Séquence 3. Expressions algébriques Équations et inéquations. Sommaire



Documents pareils
Cours d algorithmique pour la classe de 2nde

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

TRIGONOMETRIE Algorithme : mesure principale

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Représentation géométrique d un nombre complexe

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Statistiques à une variable

Priorités de calcul :

DOCM Solutions officielles = n 2 10.

Les suites numériques

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Note de cours. Introduction à Excel 2007

Thème 17: Optimisation

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

C f tracée ci- contre est la représentation graphique d une

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Notion de fonction. Résolution graphique. Fonction affine.

Complément d information concernant la fiche de concordance

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

GUIDE Excel (version débutante) Version 2013

Chapitre 2. Eléments pour comprendre un énoncé

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Angles orientés et trigonométrie

Lecture graphique. Table des matières

Fonction inverse Fonctions homographiques

Chapitre 2 Le problème de l unicité des solutions

Rappels sur les suites - Algorithme

Représentation d un entier en base b

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

I. Ensemble de définition d'une fonction

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Exercices - Polynômes : corrigé. Opérations sur les polynômes

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Découverte du tableur CellSheet

TSTI 2D CH X : Exemples de lois à densité 1

Fonctions homographiques

V- Manipulations de nombres en binaire

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

avec des nombres entiers

Débuter avec Excel. Excel

VOCABULAIRE LIÉ AUX ORDINATEURS ET À INTERNET

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

EVALUATIONS MI-PARCOURS CM2

Excel 2007 Niveau 3 Page 1

Fonctions de plusieurs variables

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

1 CRÉER UN TABLEAU. IADE Outils et Méthodes de gestion de l information

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

point On obtient ainsi le ou les points d inter- entre deux objets».

PRISE EN MAIN D UN TABLEUR. Version OPEN OFFICE

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Activités numériques [13 Points]

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

La fonction exponentielle

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Cours d Analyse. Fonctions de plusieurs variables

Raisonnement par récurrence Suites numériques

Les devoirs en Première STMG

Représentation des Nombres

INSERER DES OBJETS - LE RUBAN INSERTION... 3 TABLEAUX

L ALGORITHMIQUE. Algorithme

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Licence Sciences et Technologies Examen janvier 2010

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB

PROBLEME(12) Première partie : Peinture des murs et du plafond.

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

AGASC / BUREAU INFORMATION JEUNESSE Saint Laurent du Var Tel : bij@agasc.fr Word: Les tableaux.

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

IV- Equations, inéquations dans R, Systèmes d équations

VOS PREMIERS PAS AVEC TRACENPOCHE

= constante et cette constante est a.

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Premiers Pas avec OneNote 2013

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Sommaire de la séquence 8

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Présentation du langage et premières fonctions

Initiation à la programmation en Python

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Réalisation de cartes vectorielles avec Word

Continuité et dérivabilité d une fonction

Indications pour une progression au CM1 et au CM2

Baccalauréat ES Amérique du Nord 4 juin 2008

EXCEL TUTORIEL 2012/2013

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Transcription:

Séquence 3 Expressions algébriques Équations et inéquations Sommaire 1. Prérequis. Expressions algébriques 3. Équations : résolution graphique et algébrique 4. Inéquations : résolution graphique et algébrique 5. Algorithmique 6. Synthèse de la séquence 7. Exercices d approfondissement Séquence 3 MA0 1

1 Prérequis A Expressions algébriques ; somme et produit Une expression algébrique est composée de nombres, de lettres, de parenthèses, Exemples d opérations et de fonctions qui les relient. Par exemple, ( x + 5x 4)( xy + 9) est une expression algébrique. Si les expressions algébriques nous sont maintenant familières, il a fallu attendre le XVI e siècle et le mathématicien français François Viète (1540-1603) pour avoir l idée de remplacer des inconnues ou des paramètres par des lettres. Il est important dans les expressions algébriques de savoir distinguer les sommes des produits. Une expression algébrique est une somme si la dernière opération avant d obtenir le résultat est une addition et une expression algébrique est un produit si cette dernière opération est une multiplication. A= a+ b, B = x +, C = x + 1, D = ( n+ 1) ( n + 1) + n, E = 5x 4 45x sont des exemples de somme. F = ab, G = 3x, H = x( x + ), I = ( x + )( x ), J = ( a+ b+ c)( a b c) sont des exemples de produit. B À propos des solutions d une équation ou d une inéquation Équations Définition 1 Une solution d une équation est une valeur de l inconnue x pour laquelle l égalité est vraie. Par exemple, 3 est solution de l équation x 3 3= x + x car 3 3 3= 3 + 3( = 4). Définition Résoudre une équation, c est trouver l ensemble de ses solutions. Nous n avons pas résolu l équation 3 x 3= x + x car nous ne savons pas si cette équation admet d autres solutions. Séquence 3 MA0 3

