Ensembles de Julia : Étude d une famille de suites complexes Travail suivi n 1

Documents pareils
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Deux disques dans un carré

Chapitre 2. Eléments pour comprendre un énoncé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Raisonnement par récurrence Suites numériques

O, i, ) ln x. (ln x)2

Limites finies en un point

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Cours d Analyse. Fonctions de plusieurs variables

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Cours Fonctions de deux variables

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Rappels sur les suites - Algorithme

Fonctions de plusieurs variables

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Résolution d équations non linéaires

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Chapitre 2 Le problème de l unicité des solutions

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

3 Approximation de solutions d équations

Chapitre 2 : Vecteurs

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Indications pour une progression au CM1 et au CM2

1S Modèles de rédaction Enoncés

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

Fonctions homographiques

Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :

LE PRODUIT SCALAIRE ( En première S )

DOCM Solutions officielles = n 2 10.

Image d un intervalle par une fonction continue

Problème 1 : applications du plan affine

Quelques algorithmes simples dont l analyse n est pas si simple

TSTI 2D CH X : Exemples de lois à densité 1

Pourquoi l apprentissage?

BACCALAUREAT GENERAL MATHÉMATIQUES

Cours 7 : Utilisation de modules sous python

Fonctions de deux variables. Mai 2011

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Correction du Baccalauréat S Amérique du Nord mai 2007

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Les algorithmes de base du graphisme

Baccalauréat ES Amérique du Nord 4 juin 2008

La fonction exponentielle

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

III- Raisonnement par récurrence

Alarme domestique- Présentation

Commun à tous les candidats

Logique. Plan du chapitre

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Calcul intégral élémentaire en plusieurs variables

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

EXERCICES - ANALYSE GÉNÉRALE

Leçon 01 Exercices d'entraînement

Cours Informatique Master STEP

Développements limités, équivalents et calculs de limites

Ressources pour le lycée général et technologique

Géométrie dans l espace Produit scalaire et équations

Construction de la bissectrice d un angle

C f tracée ci- contre est la représentation graphique d une

6. Les différents types de démonstrations

Chp. 4. Minimisation d une fonction d une variable

Suites numériques 3. 1 Convergence et limite d une suite

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Anne Tasso. Java. Le livre de. premier langage. 10 e édition. Avec 109 exercices corrigés. Groupe Eyrolles, , ISBN :

I. Polynômes de Tchebychev

Continuité et dérivabilité d une fonction

CCP PSI Mathématiques 1 : un corrigé

Introduction. Mathématiques Quantiques Discrètes

Cours de Mécanique du point matériel

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

Electricité : caractéristiques et point de fonctionnement d un circuit

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN

Compter à Babylone. L écriture des nombres

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Les suites numériques

Mesure d angles et trigonométrie

6 ème. Rallye mathématique de la Sarthe 2013/ ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

PROBLEME(12) Première partie : Peinture des murs et du plafond.

1 Complément sur la projection du nuage des individus

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Formats d images. 1 Introduction

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

OPTION SCIENCES BELLE-ISLE-EN-TERRE

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/ Présentation. 1.2 Ressources

Théorie et codage de l information

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Continuité en un point

Transcription:

Mathématiques 2013-2014 p1 Ensembles de Julia : Étude d une famille de suites complexes Présentation du problème : Dans ce projet, on considère un nombre complexe c de module inférieure strictement à 1 et la suite complexe (z n ) définie par n N, z n+1 = z 2 n + c Cette suite est donc définie par la donnée de c et de z 0. Le comportement d une telle suite ne peut être qualifié en terme de variation comme pour les suites réelles, car nous ne connaissons pas de relation d ordre sur l ensemble des nombres complexes. Cependant, il suivant la valeur de c ou de z 0 le comportement de la suite (z n ) peut être assez différent comme le montre les deux situations suivantes où l on a représenté les points d affixe c, z 0, z 1... dans le plan complexe rapporté au repère orthonormé (O; u, v). 1.4 1.2 z 2 1.0 0.8 0.6 0.4 0.2 z 6 z 3 c z z 4 5 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 z 1 z 0 z 7 1.4 1.2 z 2 1.0 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 z 3 0 0.2 0.4 0.6 c z 1 z z 6 7 z5 z 4 z 8z9 Ainsi dans certains cas, les points M n d affixe z n semblent tous être situés dans une région du plan "limitée" (par exemple un cercle centré sur l origine). Dans d autres en revanche les points M n semblent ne pas pouvoir être contenus dans une région "limitée". Dans la première situation, on dira que la suite est "bornée". Pour une valeur de c donnée, quel sont les valeurs complexes de z 0 conduisant à une suite "bornée"? Est-on capable de faire une "carte" des points dont l affixe correspondant à une valeur de z 0 conduisant à une suite "bornée"? z 0

