPEx

Recherche et exploitation de l information pour son mémoire. Master Pro OPEx Recherche et exploitation de l information pour son mémoire Master Pro OPEx Objectifs Types documents pertinents Méthodologie Faire un état de l art Travail sur le vocabulaire Rédiger une requête Se procurer

Plus en détail

BACHELOR OF SCIENCE INFORMATICIEN-NE DE GESTION

BACHELOR OF SCIENCE INFORMATICIEN-NE DE GESTION Informatique de gestion BACHELOR OF SCIENCE HES-SO BACHELOR OF SCIENCE INFORMATICIEN-NE DE GESTION Plans d études et descriptifs des modules Filière à plein temps et à temps partiel Table des matières

Plus en détail

Chapitre 1. Introduction aux Bases de Données. Cours de Bases de Données. Polytech Paris-Sud. Chapitre 1 : Quelques questions

Chapitre 1. Introduction aux Bases de Données. Cours de Bases de Données. Polytech Paris-Sud. Chapitre 1 : Quelques questions Cours de Bases de Données Chapitre 1 Polytech Paris-Sud Sarah Cohen-Boulakia LRI, Bât 490, Université Paris-Sud 11, Orsay cohen @ lri. fr 01 69 15 32 16 Introduction aux Bases de Données 1 2 Chapitre 1

Plus en détail

INF 721 Mesures et indicateurs du génie logiciel Trimestre Été 2015 Professeur. Évariste Valéry BÉVO WANDJI

INF 721 Mesures et indicateurs du génie logiciel Trimestre Été 2015 Professeur. Évariste Valéry BÉVO WANDJI UNIVERSITÉ DE SHERBROOKE FACULTÉ DES SCIENCES CENTRE DE FORMATION EN TECHNOLOGIES DE L INFORMATION PLAN DE COURS Cours INF 721 Mesures et indicateurs du génie logiciel Trimestre Été 2015 Professeur Évariste

Plus en détail

Introduction aux Bases de Données

Introduction aux Bases de Données Introduction aux Bases de Données I. Bases de données I. Bases de données Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Exemples classiques d'applications BD

Plus en détail

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac. CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.ma) N.B. : Les étudiants qui ont déposé leurs demandes d'inscription

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Les formations. Développeur Logiciel. ENI Ecole Informatique

Les formations. Développeur Logiciel. ENI Ecole Informatique page 1/8 Titre professionnel : Inscrit au RNCP de Niveau III (Bac + 2) (J.O. du 19/02/13) 24 semaines + 8 semaines de stage (uniquement en formation continue) Développer une application orientée objet

Plus en détail

Introduction à LINQ. Chapitre 1. Qu est-ce que LINQ?

Introduction à LINQ. Chapitre 1. Qu est-ce que LINQ? Chapitre 1 Introduction à LINQ En surfant sur le Web, vous trouverez différentes descriptions de LINQ (Language Integrated Query), et parmi elles : LINQ est un modèle de programmation uniforme de n importe

Plus en détail

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Mostafa HANOUNE*, Fouzia BENABBOU* *Université Hassan II- Mohammedia, Faculté des sciences

Plus en détail

INGÉNIERIE DES SYSTÈMES INFORMATIQUES - PARCOURS : ARCHITECTURE ET SÉCURITÉ DES SYSTÈMES ET RÉSEAUX INFORMATIQUES

INGÉNIERIE DES SYSTÈMES INFORMATIQUES - PARCOURS : ARCHITECTURE ET SÉCURITÉ DES SYSTÈMES ET RÉSEAUX INFORMATIQUES INGÉNIERIE DES SYSTÈMES INFORMATIQUES - PARCOURS : ARCHITECTURE ET SÉCURITÉ DES SYSTÈMES ET RÉSEAUX INFORMATIQUES Préparez ce diplôme à l école de d ingénierie de l IGA OBJECTIFS DE LA FORMATION Aujourd

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Une architecture logicielle pour la modélisation et simulation orientée agents de chaînes logistiques

Une architecture logicielle pour la modélisation et simulation orientée agents de chaînes logistiques Une architecture logicielle pour la modélisation et simulation orientée agents de chaînes logistiques Karam MUSTAPHA Domaine Universitaire de Saint-Jérôme Avenue Escadrille Normandie-Niemen 13397 MARSEILLE

Plus en détail

Accès personnalisé multicritères à de multiples sources d informations.

Accès personnalisé multicritères à de multiples sources d informations. Lyon - France Accès personnalisé multicritères à de multiples sources d informations. Samir kechid Université des Sciences et de la Technologie Houari Boumediene. USTHB BP 32 El Alia Bab Ezzouar Alger

Plus en détail

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/ Systèmes de gestion de bases de données Introduction Université d Evry Val d Essonne, IBISC utiles email : cinzia.digiusto@gmail.com webpage : http://www.ibisc.univ-evry.fr/ digiusto/ Google+ : https://plus.google.com/u/0/b/103572780965897723237/

Plus en détail

Mongi TRIKI Docteur en Informatique Université Paris Dauphine

Mongi TRIKI Docteur en Informatique Université Paris Dauphine Université Méditerranéenne Libre de Tunis Faculté Méditerranéenne Privée des Sciences Informatiques, Economiques et de Gestion de Tunis Département d Informatique LICENCE INFORMATIQUE Guide du Stagiaire

Plus en détail

Licence Professionnelle Systèmes Informatiques et Logiciels

Licence Professionnelle Systèmes Informatiques et Logiciels U.F.A. Paul Verlaine IUT1 Département Informatique Université de Metz Ile du Saulcy 57012 METZ C.F.A. Robert Schuman 4, rue Monseigneur Pelt 57070 METZ Formation par ALTERNANCE Licence Professionnelle

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Rapport de Monitorat. Élise Prieur

Rapport de Monitorat. Élise Prieur Rapport de Monitorat Élise Prieur 2003-2006 Table des matières 1 Introduction 2 2 Présentation générale 2 3 Expérience antérieure 2 4 Enseignement de moniteur 3 4.1 Activités d enseignement.....................

