Travaux dirigés d électricité

Documents pareils
Travaux dirigés de magnétisme

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chapitre 1 Régime transitoire dans les systèmes physiques

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Champ électromagnétique?

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

Circuits RL et RC. Chapitre Inductance

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Méthodes de Caractérisation des Matériaux. Cours, annales

Fonctions de plusieurs variables

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Calcul intégral élémentaire en plusieurs variables

Chapitre 0 Introduction à la cinématique

Cours de Mécanique du point matériel

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Michel Henry Nicolas Delorme

ELEC2753 Electrotechnique examen du 11/06/2012

Chapitre 1 Cinématique du point matériel

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

MATIE RE DU COURS DE PHYSIQUE

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

A. Optique géométrique

Problème 1 : applications du plan affine

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

F411 - Courbes Paramétrées, Polaires

Les Conditions aux limites

Chapitre 2 : Caractéristiques du mouvement d un solide

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

À propos d ITER. 1- Principe de la fusion thermonucléaire

Caractéristiques des ondes

CHAPITRE IX : Les appareils de mesures électriques

Repérage d un point - Vitesse et

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

La fonction exponentielle

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Fonctions de deux variables. Mai 2011

Charges électriques - Courant électrique

Les microphones. Les microphones sont des transducteurs : ils transforment l énergie mécanique véhiculée par une onde sonore, en énergie électrique.

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

Mathématiques et petites voitures

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Acquisition et conditionnement de l information Les capteurs

I - Quelques propriétés des étoiles à neutrons

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Sujet. calculatrice: autorisée durée: 4 heures

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

DISQUE DUR. Figure 1 Disque dur ouvert

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

Le seul ami de Batman

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Les + Tournus. Large gamme : sortie verticale, horizontale, nombreuses dimensions

Magnum vous présente ses nouvelles gammes d'armoires électriques. Gamme Auto de 125A à 400A

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

I- Définitions des signaux.

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Savoir lire une carte, se situer et s orienter en randonnée

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Travaux dirigés de mécanique du point

Développements limités, équivalents et calculs de limites

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Chapitre 2 Le problème de l unicité des solutions

Limites finies en un point

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours d Electromagnétisme

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Références pour la commande

Observer TP Ondes CELERITE DES ONDES SONORES

Electricité : caractéristiques et point de fonctionnement d un circuit

Comment sélectionner des sommets, des arêtes et des faces avec Blender?

MODULE DIN RELAIS TECHNICAL SPECIFICATIONS RM Basse tension : Voltage : Nominal 12 Vdc, Maximum 14 Vdc

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Problèmes sur le chapitre 5

Cours 02 : Problème général de la programmation linéaire

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Sujet. calculatrice: autorisée durée: 4 heures

TP 7 : oscillateur de torsion

LATTIS MÉTALLIQUES NERGALTO, NERLAT, GALTO

Chapitre 7 - Relativité du mouvement

Continuité et dérivabilité d une fonction

7200S FRA. Contacteur Statique. Manuel Utilisateur. Contrôle 2 phases

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Transcription:

1ère année Année 2016-2017 Arnaud LE PADELLEC alepadellec@irap.omp.eu

P r é s e n t a t i o n page 2 Tous les exercices d acoustique qui seront abordés en Travaux Dirigés cette année sont regroupés dans ce fascicule. Il est demandé aux étudiants de préparer la séance de travaux dirigés.

