CPGE - Sciences de l Ingénieur Simulation d un modèle causal - Scilab PCSI TP Document Sujet 2h - v1.1 Lycée Michelet 5 Rue Jullien - 92170 Vanves - Académie de Versailles Antenne parabolique de bateau Problématique Le positionnement des antennes paraboliques sur les navires revêt une importance capitale dans de nombreuses situations stratégiques, afin de déterminer précisément la présence et la position d objets volants. Dans ce TD/TP de simulation, on se propose d étudier l architecture du système et de déterminer par simulation les performances du système, par la mise en place de modèles et de simulation. Domaines de compétences : Communiquer Analyser Concevoir Compétences Modéliser Expérimenter Résoudre Lycée Michelet - Vanves Page 1 / 9
Compétences visées : A3-04 Identifier la structure d un système asservi: chaîne directe, capteur, commande, consigne, comparateur, correcteur A3-05 Identifier et positionner les perturbations A5 Apprécier la pertinence et la validité des résultats B2-04 Déterminer les fonctions de transfert à partir d équations physiques (modèle de connaissance) B2-06 Analyser ou établir le schéma-bloc du système B2-07 Déterminer les fonctions de transfert B2-09 Renseigner les paramètres caractéristiques d un modèle de comportement (premier ordre, deuxième ordre, dérivateur, intégrateur, gain, retard) C2-01 Déterminer la réponse temporelle C2-07 Prévoir les performances en termes de rapidité C3-01 Choisir les valeurs des paramètres de la résolution numérique C3-02 Choisir les grandeurs physiques tracées D1-01 Repérer les différents constituants de la chaine d énergie D1-02 Repérer les différents constituants de la chaine d information D3-09 Extraire les grandeurs désirées et les traiter D3-10 Identifier les paramètres caractéristiques d un modèle du premier ordre ou du deuxième ordre à partir de sa réponse indicielle F1-01 Extraire les informations utiles d un dossier technique F1-02 Effectuer une synthèse des informations disponibles dans un dossier technique F1-03 Vérifier la nature des informations F1-07 Lire et décoder un diagramme F2 Mettre en oeuvre une communication Démarche de l ingénieur : Système souhaité Système réel Système simulé Performances attendues Performances mesurées Performances simulées Écart 1 Écart 2 Écart 3 Lycée Michelet - Vanves Page 2 / 9
1 Mise en situation Objectif On envisage, au moyen du logiciel de simulation Scilab, l étude de l asservissement en position angulaire de l antenne parabolique d un radar de poursuite destiné à connaître avec précision la position et la vitesse d un mobile évoluant dans l espace aérien. Le système comporte une antenne parabolique émettant dans une direction précise appelée axe radio-électrique. Cet axe est repéré par les angles de «site» et de «gisement» comme le montre la figure ci-dessous. z Axe radio-électrique z Ligne de visée Objectif α s Site α e Site y y x θ s Gisement x θ e Gisement Des capteurs de position permettent d avoir en permanence une image des angles θ s et α s. En présence d une cible réfléchissante, l écho reçu par la parabole dépend du «dépointage angulaire» entre l axe radio-électrique et la ligne de visée. Le dispositif radar est capable de délivrer deux tensions proportionnelles aux écarts angulaires (θ e θ s ) et (α e α s ). On se propose d étudier l asservissement en gisement de la tourelle porte-parabole dont l organisation matérielle est donnée par la figure suivante. L asservissement en site se fera sur le même principe. Données : Inertie de l ensemble en mouvement composé de l antenne parabolique, de l actionneur et du réducteur rapportée à l arbre de l actionneur telle que J = 19 10 3 kg.m 2 ; Rapport de réduction du réducteur tel que r = 1 000 ; Coefficient de vitesse angulaire de l actionneur tel que K m = 0,5 V.s.rad 1 ; Résistance d induit de l actionneur telle que R = 0,5 Ω ; Coefficient d amplification du modulateur d énergie tel que A = 10 ; Tension d alimentation maximale de l actionneur égale à 400 V. Lycée Michelet - Vanves Page 3 / 9