Mathématiques 2013-2014 p2 Ensembles de Julia : Nombres complexes et Informatique Exercice n 1 : Nombres complexes et programmation sous algobox. Algobox comme la plupart des langages informatiques ne gère pas les nombres complexes, il faut donc gérer chaque nombre complexe à l aide de deux variables l une étant sa partie réelle et l autre sa partie imaginaire. Ci-dessous figure un exemple où sont fourni un algorithme portant sur des nombres complexes et son implémentation sous Algobox : Algorithme lire z Programme Algobox a EST_DU_TYPE NOMBRE b EST_DU_TYPE NOMBRE lire a lire b afficher a afficher "+" afficher b AFFICHER* "i" Dans le tableau ci-dessous lorsque l algorithme est fourni donner l implémentation manquante et lorsque l implémentation est fournie donner l algorithme manquant : Algorithme c est un nombre complexe lire z Donner à c la valeur 1-2i Donner à z la valeur z+c Programme Algobox a,b,ac,bc EST_DU_TYPE NOMBRE (lignes regroupées) lire a lire b afficher a afficher "+" afficher b AFFICHER* "i" a,b,t EST_DU_TYPE NOMBRE (lignes regroupées) lire a lire b t PREND_LA_VALEUR pow(a,2)-pow(b,2) b PREND_LA_VALEUR 2*a*b a PREND_LA_VALEUR t afficher a afficher "+" afficher b AFFICHER* "i"

Mathématiques 2013-2014 p3 Algorithme z est un nombre complexe Lire z Lire z Donner à z la valeur z*z Programme Algobox... EST_DU_TYPE NOMBRE (lignes regroupées) lire a lire b lire ap lire bp afficher a afficher "+" afficher b AFFICHER* "i" Exercice n 2 : Suite complexe. On considère la suite complexe Z définie par n N, z n+1 = zn 2 L objectif de cet exercice est de déterminer pour quelle valeur de z 0 cette suite "reste bornée" c est à dire que le suite (m n ) des modules associée est bornée. Remarque : Attention, on ne peut comparer deux nombres complexes, donc les mots majorés et minorés n ont aucun sens pour la suite Z, le caractère "borné" de Z est donc défini par le fait que la suite des modules des termes est bornée (en fait, majorée car la suite des modules est toujours minorée par 0). Ainsi dire que Z reste bornée revient à dire que les images des termes de la suite dans un repère (O, u, v) sont toutes contenues dans un cercle centré en O (le rayon du cercle étant un majorant de la suite des modules. (m n ) est la suite réelle définie pour tout entier naturel n par m n = z n. 1. Modifier l algorithme ci-dessous pour qu il affiche les 15 premiers termes de la suite Z et leur module lorsque l on saisit z 0 en entrée : i est un entier naturel Lire z Donner à i la valeur 0 Tant que i<100 faire Donner à z la valeur z^2 Donner à i la valeur i+1 2. Ouvrir le fichier S1exercice2.alg avec algobox et modifier le programme chargé pour programmer l algorithme modifié précédemment. 3. Ouvrir avec geogebra le fichier avjul1.ggb. Dans la figure le point A a pour affixe z 0, et il est possible de déplacer le point A pour modifier z 0. a. Saisir dans zone de saisie : z_0 ˆ 2. Vous constaterez que geogebra contrairement à algobox gère les nombres complexes et qu il représente un nombre complexe dans le plan par son image. b. Construire ainsi les 10 premiers termes de la suite Z et leurs images. c. En déplaçant le point A conjecturer l ensemble des points A pour lesquels la suite des modules converge vers 0 et l ensemble des points A pour lesquels la suite des modules reste bornée. Pour vous aider, il pourra être utile d afficher le cercle de centre O et de rayon z 0 en cochant la case "Cercle".