Thème 1 : électrostatique page 3 Exercice 1 : loi de Coulomb Deux charges ponctuelles q1 et q2 sont placées sur l'axe Ox aux points M1 et M2 d'abscisses respectives +a et -a. 1. Ecrire l'expression vectorielle de la force F21 qu'exerce q2 sur q1. Exprimer son intensité et préciser son orientation (direction et sens) si les charges sont de même signe. Même question pour la force F12 exercée par la charge q1 sur q1. A.N.: q1 = q2 = 10 µc, a = 1m. 2. Représenter le vecteur champ électrostatique E(P) au point P situé sur l'axe Oz perpendiculaire à Ox à la côte z dans les 3 cas suivants: q1 = q2 = q q1 = q2 = -q q1 = - q2 = q avec q > 0 3. Donner en fonction de z et de a l'expression du vecteur champ électrostatique E(P) dans le cas où q1 = q2 = q > 0. Ecrire l'expression du module de E(P). Montrer qu'il existe une distance z0 pour laquelle ce module est maximum. Quel est le lieu géométrique des points de l'espace où le module du champ électrostatique est maximum? 4. Examiner le problème dans le cas où q1 = - q2 = q > 0. Exercice 2 : différence de potentiel entre deux points Une charge ponctuelle positive q est placée au point O d'un repère R(Oxy). 1. On considère les cercles C1 et C2 de centre O et de rayons respectifs r1 et r2. Un point M du plan est repéré par ses coordonnées polaires r = OM et ϕ = (Ox, OM) ou par ses coordonnées cartésiennes x et y. a. Le point M se déplace sur le cercle C1 depuis le point A0(r1, ϕ0) au point A1(r1, ϕ1) avec ϕ0 différent de ϕ1. Calculer la circulation du champ E(M) créé par la charge q. b. Même question lorsqu'on se déplace le long du rayon vecteur caractérisé par l'angle ϕ0 depuis le point A0(r1, ϕ0) au point B0(r2, ϕ0) situé sur le cercle C2. c. Même question lorsqu'on se déplace sur la droite qui joint le point A0(r1, ϕ0) au point B1(r2, ϕ1). d. Calculer la circulation depuis le point A0 au point B1 selon le chemin constitué par le rayon vecteur A0B0 et l'arc de cercle B0B1. 2. Soit E0(M) un champ extérieur uniforme dans tout le plan: E0 = E0 ex, avec E0 > 0. Calculer la différence de potentiel VA - VB entre les points A(xA, ya) et B(xB, yb) due à l'existence de ce champ. Exprimer VA - VB en fonction de xa, ya, xb, yb puis des coordonnées ra, ϕa et rb, ϕb des points A et B. 3. Soit E(M) = E0x ex un champ extérieur; calculer la différence de potentiel VA - VB entre les points A(xA, ya) et B(xB, yb) due à l'existence de ce champ. Thème 2 : condensateurs Exercice 3 : principe du microphone à condensateur Considérons un condensateur constitué de deux armatures planes et parallèles. La distance entre les deux armatures est d = 2 mm. L aire de la surface de chacune des armatures est S= 100 cm². 1. Calculer la capacité électrique C du condensateur.

page 4 2. On charge le condensateur avec un générateur de tension continue U = +6 V. Calculer la charge des armatures QA et QB. 3. On suppose que le champ électrostatique entre les deux armatures est uniforme. Calculer son intensité E. 4. Calculer l énergie emmagasinée par le condensateur W. 5. On déconnecte le condensateur du générateur de tension puis on écarte les deux armatures ; nouvelle distance d. Montrer que la tension aux bornes du condensateur est maintenant : U = Ud' / d. Montrer que l énergie emmagasinée est maintenant W = Wd' / d. 6. D où provient l énergie W - W? Exercice 4 : capacité équivalente Quelle est la capacité CAB du condensateur équivalent à toute l association? Exercice 5 : généralités Thème 3 : électrocinétique 1. Quels sont les dipôles placés en série ou en dérivation (en parallèle)? 2. Représenter les tensions sur le schéma en convention récepteur pour D1 et D2 et en convention générateur pour D3, D4. Dans ces conditions les tensions aux bries des dipôles valent respectivement 5V, +8V, 7V et 4V. Calculer les tensions UAD et UBC. 3. On choisit l origine des potentiels (masse) au point D. Calculer les potentiels VA, VB et VC. Calculer les potentiels aux points A, C et D si le point B est relié à la masse. Que devient le l intensité du courant qui traverse D3 si les points B et D sont tous les deux reliés à la masse. 4. Les intensités qui traversent les dipôles sont respectivement I1 = 1A, I2 = 2A, I3 = 1A et I4 = 2A. Calculer les intensités des courants I5, I6, I7 et I8. 5. Calculer les puissances électriques mis en jeu dans chaque dipôle. Quels sont les dipôles récepteurs, quels sont dipôles générateurs?