Parabole u 2 = A u 1 θ m = r θ s θ s Réducteur θ m Moteur u 2 Ampli u 1 2 Modélisation de l actionneur 2.1 Modèle de connaissance L actionneur utilisé est du type moteur à courant continu dont on rappelle les équations et le schéma électrique, sous l hypothèse d inductance négligée. Loi d Ohm : u 2 (t) = e(t) + R.i(t) ; Équations électromécaniques : e(t) = K m.ω m (t) et c m (t) = K m.i(t) ; Principe fondamental de la dynamique : J dω m(t) dt = c m (t) c r (t). u 2 (t) : tension électrique de commande d induit de l actionneur ; L R e i(t) : l intensité du courant électrique circulant dans l induit de l actionneur ; L : l inductance de l induit de l actionneur (négligée) ; R : résistance de l induit de l actionneur ; e(t) : force contre-électromotrice de l actionneur ; u 2 c r (t) : couple résistant traduisant la difficulté en termes de rotation de l arbre de l actionneur. Lycée Michelet - Vanves Page 4 / 9
Activité 1 Écrire les équations décrivant le modèle de connaissance de l actionneur dans le domaine de Laplace, en supposant les conditions initiales nulles ; Compléter le schéma-blocs ci-dessous traduisant les relations entre U 2 (p), C r (p) et Ω m (p). C r (p) U 2 (p) 1 + R K m + 1 Jp Ω m (p) E(p) K m Activité 2 Déterminer, à partir du schéma-blocs précédent, les fonctions de transfert de l actionneur H m (p) et G m (p) telles que Ω m (p) = H m (p).u 2 (p) + G m (p).c r (p) ; Déterminer l ordre des fonctions de transfert, les gains statiques et les constantes de temps et faire les applications numériques. Afin de ne pas avoir à faire les calculs à la main (que vous devez savoir faire tout de même), le logiciel de simulation Scilab permet de les faire à notre place. C est l objectif de la partie suivante. On considère pour la suite que le couple résistant C r (p) est nul. 2.2 Réponse indicielle par simulation Activité 3 Construire dans le logiciel Scilab le schéma-blocs ci-dessous en suivant la méthode exposée dans le résumé du manuel d utilisation de Scilab. Il est nécessaire maintenant de renseigner les paramètres du modèle, ainsi que les conditions de la simulation. Lycée Michelet - Vanves Page 5 / 9
Activité 4 Saisir les différents paramètres de simulation en sélectionnant chaque bloc, en double cliquant dessus, et en entrant les valeurs suivantes : Entrée, instant de l échelon = 0, valeur initiale = 0, valeur finale = 1 ; Fonction de transfert, celle trouvée à l activité 2 (et non celle de l image) ; Durée de simulation de 0,4 s. Activité 5 À partir des résultats de simulation, déterminer les valeurs finales et le temps de réponse à 5% ; Comparer ces valeurs aux résultats attendues à partir des spécificités des systèmes du premier ordre. 3 Fonction de transfert de l axe de gisement de l antenne radar 3.1 Réponse indicielle en chaîne directe par simulation Il est possible de représenter le système étudié sous la forme du schéma-blocs fonctionnel ci-dessous. U 1 (p) Tension entrée ampli? Ω m (p) Vitesse moteur? Ω s (p) Vitesse parabole? θ s (p) Position parabole Activité 6 Compléter le schéma-blocs fonctionnel par les noms des composants ; Reproduire le schéma-blocs ci-dessus, et déterminer la fonction de transfert de chacun des blocs. Activité 7 Déterminer la fonction de transfert H 1 (p) = θ s(p) U 1 (p) ; Faire les applications numériques. Activité 8 En reprenant votre fichier Scilab de l activité 4, le compléter pour modéliser le comportement de la chaîne directe du système. Lycée Michelet - Vanves Page 6 / 9
