BAC BLANC 19 MARS 2013 NOM DU LYCEE MATHÉMATIQUES Série : ES Enseignement spécifique Durée de l épreuve : 3 heures L utilisation d une calculatrice est autorisée. Le sujet comporte 7 pages. Le candidat doit traiter les quatre exercices. La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies. page 1 sur 7
Exercice 1 (4 points) Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n est demandée. Une réponse exacte rapporte 1 point, une réponse fausse ou l absence de réponse ne rapporte ni n enlève aucun point. Question 1 Pour tout n entier naturel, on définit la somme S n = 1 + 0,75 + 0,75 2 +... + 0,75 n. Lorsque n tend vers + : Réponse A : S n tend vers +. Réponse B : S n n'a pas de limite. Réponse C : S n tend vers 0. Réponse D : S n tend vers 4. Question 2 On veut calculer sur tableur les différentes valeurs de la somme S n = 1 + 0,75 + 0,75 2 +... + 0,75 n plusieurs valeurs de n entier naturel. pour Sur la feuille de calcul, dans la cellule B4, on doit entrer la formule : Question 3 Réponse A : =B3*0.75 Réponse B : =B3+0.75^A4 Réponse C : =0.75^A4 Réponse D : =B3+0.75*A4 On définit la fonction F sur ] 1 ; + [ par F(x) = x + 2 x 1. Au point d'abscisse 2, la tangente à la courbe représentative de F a pour équation : Réponse A : y = 3x + 6. Réponse B : y = 3x + 10. Réponse C : y = 3x 2. Réponse D : y = 3x 6. page 2 sur 7
Question 4 On note exp la fonction exponentielle. Soit u une fonction définie sur telle que u(0) = 1, u(1) = 0 et u(e) = 2. On définit alors la fonction G par G(x) = exp( u(x) ). G(0) est égal à : Réponse A : 0 Réponse B : 1. Réponse C : 2. Réponse D : e. page 3 sur 7
Exercice 2 (5 points) Une grande entreprise de restauration rapide spécialisée dans le poulet a effectué une enquête de satisfaction auprès d'un échantillon de 1 000 clients. Parmi ceux-ci, 40 % avaient mangé un Burger au poulet, 35 % avaient mangé un Crunchy au poulet et 25 % avaient mangé un Spicy au poulet. Malheureusement, de nombreux clients ont été malades peu après leur repas. Les pourcentages de malades suivant le plat mangé sont les suivants : Burger au poulet Crunchy au poulet Spicy au poulet 15 % 40 % 60 % Parmi tous les clients sondés, on en choisit un au hasard. Dans la suite de l exercice, on appelle : B l évènement «Le client choisi a mangé un Burger au poulet», C l évènement «Le client choisi a mangé un Crunchy au poulet», S l évènement «Le client choisi a mangé un Spicy au poulet», M l évènement «Le client choisi a été malade». 1. a. Donner sans justification la probabilité P( S ) puis la probabilité que le client choisi ait été malade sachant qu'il avait mangé un Spicy au poulet. b. En déduire que la probabilité P( S M ) vaut 0,15. 2. Construire un arbre pondéré qui illustre la situation. 3. a. Calculer P( B M ) et P( C M ). b. En déduire la probabilité que le client choisi ait été malade. 4. Déterminer la probabilité que le client choisi ait mangé un Crunchy au poulet sachant qu'il a été malade. 5. On appelle H l évènement «Le client choisi a été hospitalisé». Parmi les clients malades ayant mangé un Burger au poulet, 12 % ont été hospitalisés. Parmi les clients malades ayant mangé un Crunchy au poulet, 20 % ont été hospitalisés. Parmi les clients malades ayant mangé un Spicy au poulet, 30 % ont été hospitalisés. Peut-on estimer qu'il y a plus d'une chance sur 10 que le client choisi ait été hospitalisé? Dans cette partie, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation. page 4 sur 7