Exemple Équation du premier degré Vous avez appris en troisième à résoudre des équations du premier degré. Revoyons en un exemple. Résoudre l équation 3x 5 = 7x + 4 On peut rajouter 5 aux deux membres de l équation soit : 3x 5+ 5= 7x + 4+ 5 soit 3x = 7x + 9 Ensuite, on peut retrancher 7x aux deux membres de l équation, soit : 3x 7x = 7x + 9 7x soit 4x = 9 et en multipliant les deux membres par 1 (ce qui revient au même que diviser 4 par 4 ), il vient x = 9 4. On écrit alors habituellement que l ensemble des solutions de cette équation est 9 sous la forme : = 4 { 9 4 }. Inéquations Soit l inéquation x 6x 4. Remplaçons x par 6 ; on obtient 36 36 4, ce qui est faux. On dit que le nombre réel 6 n est pas solution de l inéquation x 6x 4. Remplaçons maintenant x par 5 ; on obtient 5 30 4, ce qui est vrai. On dit que le nombre réel 5 est solution de l inéquation x 6x 4. 1 On verrait de même que 0 n est pas solution, ni mais que et 3 sont solutions. Définition 1 Une solution d une inéquation est une valeur de l inconnue x pour laquelle l inégalité est vraie. Définition Résoudre une inéquation, c est déterminer l ensemble de ses solutions, c est-àdire toutes les valeurs de l inconnue x pour laquelle l inégalité est vraie. Exemple Nous n avons pas résolu l inéquation x 6x 4 car nous nen avons pas déterminé toutes les solutions. Inéquation du premier degré Vous avez appris en troisième à résoudre une inéquation du premier degré. Revoyons en un exemple. Résoudre dans R l inéquation 3x 5 x. On sait que l on peut rajouter 5 aux deux membres de l inéquation soit : 3x 5+ 5 x + 5 soit 3x x + 3 On peut ensuite retrancher x aux deux membres de l inéquation soit : 3x x x + 3 x soit x 3. 4 Séquence 3 MA0

On peut ensuite multiplier chaque membre de l inéquation par 1 (ce qui revient au même que diviser par ) car le réel 1 est strictement positif. Il vient x 3. 3 L ensemble des solutions de cette inéquation est donc l intervalle[, + [, ce que 3 l on peut encore noter : = [ ; + [. On peut multiplier les deux membres d une inéquation par un nombre strictement négatif à condition de changer le sens de l inégalité. Par exemple, l inéquation x 1 est équivalente à : 1 1 ( x ) 1 soit x 1. Séquence 3 MA0 5

Expressions algébriques A Activités Activité 1 Différentes expressions pour une aire x D x H G x C Soit un carré ABCD de côté 5. On dessine aux quatre coins des carrés de côté x et on s intéresse à l aire coloriée Ax ( ) formée de la réunion de ces quatre carrés et du carré intérieur EFGH. Montrer par un raisonnement géométrique que Ax ( ) peut s écrire sous l une des formes suivantes : Ax ( ) = 4x + ( 5 x) ou Ax ( ) = 5 4 x ( 5 x ). x A E F Montrer que l on aussi : Ax ( ) = 8x 0x+ 5. En utilisant la forme la plus adaptée, calculer A( 5, ) et A( 3). B a) Montrer que Ax ( ) = 8 5 x,. 4 + 1 5 b) En déduire que l aire minimale est obtenue pour x = 5 4 et donner cette aire minimale. a) Montrer que Ax ( ) = ( x 1)( 4x 8) + 17. b) Déterminer les valeurs de x tels que Ax ( ) = 17. Activité Forme développée et factorisée Soit f( x) = ( x ) 3( x ) pour tout nombre réel x. Montrer que, pour tout nombre réel x, f( x) = x 7x + 10. Montrer que, pour tout nombre réel x, f( x) = ( x )( x 5). On dispose maintenant de trois formes pour f( x): Forme initiale Forme développée Forme factorisée f( x) = ( x ) 3( x ) f( x)= x 7x + 10 f( x) = ( x )( x 5) 6 Séquence 3 MA0

Répondre à chacune des questions suivantes, sans calculatrice, en veillant à choisir judicieusement à chaque fois la forme de f( x) que vous utiliserez : a) Calculer f ( 0) et f ( ). b) Calculer f ( ) et f ( 5). c) Résoudre l équation f( x) = 0. d) Résoudre l équation f( x) = 10. B Cours Transformation d une expression algébrique Une expression algébrique peut s écrire de plusieurs façons et il faut savoir la transformer afin d utiliser la forme la plus adaptée au travail à effectuer. Réduire une somme, c est écrire cette somme sous la forme la plus condensée possible en regroupant les termes de même nature. Exemple 3 Soit Ax ( )= 4x + 6x 5+ x x 3x+ 4 3 Ax ( ) est une somme qui se réduit sous la forme : Ax ( )= x + 3x 1+ x, que l on ordonne sous la forme : 3 Ax ( ) = x + x + 3x 1. Développer signifie transformer une expression algébrique en une somme. Exemple Bx ( ) = ( x 5)( x 3) 3( x ) Bx ( ) est : Bx ( )= x 3x 10x + 15 3x + 6 qui après réduction donne : Bx ( ) = x 16x+ 1. Factoriser signifie transformer une expression algébrique en un produit. Exemple Cx ( ) = x + 4x= xx ( + 4) Le produit xx ( + 4 ) est la forme factorisée de x + 4x. Séquence 3 MA0 7