page 5 Exercice 6 : dipôles Un dipôle D1 constitué d une source de courant idéale (I1 = 2A) en parallèle avec une résistance R1 = 4 Ω, est connecté à un dipôle D2 comprenant une source de tension idéale de force électromotrice E2 = 3 V en série avec une résistance R1 = 4Ω. 1. En respectant les conventions de la figure, tracer sur un même graphe les caractéristiques U = f(i) de chacun des dipôles D1 et D2. 2. Déterminer le point de fonctionnement du circuit graphiquement et par le calcul. 3. Calculer les puissances reçues (algébriquement) par les dipôles D1 et D2. Calculer les puissances reçues par les quatre dipôles et préciser le type de fonctionnement de chaque dipôle (générateur ou récepteur). Exercice 7 : ponts diviseurs Soient les montages suivants : 1. Montage de gauche Utiliser la formule du diviseur de tension pour déterminer la différence de potentiel VB VM en fonction de E et des résistances R1, R2, R3 et R4. Déterminer l expression du courant I3 en utilisant le pont diviseur de courant et l équivalence générateur linéaire de tension et générateur linéaire de courant. 2. Montage de droite Déterminer le courant I4 qui circule dans la résistance R4 en fonction de Ig et des résistances R1, R2, R3 et R4 en utilisant le pont diviseur de courant. Exercice 8 : théorème de Thévenin On considère le circuit suivant; déterminer l'intensité du courant dans la résistance de 30 Ω en appliquant le théorème de Thévenin entre A et B.

page 6 Exercice 9 : théorème de superposition et théorème de Millman 1. Déterminer la tension UAB en utilisant le théorème de superposition. On donne R1 = 10 Ω, R2 = 15 Ω, R = 10 Ω, E1 = 20 V et E2 = 12 V. 2. Déterminer cette même tension UAB en utilisant le théorème de Millman. Exercice 10 On considère les circuits ci-dessous pour lesquels E = 10V, R1 = 5Ω et R2 = 10 Ω, C = 40 µf et L = 50mH. Calculer les tensions aux bornes de chaque dipôle quand le régime permanent est établi. Thème 4 : magnétisme Exercice 11 : force de Lorentz Un semi-conducteur parallélépipédique (ayant n électrons de conduction par m 3 ) est utilisé comme sonde à effet Hall à l intérieur d une pince ampèremètrique. Une source de courant, intégrée dans la pince, alimente la sonde avec une densité de courant J. La pince entoure un fil parcourut par un courant I qui crée dans la pince un champ homogène B perpendiculaire à J. B d z y j h x l

page 7 1. Exprimer la vitesse de dérive moyenne vd des électrons dans le semi-conducteur et représenter cette vitesse sur le schéma. 2. En déduire l expression de la force magnétique moyenne qui s applique sur les électrons du semi-conducteur et représenter cette force sur le schéma. 3. Montrer qu un champ électrique EH apparaît perpendiculaire à J. Représenter ce champ et la force électrique qui en découle. 4. A l état stationnaire, c est à dire lorsque l équilibre des forces est réalisé, exprimer EH en fonction des données du problème. En déduire l expression de la tension de Hall VH. 5. Le matériau magnétique à l intérieur de la pince concentre les lignes de champ magnétique engendrées par le courant I. Il en résulte que le champ B dans la pince peut être considéré homogène avec une valeur égale à celui créé par un fil infini à une distance moyenne égale au rayon a de la pince ; il faut cependant remplacer µ0, la perméabilité magnétique du vide, par µ = µrµ0 la perméabilité magnétique du matériau. Calculer le champ magnétique dans la pince lorsque I = 1 A, a = 1 cm et µr = 1000. En déduire la tension de Hall VH mesurée à l aide de la pince sachant que n = 10 15 cm -3, J = 50x10 3 A m -2 et l = 2 mm. Exercice 12 : principe du canon magnétique Deux rails rectilignes, conducteurs, parallèles et distants de l sont disposés dans un plan horizontal. Une barre rigide MN, conductrice de résistance R, assujettie à rester perpendiculaire aux deux rails, peut se déplacer sans frottement sur ces derniers. Entre les extrémités A et A des deux rails, on dispose un générateur de force électromotrice E. L ensemble est plongé dans un champ magnétique B extérieur uniforme et vertical. B y B A M E O x l A I N h A l instant t = 0, la barre MN est à l origine de repère (Oxyz) et sa vitesse est nulle. 1. A t = 0, il apparaît un courant I dans le circuit. Exprimer I en fonction de E et R. 2. Donner la direction, le sens et la norme de la force de Laplace FL qui agit sur le barreau. 3. Calculer l expression de la vitesse v(t) du barreau. 4. En déduire la position x(t) du barreau à chaque instant t. 5. En supposant que les extrémités libres des deux rails sont repérées par l abscisse x = h, calculer le temps nécessaire à la barre MN pour quitter les deux rails. 6. Quelle est l énergie gagnée par la barre à cet instant? Exercice 13 : énergie magnétostatique propre d une ligne unifilaire ; inductance propre Un cylindre conducteur plein, infiniment long, d axe z z et de rayon a est parcouru par un courant d intensité constante I dans le sens du vecteur unitaire ez de la base cylindrique (eρ, eϕ, ez). La perméabilité magnétique du conducteur est identique à celle µ0 du vide.