Exercice 3 Enseignement spécifique (5 points) Une réserve décide d'implanter sur son vaste territoire de savane une nouvelle population d'antilopes, des impalas. Au 1 er janvier 2013, 2 500 impalas sont lâchés. Les scientifiques zoologistes estiment que le nombre d'impalas augmentera chaque année de 4 % par le simple jeu des naissances et des décès naturels. Pour limiter les phénomènes de consanguinité, 50 impalas supplémentaires seront ajoutés chaque année. Pour tout entier naturel n, on note u n le nombre d'impalas dans cette réserve au 1 er janvier de l'année 2013 + n. On a donc u 0 = 2 500. 1. Justifier que, pour tout entier naturel n, u n+1 = 1,04 u n + 50. 2. Déterminer u 1 et u 2. 3. Pour tout entier naturel n, on pose v n = u n + 1 250. a. Montrer que (v n ) est une suite géométrique dont on précisera le premier terme et la raison. b. Exprimer v n en fonction de n. c. En déduire que u n = 3 750 1,04 n 1 250. d. Calculer la limite de la suite (u n ). 4. Après une étude approfondie des zoologues, ce modèle d'évolution ne sera plus valable lorsque la population aura doublé par rapport au 1 er janvier 2013. a. L'algorithme suivant a pour but de calculer le rang n à partir duquel le modèle d'évolution n'est plus valable. Variables : n, u n prend la valeur 0 u prend la valeur 2500 Tant que u <... faire n prend la valeur... u prend la valeur... Fin du Tant que Afficher... Recopier et compléter cet algorithme pour qu'il affiche le rang demandé. b. À l'aide de la calculatrice, déterminer à partir de quelle année le modèle d'évolution ne sera plus valable. page 5 sur 7
Taux de gaz dans l'air Exercice 4 (6 points) Partie A Un dépôt de gaz à usage domestique (butane, propane,...) a été étudié de telle sorte que, en cas d'accident du réservoir, l'évolution du taux de gaz dans l'air du dépôt soit modélisée par la fonction f définie sur l intervalle [ 0 ; 10 ] par f(x) = x 0,6 x, où x désigne le nombre de minutes écoulées après l'accident. On donne ci-dessous la représentation graphique de f sur [ 0 ; 10 ]. Temps écoulé (en minutes) 1. a. Une des trois courbes ci-dessous est la représentation graphique de la fonction dérivée f ' de f. Préciser laquelle en justifiant la réponse. Courbe A Courbe B Courbe C b. La fonction dérivée f ' de f est définie sur [ 0 ; 10 ] par f '(x) = ( 1 + x ) 0,6 x, où 0,51. Expliquer pourquoi on peut estimer que le taux de gaz dans l'air est maximal au bout d'environ 1,96 minute. En déduire ce taux maximal, arrondi à 0,01 près. page 6 sur 7
2. Suivant le taux de gaz dans l'air, le mélange peut présenter un danger d'explosion. La limite inférieure d'explosivité (LIE) est de 20 %. En dessous de cette valeur, le mélange air-gaz est trop pauvre pour exploser. La limite supérieure d'explosivité (LSE) est de 40 %. Au-dessus de cette valeur, le mélange air-gaz est trop riche pour exploser. Estimer par simple lecture graphique pendant combien de temps, après que le taux maximal a été atteint, le mélange air-gaz a été explosif. Partie B Le propriétaire du dépôt de gaz se voit proposer un autre type d'installation. En cas d'accident du réservoir, l'évolution du taux de gaz dans l'air du dépôt serait alors modélisée par la fonction g définie sur l intervalle [ 0 ; 10 ] par g(x) = 2,5 x e x, où x désigne le nombre de minutes écoulées après l'accident. 1. Calculer g(10), arrondi à 0,001 près. 2. Établir que, pour tout nombre réel x de l intervalle [ 0 ; 10 ], g'(x) = 2,5 e x ( 1 x ). 3. a. Résoudre dans l intervalle [ 0 ; 10 ] l'inéquation 2,5 e x ( 1 x ) 0. b. En déduire le tableau de variation complet de la fonction g sur l intervalle [ 0 ; 10 ]. 4. a. Montrer que les équations g(x) = 0,2 et g(x) = 0,4 admettent chacune une solution unique sur l intervalle [ 1 ; 10 ]. b. À l'aide de la calculatrice, donner un arrondi à 0,01 près de chacune de ces deux solutions. Donner une estimation de la durée d'explosivité, après que le taux maximal a été atteint. page 7 sur 7