Réduire au même dénominateur avec des x. Exemple 1 Exemple Soit la fonction f définie sur l intervalle ]0 ;+ [ par f ( 3) 1 6 1 7 = + = + =. 3 3 3 3 1 f( x) = +. x f ( 7) 1 14 1 15 = + = + =. 7 7 7 7 Pour ajouter deux fractions, nous les avons mises au même dénominateur. Si l expression comporte des x au dénominateur, nous allons utiliser une technique similaire. 1 x x f( x) = + = 1 + 1 + =. x x x x Avec cette nouvelle expression def( x), on retrouve bien que : 3 1 f ( 3) = + 7 3 = 3 et f ( ) 7 1 15 7 = + = 7 7. Soit la fonction g définie pour x différent de 0 et de 1 par gx ( ) = 1 x + x. 1 1 3 4 3 8 11 g( 4) = + = +. 4 3 4 3 3 4 = 1 + 1 = 1 1 4 et, nous avons réduit ces fractions au même dénominateur 3 4 3. Nous allons utiliser une technique similaire pour ajouter 1 x et x 1. 1 1 ( x ) x x gx ( ) = + = 1 x x x ( x ) + ( x ) x = 1 x x 1 1 1 x( x ) + xx ( ) = 3 1 1 1 xx ( 1). Avec cette nouvelle expression, on retrouve bien que 3 4 1 11 g( 4) =. 4 ( 4 1) = 1 a) k(a+b)=ka+kb L écriture ka + kb est le développement de ka ( + b). ka ( + b) est l écriture factorisée de ka + kb. Si le passage à l écriture développée est mécanique et présente peu de difficultés, le passage à l écriture factorisée nécessite de reconnaître un facteur commun et s avère moins immédiate. 8 Séquence 3 MA0

Exemple 1 Exemple Exemple 3 1 4x = 4 3 4 x = 4( 3 x). On applique la formule ka ( + b) = ka+ kb avec k = 4, a= 3 et b = x. 43 ( x ) est l écriture factorisée de 1 4x. 3x + x. Les deux termes de la somme sont 3x et x et ils ont un facteur commun qui est x. 3x + x = 3x x + x = x( 3x + ). x( 3x + ) est l écriture factorisée de 3x + x. a+ ab. Les deux termes de la somme sont a et ab et ils ont un facteur commun qui est a. a On peur alors écrire a+ ab = a 1+ a b = a( 1+ b). Dans le cas particulier où un des termes se confond avec le facteur commun, il faut considérer qu il est multiplié par 1 avant de le mettre en facteur. C est ce qui est fait dans l exemple 3. b) Les identités remarquables Développons d abord les expressions suivantes : ( a+ b) = ( a+ b)( a+ b) = a + ab+ ba+ b = a + ab+ b. ( a b) = ( a b)( a b) = a ab ba+ b = a ab+ b. ( a b)( a+ b) = a + ab ba b = a b. Ces trois identités remarquables doivent être apprises par cœur. Résumons les ci dessous. Forme développée (somme) a + ab+ b = ( a+ b) a ab+ b = (a b) Forme factorisée (produit). a b = ( a b)( a+ b) Exemples x + 1x + 36 = ( x + 6). On applique la formule ( a+ b) = a + ab+ b avec a= x et b = 6. x 4x + 4= ( x ). On applique la formule ( a b) = a ab+ b avec a= x et b =. x 9= ( x 3)( x + 3). On applique la formule a b = ( a b)( a+ b) avec a= x et b = 3. Séquence 3 MA0 9

Exercices résolus Exercice 1 Développer les expressions suivantes : ( ) = ( ) = + ( ) = ( + ) ( )( ) A= 3 x + ; B x x 1 ; C 1 3 x ; D x 3 ; E = x + 3 x ; ( )( ) ( )( + ) = ( )( + ) F = x 1 x 1 ; G = x x ; H 3 x x. Réponse : A= 3x + 6 B = x x C = 1+ 3x 6 d où C = 3x 5. Attention, la multiplication est prioritaire sur l addition ; D = x + 6x + 9. Ici on utilise la formule a+ b ( ) avec a x et b = = 3. E = x( x )+ 3( x )= x x + 3x 6 et ainsi E = x + x 6. F = x x x + 1 F = x 3x + 1. On peut remarquer que dans le cas de E, E on a fait le développement en deux étapes et que pour F on a agit de manière plus directe. G = x ( ) en appliquant la formule a b avec a= x et b =. D où G = x. L expression H est une somme dont le deuxième terme est un produit. Commençons donc par développer ce produit : ( ) + x ( x )= x = x 4 en appliquant la formule a b avec a= x et b =. On en déduit que H = 3 ( x 4) (il ne faut pas oublier la parenthèse) et donc que H = 3 x + 4, H = 7 x. Exercice Factoriser les expressions suivantes : ( ) + + = ( ) ( + ) 3 3 A= 4x 7x ; B = x + x ; C = x + 1 x 1; D x 8x +16 ; E = x 5 ; F = 3x + x 1. Réponse : Recherchons un facteur commun : A= 4xx 7x. Il est clair que x est un ( ) facteur commun donc A= 4x 7 x. 10 Séquence 3 MA0

