Temps, mouvement et évolution. Chapitre 4 : LES MOUVEMENTS CELESTES

Documents pareils
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

TS Physique Satellite à la recherche de sa planète Exercice résolu

La gravitation universelle

Chapitre 2 : Caractéristiques du mouvement d un solide

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?

DYNAMIQUE DE FORMATION DES ÉTOILES

Chapitre 7 - Relativité du mouvement

Parcours Astronomie. Cher Terrien, bienvenue à la Cité des sciences et de l industrie! Voici tes missions :

Le Soleil. Structure, données astronomiques, insolation.

Cours IV Mise en orbite

TRAVAUX DIRIGÉS DE M 6

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

MATIE RE DU COURS DE PHYSIQUE

Seconde Sciences Physiques et Chimiques Activité ère Partie : L Univers Chapitre 1 Correction. Où sommes-nous?

3 - Description et orbite d'un satellite d'observation

La révolution des satellites de Jupiter

Michel Henry Nicolas Delorme

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

TD de Physique n o 1 : Mécanique du point

Chap 8 - TEMPS & RELATIVITE RESTREINTE

TP 03 B : Mesure d une vitesse par effet Doppler

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Chapitre 0 Introduction à la cinématique

Calcul intégral élémentaire en plusieurs variables

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

TD 9 Problème à deux corps

La Mesure du Temps. et Temps Solaire Moyen H m.

Chapitre 1 Cinématique du point matériel

Comprendre l Univers grâce aux messages de la lumière

Système formé de deux points

Repérage d un point - Vitesse et

MESURE DE LA MASSE DE LA TERRE

1 Mise en application

Le satellite Gaia en mission d exploration

Explorons la Voie Lactée pour initier les élèves à une démarche scientifique

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Chapitre 5. Le ressort. F ext. F ressort

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

BACCALAURÉAT GÉNÉRAL

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Mécanique du Point Matériel

livret-guide des séances année scolaire

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Unités, mesures et précision

1S Modèles de rédaction Enoncés

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Economie du satellite: Conception de Satellite, Fabrication de Satellite, Lancement, Assurance, Performance en orbite, Stations de surveillance

Chapitre 02. La lumière des étoiles. Exercices :

Le nouveau programme en quelques mots :

Assemblée générale. Nations Unies A/AC.105/C.1/L.320

Travaux dirigés de mécanique du point

I - Quelques propriétés des étoiles à neutrons

TOUT CE QUE VOUS AVEZ VOULU SAVOIR SUR MERCURE

PHYS-F-104_C) Physique I (mécanique, ondes et optiques) Solutions des questions d'examens ( )

Mécanique. Chapitre 4. Mécanique en référentiel non galiléen

TSTI 2D CH X : Exemples de lois à densité 1

Le second nuage : questions autour de la lumière

Quantité de mouvement et moment cinétique

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

REPRESENTER LA TERRE Cartographie et navigation

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Deux disques dans un carré

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Pourquoi la nuit est-elle noire? Le paradoxe d Olbers et ses solutions

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Magnitudes des étoiles

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)

Puissances d un nombre relatif

Activité 34 Du bateau à la fusée

À TOI DE JOUER! VIVRE EN FRANCE L EXPLORATION DE L ESPACE. 1. Observez ces documents et cochez la bonne réponse.

Directives pour l évaluation des participations d astrophilatélie

EFFET DOPPLER EXOPLANETES ET SMARTPHONES.

Fonctions de plusieurs variables

PHYSIQUE Discipline fondamentale

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Chapitre 15 - Champs et forces

INTRODUCTION À LA SPECTROSCOPIE

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd /08/ :12

Premier principe de la thermodynamique - conservation de l énergie

RÈGLEMENT SPÉCIFIQUE ET DIRECTIVES POUR L ÉVALUATION EN ASTROPHILATÉLIE AUX EXPOSITIONS PATRONNÉES PAR LA FFAP

Fonctions de plusieurs variables

Physique Chimie LA GRAVITATION

Mesure d angles et trigonométrie

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

Sur les vols en formation.