Il est nécessaire maintenant de renseigner les paramètres du modèle, ainsi que les conditions de la simulation. Activité 9 Saisir les différents paramètres de simulation en sélectionnant chaque bloc, en double cliquant dessus, et en entrant les valeurs suivantes : Entrée, instant de l échelon = 0 s, valeur initiale = 0, valeur finale = 1 ; Durée de simulation de 100 s. Activité 10 Interpréter la courbe obtenue par simulation ; Réaliser un zoom sur l origine (t 0) et interpréter la courbe. 3.2 Réponse indicielle en boucle fermée à retour unitaire par simulation On envisage le fonctionnement du système en asservissement, ce qui conduit au schéma-blocs cidessous, où K 2 est la valeur de réglage du gain d amplification de l écart détectée par le radar. Radar θ e (p) + U 1 (p) K 2? θ s (p) Activité 11 En reprenant le fichier Scilab de l activité 8, le compléter pour modéliser le comportement en boucle fermée. Activité 12 Réaliser plusieurs simulations pour K 2 égale à 100, 200, 300, 500, 1 000 et 5 000, et une durée de simulation de 0,4 s ; Préciser l influence de la valeur du gain K 2 sur les 3 performances d un SLCI. Lycée Michelet - Vanves Page 7 / 9
Activité 13 Déterminer, par calcul analytique, la valeur de K 2 afin que le temps de réponse à 5% soit le plus faible possible dans les deux cas suivants : Aucun dépassement n est permis ; Un dépassement est autorisé. Activité 14 Par simulation, et en utilisant les 2 valeurs de K 2 déterminées précédemment, déterminer le temps de réponse à 5%. La valeur de K 2 sera maintenant de 691 et on placera le gain A en dehors de la fonction de transfert H 1 (p). Activité 15 Visualiser l évolution de la tension électrique d alimentation d induit de l actionneur U 2 (t) et la position angulaire θ s (t) de l antenne parabolique de radar ; Ce fonctionnement est-il possible avec les caractéristiques de tension d alimentation maximale de l actionneur? Conclure sur le respect ou non des hypothèses, notamment celle d un système linéaire. Activité 16 Modifier le schéma-blocs en introduisant une saturation à l entrée de l actionneur selon ses caractéristiques ; Déterminer le nouveau temps de réponse à 5% et le dépassement relatif du premier dépassement ; Conclure sur l influence d une saturation sur la performance de rapidité dans ce cas. 3.3 Comportement en poursuite Activité 17 Dans votre fichier Scilab, remplacer l entrée échelon par une entrée en rampe telle que θ e (t) = Ω 0.t avec Ω 0 = 0,5 rad.s 1. Faire une étude temporelle de 2 s et déterminer l erreur de traînage θ e θ s en régime permanent ; Retrouver ce résultat par le calcul en utilisant le théorème de la valeur finale. Lycée Michelet - Vanves Page 8 / 9
4 Prise en compte des perturbations 4.1 Frottement sec Lors de la rotation de l antenne parabolique, des frottements s opposent à celle-ci. Il est donc important de modéliser ceux-ci pour obtenir un modèle le plus proche de la réalité. On parle alors de perturbation. On modélisera ces frottements par un couple C r, constant, de 15 N.m sur l arbre moteur. Dans Scilab, on reprendra une entrée en échelon. Activité 18 Mettre à jour votre fichier Scilab, et faire en sorte que les frottements n apparaissent qu après 2 s (afin de visualiser l influence de ceux-ci sur les performances du système modélisé, car dans la réalité, ils sont toujours présents) ; Quelle est l influence de cette perturbation sur la sortie? Sur la tension d alimentation de l actionneur? Sur le courant électrique absorbé par l actionneur? 4.2 Mais le navire avance... De plus, le déplacement du navire impose une force aérodynamique sur le radar (action de l air sur l antenne parabolique). Cette force étant proportionnelle au carré de la vitesse du navire, supposée constante de 13 m.s 1. Mais cette force dépend aussi de l orientation de l antenne radar!! Cette force peut donc être modélisée par un couple résistant, variable, ramenée sur l arbre moteur, de la forme C r (θ s ) = K(θ s ).V 2 navire avec K(θ s) = 0, 1 + 0, 15. sin θs 2. Activité 19 Mettre à jour votre fichier Scilab ; Le modèle ainsi décrit est-il linéaire? Justifier votre réponse ; Quelle est l influence de cette perturbation sur la sortie? Sur la tension d alimentation de l actionneur? Sur le courant électrique absorbé par l actionneur? Lycée Michelet - Vanves Page 9 / 9 D après: S. GERGADIER - A. MEURDEFROID