( ) De la même manière : B = xx + 1x d où B = x + 1 x. Dans l expression C, on voit d abord une somme de 3 termes dont on ne sait que faire. Mais on peut aussi écrire C = x + 1 x 1 où on a alors une somme ( ) + ( + ) de deux termes contenant un facteur commun : C = ( x + 1 )( x + 1 )+ 1 ( x + 1 )=( x + 1 ) ( x + 1 )+ 1 et ainsi ( )( + ) C = x + 1 x. Pour D = x 8x + 16 il n y a pas de facteur commun apparent mais on reconnaît le développement de a b ( ) D = x 4. ( ) avec a x et b E est de la forme a b avec a= x et b = 5. ( )( + ) Ainsi E = x 5 x 5. = = 4 et donc C est la même chose pour F : cette fois a= 3x + et b = x + 1. F = ( 3x + ) ( x + 1) ( 3x + )+ ( x + 1 ). Supprimons les parenthèses à l intérieur des crochets : On a donc F = 3x + x 1 3x + + x + 1 et donc ( )( + ) F = x + 1 4x 3. Exercice 3 Connaissant 0 calculer mentalement 1 de deux manières différentes : avec 0 + 1 ( ) avec 1 0 Réponse : nous savons que 0 = 400 0 + 1 ( ) est bien égal à 1 mais aussi à 0 + 1 0 + 1 = 400 + 40 + 1 donc 1 = 441. 1 0 = ( 1 0) ( 1+ 0)= 41 donc 1 = 0 + 41 et ainsi 1 = 441. Exercice 4 Comment calculer mentalement le carré d un nombre entier qui se termine par 5? Réponse : Observons d abord qu un nombre se terminant par 5 est égal à 10n n + 5 où n est son nombre de dizaines. Par exemple, 75 = 10 7 + 5 car 7 est le chiffre des dizaines. Séquence 3 MA0 11

Calculons ( 10n + 5) ; ( 10n+ 5) = ( 10n) + 10n 5 + 5d où ( 10n+ 5) = 100n + 100n+ 5. Les deux premiers termes de cette somme ont un facteur commun : 100n. n Ainsi 100n + 100n= 100n( n+ 1) et ( 10n+ 5) = 100n( n+ 1)+ 5. Appliquons ceci à 75 : 75 100 7 8 5 n ( ) = +. (n+1 est le nombre entier qui suit n). n Le calcul donne : 7 8= 56 et multiplier ce nombre par 100 revient à adjoindre 00 et ajouter 5 à ce nombre revient à remplacer 00 par 5. Conclusion : 75 = 5 65. Autre exemple : pour 105 on prend le nombre des dizaines : 10, on le multiplie par son suivant qui est 11 ce qui donne 110 et on accole 5 à ce résultat. Donc 105 = 11 05. (Il est conseillé de s entraîner avec 5, 35,...) Exercice 5 Montrer que, pour tout nombre réel x de ], + [, 4x 1 7 4 x = + x. Réponse : Pour montrer une égalité, on n est pas obligé de partir du côté gauche de l égalité. Il est ici préférable de partir du côté droit de l égalité, car on peut 7 réduire l expression 4 + au même dénominateur. x Pour tout nombre réel x de ],+ [, 7 4( x ) 7 4x 8+ 7 4x 1 4 + = + = =. x x x x x C Synthèse développer expression algébrique somme factoriser ex pression algébrique produit Deux méthodes pour factoriser : Facteur commun et la formule k(a+b)=ka+kb Les identités remarquables : (a + b) = a + ab + b (a b) = a ab + b (a + b)(a b) = a b. 1 Séquence 3 MA0