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Application à l astrophysique ACTIVITE

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

MANUEL UTILISATEUR DU RECEPTEUR HAICOM HI-303MMF

ÉVALUATION EN FIN DE CM1. Année scolaire LIVRET DE L'ÉLÈVE MATHÉMATIQUES

Transcription:

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES THEME Sous -thème COMPENDE Temps, mouvement et évolution Chapitre 4 : LES MOUVEMENTS CELESTES NOTIONS ET CONTENUS COMPETENCES ATTENDUES Mouvement d un satellite. évolution de la Terre autour du Soleil. Lois de Kepler - Démontrer que, dans l approximation des trajectoires circulaires, le mouvement d un satellite, d une planète, est uniforme. Etablir l expression de sa vitesse et de sa période. - Connaître les trois lois de Kepler ; exploiter la troisième dans le cas d un mouvement circulaire. SOMMAIE I. Les lois de Kepler. 1. Première loi : loi des orbites. 2. Deuxième loi : loi des aires. 3. Troisième loi : loi des périodes. II. Applications aux mouvements célestres. 1. appel sur la loi de gravitation universelle. 2. Le repère de Frenet. 3. évolution d une planète autour du Soleil. 4. Application aux satellites géostationnaire. ACTIVITE Activité documentaire : Evolution des idées en astronomie epère de Frenet EXECICES 11 ; 20 p 215-219 + 15 ; 25 p 217-220 MOTS CLES Force d attraction gravitationnelle, lois de Kepler, mouvement uniforme et circulaire, repère de Frenet, période de révolution, satellite géostationnaire. M.Meyniel 1/6

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES LES MOUVEMENTS CELESTES Dans le cours précédent, nous avons vu que l application des trois lois de la mécanique de Newton nous permettait de connaître la trajectoire d un objet dans un champ de pesanteur comme dans un champ électrique ainsi que son évolution dans le temps. Il convient, maintenant, de voir ce qu il se passe au-delà de la surface terrestre. Les lois de Newton s appliquent-elles toujours en s éloignant du centre de la Terre? En effet, ces connaissances sont essentielles en astronomie et pour la recherche spatiale. Prenons l exemple du voyage sur Mars. Le 06 août 2 012, au terme d un voyage de plus de huit mois (la sonde spatiale ayant été lancée le 26 novembre 2011) et après avoir parcouru 567 millions de kilomètres, le robot Curiosity s est posé sur le sol Martien dans le cratère Gale. Compte tenu du budget, il a fallu calculer avec une grande précision la position de Mars, sa vitesse, sa période de révolution entre autres paramètres (composition atmosphérique, pression, température, ) pour mener à bien ce projet. http://www.nasa.gov/multimedia/videogallery/index.html?media_id=150378151 Nous allons donc nous intéresser, ici, aux mouvements célestes en considérant notamment ceux des satellites autour de la Terre et des planètes autour du Soleil. Et pour cela, nous allons nous appuyer sur trois nouvelles lois établies pour l astronomie. Document 1 : Evolution des idées en astronomie * Ptolémée (grec, II ème s. av J.C) pense que la Terre est le centre du monde (système géocentrique). * Nicolas Copernic (polonais, 1473-1543) pense que le soleil est le centre du monde (système héliocentrique). * Johannes Kepler (allemand, 1571-1630) exploite les mesures de son maître danois Tycho Brahé et énonce 3 lois qui régissent le mouvement des planètes : les trois lois de Kepler -1606-. * Galilée (italien, 1564-1642) défend le système héliocentrique dans son «dialogue sur les deux principaux systèmes du monde» -1632-. * Isaac Newton (anglais, 1642-1727) énonce la loi de la gravitation universelle -1687- qui explique aussi bien le mouvement des astres que la chute des corps. M.Meyniel 2/6