page 8 1. Après avoir explicité le champ magnétostatique créé par ce conducteur en tout point M situé à la distance ρ de l axe z z et en utilisant la méthode énergétique, donner l expression intégrale de l inductance propre L d une longueur l du cylindre. 2. Commenter chacun des termes qui interviennent dans le calcul de L et conclure. Exercice 14 : loi de Biot et Savart 1. Une spire circulaire de rayon R, d'axe z Oz est parcourue par un courant d'intensité I. Déterminer le champ B sur l'axe de la spire à la distance z du centre. 2. On considère deux demi-spires de même rayon R, de centre O, d'axe z'oz, parcourues par des courants de même intensité et de même sens. Déterminer le champ B sur l'axe, à la distance z du centre. Exercice 15 : théorème d Ampère On considère un solénoïde mince d axe z Oz supposé de longueur infinie comportant n spires par unité de longueur et parcouru par un courant d intensité I. I O z A partir notamment de la connaissance du champ magnétostatique sur l axe, démontrer que : 1. Hors de l axe Oz, B(M) = B(ρ) ez par des considérations de symétries et d invariances, 2. Le champ magnétostatique est uniforme à l intérieur en utilisant le théorème d Ampère, 3. Le champ magnétostatique est nul à l extérieur en utilisant le théorème d Ampère. Thème 5 : régimes variables Exercice 16 : courant variable ; régime transitoire Dans le circuit ci-dessous : E = 6V, R = 30Ω et L = 100mH. L interrupteur K est initialement ouvert. Il est fermé à l instant t = 0. 1. Etablir l équation différentielle qui régit l évolution temporelle de l intensité du courant il traversant l inductance L après la fermeture de l interrupteur K (l application du théorème de Thévenin permet de simplifier la résolution de cette question). Déterminer il(t) et représenter son évolution au cours du temps. Calculer l instant pour lequel l intensité il(t) atteint les 3/4 de sa valeur finale. 2. Déterminer l expression de la tension ul(t) aux bornes de l inductance L.

Exercice 17 : courant variable ; régime forcé Le dipôle de bornes A et B représenté sur la figure est soumis à la tension v(t) = V0 cos(ωt). page 9 1. Calculer l impédance Z du dipôle. En déduire l expression en fonction du temps de l intensité i du courant traversant le condensateur de capacité C2. 2. Etablir les expressions en fonction du temps des intensités il et ic des courants qui circulent respectivement dans la bobine d inductance propre L et dans le condensateur de capacité C1. 3. Déterminer les pulsations ω1 et ω2 telles que l intensité i(t) est respectivement nulle (ω1) et infinie (ω2). 4. La fréquence correspondant à ω1 est 5 khz et celle correspondant à ω2 est 2, 5 khz. Sachant que C1 = 14 nf, calculer L1 et C2 exprimés respectivement en mh et en nf. 5. Pour la pulsation ω3 telle que L1C2ω3 2 = 1 (ce qui correspond à la résonance série entre la bobine et le condensateur de capacité C2), montrer que l intensité ic(t) qui circule dans C1 ne dépend pas de l un des éléments du dipôle étudié ; établir l expression complète de ce courant en fonction du temps, exprimée en ma, sachant que V0 = 20 V.