D Exercice 1 Exercices d apprentissage Dans un jardin carré de côté x (en m), on réalise un parterre carré en laissant sur deux des côtés une bordure de largeur 1,5m. Parmi les expressions suivantes, indiquer celle(s) qui donnent l aire de la bordure : a) ( x + 15, ) x b) 3x c) 3x, 5 d) x ( x 15, ) e) xx ( 15, ) Exercice Pour quelle valeur de x l aire du parterre est elle égale à 16 m? Les longueurs sont exprimées en cm. On désire imprimer une carte carrée de côté x avec x compris entre 5 cm et 10 cm. On souhaite cependant laisser une marge de cm en haut et en bas de la carte et de 1 cm à gauche et à droite. x 1 On appelle f( x), l aire en cm de la surface imprimable. En calculant cette aire de deux façons différentes, montrer que f( x)= x 6x + 8 et f( x) = ( x )( x 4). Montrer que f( x) = ( x 3) 1. Déterminer les dimensions de la feuille telles que l aire de la surface imprimable soit égale à 8 cm puis à 15 cm. x Exercice 3 Exercice 4 Soit la fonction f définie sur R par f( x)= x 8x + 7 Montrer que : f( x) = ( x 4) 9. En déduire une forme factorisée def( x). Utiliser la forme la plus adaptée de f( x) pour répondre aux questions suivantes a) Calculer f ( 3). b) Résoudre l équation f( x) = 0. c) Calculer f ( 4) et montrer que, pour tout nombre réel x, f( x) 9. En déduire que f admet un minimum sur R. x 4 Soit g la fonction définie sur R par : gx ( ) =. x + 4 Montrer que gx ( ) peut s écrire sous les formes suivantes : 8 x gx ( ) = 1 = 1. x + 4 x + 4 Séquence 3 MA0 13

Utiliser l une ou l autre de ces formes pour répondre aux questions suivantes : a) Résoudre gx ( ) = 0. b) Montrer que, pour tout réel x, gx ( ) < 1. c) Montrer que, pour tout réel x, gx ( ) 1. Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 10 Soit f la fonction définie sur ]1 ;+ [ par f( x) = 1. x 1 Montrer que f( x) peut aussi s écrire : x 3 f( x)= x 1 ou f x x x ( ) = + 3. x 1 En utilisant la forme la plus adaptée : a) Résoudre l équation f( x) = 0. b) Montrer que f( x)< pour tout réel x de ]1 ;+ [. c) Montrer que f( x)< x +3 pour tout réel x de ]1 ;+ [. Développer, réduire et ordonner les expressions suivantes : A= 6x 3( x + 1) ; B = 3x( x 4) ; C = ( x 7) ( 3 5x) ; 1 D = ( x ) ( x + ) E = x x + 1 8 1 4 3 ; 3 5 3 + 1 = x ; F 3 15 6 ; G = ( x 3 1) 3x 3+ ( 3 x)( x 3 1). ( ) ( )( ) = ( + )( ( 4) ( 3 5 ) ( + 4) ; = 9( 3) + ( 4 + 3) ; A= 3x 7 3x 7 x 1 ; B x 3 5x 1 x 3) ; C = x + x x D x x x x E = ( 1 + 3 x) + 4 3 x F = G x 4 = 1 ; ; ( 3 ) 3; H = 9x + 1x + 4. Réduire au même dénominateur les expressions : A = 1 + x 1 5 ;B = x + 3 4x 1 ; C = +. 3 x 3 x 4 3 Développer et réduire : A= ( x 1)( x + x + x + x + 1). En déduire un moyen simple pour calculer la somme : S = 1+ 4 8 16 + + + 3 9 7 81. x, y, z ( x + y + z ) = x + y + z + xy + yz + xz. On considère trois nombres A, B et C non nuls dont la somme des inverses est nulle. Démontrer que : a) AB + BC + CA =0. b)le carré de la somme de ces trois nombres est égal à la somme de leurs carrés. 14 Séquence 3 MA0

3 A Équations : résolution graphique et algébrique Activités Activité 1 A D J Se ramener à une équation du premier degré E B C I Γ ABCD est un carré de côté 4 cm et I est le milieu de [BC]. J est un point quelconque du segment [AB]. On pose AJ = x (en cm). est le cercle de centre J qui passe par A. Γ est le cercle de diamètre [BC]. L objet de l activité est de déterminer s il existe un point J tel que et Γ soient tangents en un point E. Exprimer JI² en fonction de x puis vérifier que et Γ sont tangents lorsque : ( x + ) = ( 4 x) +. Résoudre cette équation En déduire la position du point J sur [AB] pour que et Γ soient tangents. Activité Résolution graphique et algébrique d une équation On a dessiné ci-dessous la courbe (C) représentative de la fonction f définie sur R par f( x) = x. Dessiner dans le même repère sur le graphique suivant la courbe représentative d de la fonction affine g définie par gx ( ) = x+ 3. Quel lien peut-on faire entre les points d intersection de (C) et de d et l équation x = x + 3? Quelles semblent être, par lecture graphique, les abscisses de ces deux points. Vérifier que x x 3= ( x 1)( x + 3). Séquence 3 MA0 15

En déduire la résolution algébrique de l équation x = x + 3. y 1 11 10 9 8 7 6 5 4 3 1 4 3 1 1 3 4 x B Cours Utilisation d une calculatrice Pour résoudre graphiquement une équation du typef( x)= k, où k désigne un nombre réel, (ouf( x) = g( x) ), il peut être intéressant de savoir représenter sur sa calculatrice la courbe d équation y = f( x) (et celle d équation y = g( x)) et de savoir obtenir un tableau de valeurs de la fonction f. Nous donnons ici les principales manipulations qu il faut connaître sur l exemple de la fonction f définie sur l intervalle [ 8 ;6] par f( x)= x + 4x 8 sur une TI8stats.fr et sur une casio5+ qui sont les deux modèles les plus fréquemment utilisés au lycée actuellement. L utilisation d une autre TI ou casio est très voisine de celles-ci. Nous nous appuierons sur des travaux réalisés par l IREM de Lyon, figurant sur internet, et que vous pouvez consulter pour des compléments d informations. 16 Séquence 3 MA0