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES I. Les lois de Kepler. On se place donc dans un référentiel héliocentrique. (L origine est au centre du Soleil et les axes dirigés vers des étoiles lointaines considérés fixes.) 1. Première loi : loi des orbites. Le centre d une planète décrit une ellipse dont le centre du Soleil occupe l un des foyers. q : * Le cercle est un cas particulier d ellipse dont les foyers sont confondus en son centre et a = rayon. (Une ellipse est l ensemble des points P tels que : PF + PS = 2a) 2. Deuxième loi : loi des aires. Le segment reliant le centre du soleil S au centre de la planète P balaye des aires A i égales pendant des durées t égales. P A 1 A 2 S F 2a q : * La vitesse d une planète n est donc pas constante. Elle augmente en s approchant du Soleil. * Seule une trajectoire circulaire permet d obtenir une vitesse constante. 3. Troisième loi : loi des périodes. Le rapport entre le carré de la période de révolution T (temps mis par une planète pour faire le tour de son orbite) d une planète et le cube du demi-grand axe a de l orbite d une planète est constant : T 2 a 3 = K S q : * La constante K ne dépend pas de la planète considérée. Elle ne dépend que du Soleil * Si la trajectoire est circulaire, alors «a = r» T 2 r 3 = K S NB : Les trois lois de Kepler sont aussi valables pour le mouvement d un satellite naturel ou artificiel autour d une planète. Cette dernière joue alors le rôle du soleil. M.Meyniel 3/6

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES II. Applications aux mouvements célestres. Document 2 : appel sur la loi de gravitation universelle Deux corps ponctuels A et B, de masses m A et m B, séparés d une distance d = AB, exercent l un sur l autre des forces attractives F A/B et F B/A telles que : N F A/B = F B/A avec la constante de gravitation universelle : G = 6,67.10-11 N.m².kg -2 kg = G. m A. m B d². u AB m q : * Cette loi est universelle! Elle s applique aux corps ponctuels et aux corps non ponctuels si la répartition de leur masse est à symétrie sphérique et si leur dimension est négligeable devant la distance d = AB (ce qui est le cas de tous les astres). A F A/B u AB F B/A B appel : Au voisinage de la Terre pour un corps de masse m, la force d attraction gravitationnelle F G correspond au poids du système : F G = P F G = G m M T d² g = G M T d² = P = m.g Document 3 : Le repère de Frenet (Jean Frédéric, 1816-1900) Pour étudier un mouvement circulaire (ou curviligne), il existe un repère permettant d obtenir des équations plus simple. Il s agit d un repère mobile lié au point G, appelé repère de Frenet ( P, t, n ) : - t : vecteur unitaire Tangent à la trajectoire et dirigé dans le sens du mouvement, - n : vecteur unitaire Normal à la trajectoire à t. Dans ce repère, ont pour expression : - le vecteur-vitesse : v = v. t - le vecteur-accélération : a = dv dt. t + v2. n O t n P M.Meyniel 4/6

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES 1. évolution d une planète autour du Soleil. Système : {planète de masse m} dans le repère de Frenet Bilan des forces : - force d attraction gravitationnelle : F S/P = +G. m.m S. n On néglige l influence de tous les autres astres car trop éloignés ou de masse très inférieure à celle du Soleil. ² A représenter sur schéma (cas d une chute libre) P.F.D : Dans le référentiel héliocentrique supposé galiléen : F ext = m. a G m. a G = F S/P = +G. m.m S. n a ² G = + G. M S dv. n =. t + v2. ² dt n Le vecteur-accélération a est donc radial et centripète car il s exprime selon le vecteur n. a t = dv Projection : = 0 dt a { a n = v² = G. M S ² Le mouvement circulaire d une planète autour du Soleil est uniforme car «dv dt = 0». La vitesse a pour expression : v² = G. M S v = G. M S q : * Cette vitesse dépend de la masse du Soleil mais pas celle de la planète. * Le vecteur-accélération est radial (porté par le rayon) et centripète (dirigé vers O). * On note que, sur le schéma, a orthogonal v soit «a.v = 0» Le mouvement est donc uniforme. (Cf chp 2) Exploitation : Détermination de la période de révolution Il s agit de la durée d une rotation autour du Soleil. Pour une rotation : v = d t avec d : le périmètre de l orbite = 2.π.r t : la période de révolution = T T = 2.π. V = 2.π. G. M S = 2. π. 3 G.M S q : * La période de révolution ne dépend pas non plus de la masse de la planète. * Cette révolution se fait dans le plan de l écliptique qui contient le centre du Soleil. * En élevant au carré, on retrouve la 3 ème loi de Kepler : T² = 4. π². G.M S * Si l on connaît T et pour une planète, on peut en déduire la masse du Soleil 3 T² = (2.π)² = K 3 G.M S S M.Meyniel 5/6