Plus en détail

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par. École Doctorale d Informatique, Télécommunications et Électronique de Paris THÈSE présentée à TÉLÉCOM PARISTECH pour obtenir le grade de DOCTEUR de TÉLÉCOM PARISTECH Mention Informatique et Réseaux par

Plus en détail

Descriptif de module. Page Nabil Ouerhani

Descriptif de module. Page Nabil Ouerhani RS430.100.15. 1/9 La description de module définit les conditions cadres du déroulement de l enseignement des matières du module. Filière(s) Orientation Public Informatique (INF) Développement Logiciel

Plus en détail

Unité de formation 1 : Structurer une application. Durée : 3 semaines

Unité de formation 1 : Structurer une application. Durée : 3 semaines PROGRAMME «DEVELOPPEUR LOGICIEL» Titre professionnel : «Développeur Logiciel» Inscrit au RNCP de niveau III (Bac+2) (JO du 23 Octobre 2007) (32 semaines) Unité de formation 1 : Structurer une application

Plus en détail

Approche organisationnelle basée sur le paradigme agent pour la synthèse & la réutilisation des connaissances en ingénierie collaborative

Approche organisationnelle basée sur le paradigme agent pour la synthèse & la réutilisation des connaissances en ingénierie collaborative Approche organisationnelle basée sur le paradigme agent pour la synthèse & la réutilisation des connaissances en ingénierie collaborative Hind Darwich, doctorante en thèse CIFRE au sein de la société TDC

Plus en détail

Besoins de DCCE pour le Département d'informatique de Polytech Nice

Besoins de DCCE pour le Département d'informatique de Polytech Nice Besoins de DCCE pour le Département d'informatique de Polytech Nice Pour Polytech Nice nous aurons pour 201-1 des enseignements à pourvoir en informatique sur le cycle préparatoire intégré. Pour chacun

Plus en détail

Cours Base de données relationnelles. M. Boughanem, IUP STRI

Cours Base de données relationnelles. M. Boughanem, IUP STRI Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),

Plus en détail

Hébergement MMI SEMESTRE 4

Hébergement MMI SEMESTRE 4 Hébergement MMI SEMESTRE 4 24/03/2015 Hébergement pour le Web Serveurs Mutualités Serveurs Dédiés Serveurs VPS Auto-Hébergement Cloud Serveurs Mutualités Chaque Serveur héberge plusieurs sites Les ressources

Plus en détail

MATHEMATIQUES ET SCIENCES POUR L INGENIEUR

MATHEMATIQUES ET SCIENCES POUR L INGENIEUR MASTER SCIENCES, TECHNOLOGIES, SANTE / STAPS MATHEMATIQUES ET SCIENCES POUR L INGENIEUR Spécialité Ingénierie Numérique, Signal-Image et Informatique Industrielle (INS3I) www.univ-littoral.fr OBJECTIFS

Plus en détail

Description et regroupement de ressources pour les réseaux virtuels

Description et regroupement de ressources pour les réseaux virtuels École nationale d ingénieurs de Sfax Description et regroupement de ressources pour les réseaux virtuels Houssem Medhioub M. Mohamed Jmaiel Président M. Slim Kanoun Membre M. Maher Ben Jemaa Encadreur

Plus en détail

Projet 2. Gestion des services enseignants CENTRE D ENSEIGNEMENT ET DE RECHERCHE EN INFORMATIQUE. G r o u p e :

Projet 2. Gestion des services enseignants CENTRE D ENSEIGNEMENT ET DE RECHERCHE EN INFORMATIQUE. G r o u p e : CENTRE D ENSEIGNEMENT ET DE RECHERCHE EN INFORMATIQUE Projet 2 Gestion des services enseignants G r o u p e : B E L G H I T Y a s m i n e S A N C H E Z - D U B R O N T Y u r i f e r M O N T A Z E R S i

Plus en détail

SMU MEDITERRANEAN. SOUTH MEDITERRANEAN UNIVERSITY Première Université Anglophone en Tunisie (Depuis 2002)

SMU MEDITERRANEAN. SOUTH MEDITERRANEAN UNIVERSITY Première Université Anglophone en Tunisie (Depuis 2002) SMU SOUTH MEDITERRANEAN UNIVERSITY Première Université Anglophone en Tunisie (Depuis 2002) MEDITERRANEAN institute OF TECHNOLOGY The Unique English-Speaking Engineering School in Tunisia 'Masters in Systems

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Informatique Première et seconde années Programme d informatique

Plus en détail

Introduction aux bases de données

Introduction aux bases de données 1/73 Introduction aux bases de données Formation continue Idir AIT SADOUNE idir.aitsadoune@supelec.fr École Supérieure d Électricité Département Informatique Gif sur Yvette 2012/2013 2/73 Plan 1 Introduction

Plus en détail

AVATAR. Un profil SysML temps réel outillé

AVATAR. Un profil SysML temps réel outillé AVATAR Un profil SysML temps réel outillé Ludovic Apvrille, Pierre de Saqui-Sannes ludovic.apvrille@telecom-paristech.fr pdss@isae.fr SysML France, 6 décembre 2010 Agenda De TURTLE à AVATAR Le langage

Plus en détail