A. Utilisation d une TI8stats.fr Définir une fonction Touche f (x) Introduire la fonction par exemple en Y1. Pour la variable X, utiliser la touche x, t, θ, n. Valider avec la touche entrer. Tracer la courbe représentative Touche graphe L écran ci-contre n est qu un exemple, il est possible que celui affiché sur votre calculatrice soit différent. Pour obtenir cet affichage : touche zoom 6:ZStandard Régler la fenêtre d affichage Touche fenêtre. Régler les paramètres comme sur l écran cicontre. Touches et pour passer d une ligne à l autre. Puis touche graphe. Régler les paramètres du tableau de valeurs Instruction déf table (touches nde fenêtre ). Régler les paramètres comme sur l écran cicontre. DébTable : valeur initiale (1 re valeur du tableau). PasTable : pas du tableau (écart entre deux valeurs successives). Séquence 3 MA0 17

Afficher le tableau de valeurs Instruction table (touches nde graphe ). Si l écran n affiche pas toutes les valeurs souhaitées, on peut se déplacer dans la table à l aide des flèches. Parcourir une courbe Touche trace. Touches ÿ et pour se déplacer sur la courbe. L expression de la fonction ainsi que les coordonnées du point où est situé le curseur sont affichées. Calculer une image Instruction quitter (touches nde mode ) pour revenir à l écran de calcul. Touche var option V VAR-Y= à l aide de la flèche ÿ. Puis option 1 1:Fonction et valider avec entrer. Choisir la fonction désirée (pour notre exemple 1:Y1 ). Puis compléter comme sur l écran ci-contre pour, par exemple, obtenir l image de 3. 18 Séquence 3 MA0

Ajouter une fonction Touche f (x) Introduire la nouvelle fonction par exemple en Y Puis graphe ou table. Choisir les représentations graphiques à tracer Touche f (x) Avec les touches de déplacement placer le curseur sur le signe = de la fonction que vous ne souhaitez plus afficher. Ce signe doit alors clignoter. Touche entrer pour modifier le statut de la fonction sélectionnée. Le signe doit alors être = et non plus. Pour réafficher une fonction, procéder de la même façon. Le signe doit alors être de nouveau = = au lieu de =. Ensuite graphe ou table. Seules les fonctions sélectionnées sont affichées. (Pour l exemple Y1 a été désélectionnée). Effacer une fonction Touche f (x) Sélectionner la fonction à effacer, par exemple Y1. Puis touche annul. Séquence 3 MA0 19

Régler la fenêtre d affichage La fenêtre d affichage est la partie du plan délimitée par les valeurs Xmin, Xmax, Ymin et Ymax. La distance entre les graduations est définie par Xgrad pour l axe horizontal et par Ygrad pour l axe vertical. Xrés définit la résolution de l affichage (de 1 à 8). Problèmes possibles Problème rencontré ERR : SYNTAXE 1 :Quitter :Voir ERR : VAL FENETRE 1 :Quitter Comment y remédier L expression de la fonction est mal saisie. Par exemple : -X ² doit être saisi en utilisant (-) et non pas. fenêtre La fenêtre graphique est mal définie. (Par exemple on a saisit des valeurs telles que : Xmin Xmax) Une série statistique est représentée il faut la désactiver : Effacer tous les graphiques statistique : nde f (x). (graph stats)4 4 :graphoff. ou Effacer le graphique problématique : f (x). sélectionner le graphique activé et appuyer sur entrer. ERR : DIM INVALIDE 1 :QUIT Une série statistique est saisie mais de façon incorrecte. nde f (x). (graph stats) 4 4 :graphoff. 0 Séquence 3 MA0

B. Utilisation d une casio graph5+ Définir une fonction Icône Introduire la fonction par exemple en Y1. Valider avec la touche EXE. Utiliser la touche X,T pour la variable X. Tracer la courbe représentative Instruction DRAW (touche F4 ). L écran ci-contre n est qu un exemple, il est possible que celui affiché sur votre calculatrice soit différent. Régler la fenêtre d affichage Instruction V-Window (touches SHIFT F3 ). Régler les paramètres comme sur l écran ci-contre. Touches et pour changer de ligne. Touche EXE puis instruction DRAW. Régler les paramètres du tableau de valeurs Icône puis instruction RANG (touche F3 ). Régler les paramètres comme sur l écran ci-contre. Strt : valeur initiale (1 ère valeur du tableau). End : valeur finale (dernière valeur du tableau). Ptch : pas du tableau (écart entre deux valeurs successives). Touche EXIT pour revenir à l écran précédent. Afficher le tableau de valeurs Instruction TABL (touche F4 ). Si l écran n affiche pas toutes les valeurs souhaitées, on peut se déplacer dans la table à l aide des flèches. Séquence 3 MA0 1