Terminale S_Thème 2_COMPENDE : LOIS ET MODELES 2. Application aux satellites géostationnaire. Système : (satellites de télécommunications, météo) {satellite de masse m} dans le référentiel géocentrique On retrouve les mêmes résultats : - en remplaçant la masse du Soleil par la masse de la Terre MT ; - = T + h avec h l altitude du satellite ; - on détermine la période de révolution T du satellite autour de la Terre ; - on peut en déduire la vitesse v du satellite : 𝒗 = 𝐆. NB : 𝐌𝐓 𝐑. Un satellite géostationnaire est : - fixe par rapport à un référentiel terrestre. - mobile par rapport au référentiel géocentrique : son orbite est située dans le plan de l équateur ; il tourne dans le même sens que la Terre. Détermination de la période de révolution, de l altitude, Exploitation : (1) La période de révolution T du satellite autour de la Terre est égale à la période de rotation propre de la Terre puisque le satellite est géostationnaire : T = 1 jour sidéral = 86 164 s (= durée de rotation de la Terre sur elle-même autour de l axe de ses pôles.) (2) On peut alors déterminer l altitude h d un satellite géostationnaire : 𝑻² 𝑹𝟑 (3) = (𝟐.𝝅)² 𝑮.𝑴𝑻 3 𝐺.𝑀 𝐺.𝑀 𝑇 𝑅 3 = (2.𝜋)². 𝑇² 3 6,67.10 11 6,0.1024. (86 164)² (2.𝜋)2 𝑇 𝑅 = (2.𝜋)². 𝑇² = h = T = 4,2.107 6 400.103 = 36.103 km Vitesse du satellite dans le référentiel géocentrique : 3 𝐺.𝑀 𝑇 𝑅 = (𝑅𝑇 + ℎ) = (2.𝜋)². 𝑇² = 4,2.107 𝑚 𝑣 = G. MT = 6,67.10 11. 6,0.1024 4,2.107 = 3,1.103 m/s Un objet qui flotte dans une station spatiale est dans un état d impesanteur, ce qui ne signifie pas absence de gravité ( apesanteur) car l objet est tjs soumis à l attraction terrestre (ΣFext = P 0) mais une absence apparente de pesanteur car l objet «chute» par rapport à la Terre de la même façon que l engin spatial. En toute rigueur, l impesanteur n existe qu au centre d inertie du satellite et on emploie alors le terme de «microgravité» (ou µpesanteur) 10-6 ou -8.g On ne peut appliquer la 2ème loi de Newton car la somme des forces n est pas nulle et l objet demeure au repos dans un référentiel associé à la station. Ce dernier n est donc pas galiléen! Conclusion : Les lois de Kepler régissent certaines caractéristiques du mouvement des astres et les prédisent mais les lois de Newton semblent généralisables à tous les mouvements dans l Univers comme le met en exergue le passage de la comète de Halley au voisinage de la Terre en mars 1759. Elles apparaissent bien universelles. En appliquant ces lois, toujours valables donc, il nous est alors possible de mesurer le temps en observant l évolution temporelle des objets puisque le temps semble absolu. C est ce à quoi nous allons nous afférer dans les prochains cours en considérant la seconde grandeur conservative issues des lois de Newton : l énergie. Compétences - Démontrer que, dans l approximation des trajectoires circulaires, le mouvement d un satellite, d une planète, est uniforme. Etablir l expression de sa vitesse et de sa période. - Connaître les trois lois de Kepler ; exploiter la troisième dans le cas d un mouvement circulaire. M.Meyniel 6/6