Parcourir une courbe Retour au graphique : touche MENU icône puis instruction DRAW. Instruction TRACE (touches SHIFT F1 ). Un point apparait sur la courbe et ses coordonnées sont affichées. Touches ÿ et pour déplacer ce point. Calculer une image Mode calcul : touche MENU et icône. Touche VARS et instruction GRPH. pour cela : Touche (à droite de F4 ) puis F. Mettre la valeur dont on veut l image dans la mémoire X, par exemple pour l image de 3 : Touches 3 X,θ,T puis. correspond à la touche de mise en mémoire. Instruction Y (Touche F1 ) suivie du numéro de la fonction à utiliser (pour notre exemple Y1). Valider avec EXE. Ajouter une fonction Mode graphique : touche MENU et icône. Introduire la nouvelle fonction par exemple en Y Puis DRAW. Le tableau de valeur est lui aussi mis à jour : Touche MENU et icône Puis TABL. Utiliser les flèches ÿ et pour se déplacer. Séquence 3 MA0

Choisir les fonctions affichées Mode graphique : touche MENU et icône. Avec les flèches, sélectionner la fonction que vous ne souhaitez plus afficher. Instruction SEL (touche F1 ) pour valider votre choix. Le signe = doit alors être = et non plus =. Instruction DRAW pour tracer les courbes choisies. Pour réafficher une fonction, procéder de la même façon. Le signe = doit de nouveau être = au lieu de =. On peut faire la même chose dans le mode table : touche MENU et icône. Sélectionner les fonctions à afficher puis TABL. Effacer une fonction Sélectionner la fonction à effacer, par exemple Y1. Puis instruction DEL (touche F ), et enfin choisir YES (touche F1 ) Régler la fenêtre d affichage La fenêtre d affichage est la partie du plan délimitée par les valeurs Xmin, Xmax, Ymin et Ymax. La distance entre les graduations est définie par Xsacle pour l axe horizontal et par Yscale pour l axe vertical. Problèmes possibles Problème rencontré Syn ERROR Ma ERROR Comment y remédier L expression de la fonction est mal saisie. Par exemple erreur de variable. Appuyer sur AC/On Vérifier la fenêtre d affichage. Séquence 3 MA0 3

Résolution graphique d une équation Vous pourrez être amené à résoudre graphiquement des équations du type f( x)= k où k est un nombre réel ou du type f( x) = g( x). Les fonctions f et g sont représentées par les courbes C et C. Exemple f (x) = k Résoudre l équation f( x) = 3. y 4 Exemple y f (x) = g(x) 3 y = 3 C 1 1 C 0 0,6 1, x x 0,5 0 1 3 3,5 1 Les solutions sont 0,5 et 3,5. Cas général On cherche les points de C d ordonnée k (ce travail peut être facilité par le tracé de la droite d équation y = k ). Les abscisses de ces points sont les solutions de l équation f( x) = k. C Les solutions sont approximativement 0,6 et,. Cas général On repère les poins communs à C et C. Les solutions sont les abscisses des points communs. Résolution algébrique Définition Deux équations sont dites équivalentes quand elles ont les mêmes solutions. Résoudre l une revient donc à résoudre l autre. Exemple 3x + 6= 0 est équivalent à x =. L expression est équivalente est synonyme de l expression «si et seulement si». 4 Séquence 3 MA0

Notation Vous pourrez rencontrer le symbole pour remplacer l expression est équivalent. On écrira par exemple : 3x 6= 0 x =. Ne pas confondre le symbole avec celui de l égalité = Vous devez toujours pouvoir remplacer le symbole par l expression «si et seulement si». Propriété 1 : Équations équivalentes On transforme une équation en une équation équivalente : en développant ou factorisant certains termes ; en ajoutant ou retranchant un même terme à chaque membre en multipliant ou divisant chaque membre par un même nombre non nul. Pour résoudre une équation qui ne se ramène pas par développement à une équation du 1 er degré, on la transforme en une équation équivalente dont un membre et nul et on applique les propriétés suivantes : Propriété : Règle du produit nul Un produit est nul si et seulement si l un des facteurs est nul. A B = 0 équivaut à A=0 ou B=0. Propriété 3 : Règle du quotient nul Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul. A = 0 équivaut à A = 0et B 0. B Exercices résolus Exercice 1 Résoudre les équations suivantes : 3 7x ( 1 x)= ( x + 1). ( ) =. ( x + )( x )+( x + ) x + x 1 4x 1 1 1( 3 7)= 0. ( ) = ( ). x + 3 x 4 Séquence 3 MA0 5

Réponse : Réduisons chacun des membres : 3 7x 1+ x = x +, d où 6x + = x +. On retranche x + à chaque membre : 8x = 0. Il ne reste qu à diviser par 8 et on obtient x = 0. S = {} 0. Mettons en facteur dans le membre de droite et retranchons ce terme aux deux membres : ( x 1) ( x 1)= 0. Nous pouvons mettre x 1 ( x 1) ( x 3)= 0. ( ) =, soit ( ) en facteur : ( x 1) x 1 0 Nous savons qu un produit est nul si et seulement si l un des facteurs est nul : x 1= 0 ou x 3 = 0. Donc S = 1 3,. ( ) en facteur : Nous pouvons mettre x + 1 ( x + 1) ( x 1+ 3x + 7)= 0. c est-à-dire ( x + 1) ( 4x + 6)= 0. On obtient x + 1= 0 ou 4x + 6= 0. Donc S = 1 3,. Exercice Exercice 3 Déterminer 5 nombres entiers consécutifs dont la somme est 405. Réponse : Le plus simple est de noter x le nombre du milieu ; les deux précédents sont alors x et x 1 et les deux suivants x + 1et x +. Le nombre x doit alors vérifier ( x )+ ( x 1)+ x + ( x + 1)+ ( x + )= 405, 5x = 405 d où x = 81. Les 5 nombres cherchés sont donc 79, 80, 81, 8, 83. Il est aisé de vérifier que ces 5 nombres répondent bien au problème. Un arbre de 9 m de haut dont le pied est en A s est cassé en B. La cime est tombée en C à 3,5 m de A. Calculer la distance AB. Réponse : Le triangle ABC est rectangle en A ; on peut donc appliquer la propriété de Pythagore : BC = AB + AC. Nous savons que AC = 35, ; notons x la distance AB, il en résulte que BC = 9 x. On peut alors écrire B ( 9 x) = x + 3, 5. Pour résoudre cette équation, on développe le premier membre : 81 18x + x = x + 1, 5. On retranche le deuxième au premier, ce qui donne : 68, 75 68, 75 18x = 0 d où x = soit 75 18 7. L arbre s est donc cassé à environ 3,8 m du sol. A C 6 Séquence 3 MA0

Exercice 4 Résoudre les équations suivantes x 5 x + 1 = 0 x 1 0 x + 1 =. = 3. x x + 5 Réponse : Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul. x 5 x + 1 = 0 équivaut à x 5= 0 et x + 1 0 soit : x = 5 et x 1 soit : x =5. On a donc = {5}. x 1 0 x + 1 = équivaut à : x 1= 0 et x + 1 0 x 1= 0 équivaut à x 1 = 0 soit ( x + 1)( x 1) = 0. ( x + 1)( x 1) = 0 x + 1= 0 ou x 1= 0 soit : x = 1 ou x = 1. Par suite x 1 = 0 équivaut à x = 1 ou x = 1et x 1. x + 1 L équation n a donc qu une solution : = {1}. 3 x = x + 5 équivaut à 3 5 = 0. x x + Mettons l expression 3 au même dénominateur. x x + 5 3 ( x + 5) 3 x x 10 = = + x x + 5 xx ( + 5) ( x + 5) x xx ( + 5). x + 10 = 0 équivaut à x + 10 = 0 et xx ( + 5) 0. xx ( + 5) soit x = 10 et x 0 et x 5. On en déduit ={10}. Remarque La négation de la proposition logique x = 0 ou x = 5 est : x 0 et x 5. Plus généralement, considérons deux propositions P et Q. La négation de «P est vraie ou Q est vraie» et «P est faux et Q est faux». Par exemple, la négation de la proposition : «L interrupteur A est ouvert ou l interrupteur B est ouvert» est «L interrupteur A est fermé et l interrupteur B est fermé» Séquence 3 MA0 7

Exercice 5 Donner à l aide de votre calculatrice sur l intervalle [ 3 ; 3] le nombre de solutions de l équation xx ( 1 ) = x. Résoudre algébriquement sur l intervalle [ 3 ; 3] l équation xx ( 1 ) = x. Réponse : Soit f( x) = x( x 1) et gx ( ) = x. Graphiquement, on constate que les courbes représentatives des fonctions f et g sur ont deux points communs. Sur [ 3; 3], on lit donc graphiquement que l équation xx ( 1) = xadmet deux solutions (qui semblent être voisines 0 et ). L équation xx ( 1 ) = x est équival ente à xx ( 1) x= 0 soit après factorisation par x, x soit xx ( ) = 0. xx ( 1 1) = 0 Cette dernière équation équivaut à x = 0 ou x =. On a donc = {0 ;}. Ce serait une erreur de simplifier par x dans l expression x ( x 1 ) = x pour obtenir x 1 = 1 soit x =. Les équations xx ( 1 ) = x et x 1 = 1 ne sont pas équivalentes car elles n ont pas le même ensemble de solutions. C Synthèse Résolution graphique d équations y Équation f( x ) = k 4 Soit f une fonction de courbe représentative C. 3 y = k Les solutions de l équation f( x)= k sont les abscisses des points d intersection de C et de la droite d équation y = k. 1 a 0 1 1 C 3 b x 8 Séquence 3 MA0