Mathématiques 2013-2014 p4 Ensembles de Julia : diversité des comportements A rendre pour le 7 novembre 2013 Dans la suite de ce travail, on considère un nombre complexe c de module inférieure strictement à 1 et la suite complexe (z n ) définie par n N, z n+1 = zn 2 + c On note (m n ) la suite réelle définie pour tout entier naturel n par m n = z n (suite des modules associée à (Z n )). 1. Dans cette question, la constante c est fixée à 0. On retrouve ainsi la suite Z dont on a représenté les premiers termes et calculé les premiers termes à l aide de Geogebra et d Algobox. Nous allons, pour ce cas particulier, déterminer le caractère "borné" ou non de la suite (z n ) suivant les valeurs de z 0. a. Justifier que lorsque z 0 = 1 ou lorsque z 0 = 0 la suite (m n ) est constante. b. Démontrer par récurrence que lorsque 0 < z 0 < 1, la suite (m n ) est strictement décroissante. Étant donné que la suite (m n ) est minorée par 0, on pourra démontrer plus tard dans l année que la suite (m n ) converge. c. Démontrer par récurrence que lorsque z 0 > 1, la suite (m n ) est strictement croissante. on pourra démontrer plus tard dans l année que la suite (m n ) diverge vers +. d. Conclure concernant le caractère "borné" ou non de la suite (z n ) en fonction de z 0. 2. Constitution d outil de visualisation de la suite (z n ) pour c quelconque. a. En réutilisant le fichier avjul1.ggb, construire une figure dynamique comportant un nombre complexe c et la visualisation des 10 premiers termes de la suite (z n ). Vous constaterez que la valeur de c, influence fortement le comportement de la suite. Imprimer et rendre avec votre copie la figure obtenue lorsque c = 0,29 + 0,01i et z 0 = 0,75 + 0,52i, puis la figure obtenue lorsque c = 0,16 + 0,12i et z 0 = 0,75 + 0,52i. b. Transformer l algorithme programmé en classe concernant le cas où c = 0, pour afficher les quinze premier terme de la suite (z n ). Dans l algorithme produit la valeur de c sera initialisée (et non saisie en entrée) alors que la valeur de z 0 sera saisie en début d algorithme. c. Programmer l algorithme sous Algobox (vous imprimerez votre programme et le joindrez à la copie). 3. Production d un algorithmique de décision : a. En utilisant les outils construits à la question précédente, peut-on conjecturer à quelle région du plan correspond l ensemble des points A tels que la suite (z n ) est "bornée" lorsque z 0 est l affixe de A? b. On peut démontrer que s il existe un rang N tel que u N 2 alors la suite (m n ) diverge vers l infini. Cela permet de construire un algorithme qui, pour un z 0 donné, calcule successivement les termes de la suite (z n ) et affiche suite non "bornée" dès que z n 2. Écrire un tel algorithme en modifiant l algorithme programmé précédemment (Vous pouvez rendre cet algorithme écrit en langue naturelle ou sous algobox). c. Y-a-t-il des conditions où votre algorithme ne se termine pas? Justifier votre réponse. (la réponse à cette question ne doit pas se baser sur l exécution du programme correspondant sous algobox qui ne fait apparaître souvent que les limitations du logiciel algobox) d. Pour garantir que l algorithme se termine systématiquement, modifier votre algorithme de manière qu il calcule au plus 100 termes de la suite (z n ) et affiche suite "non bornée" dès que z n 2 et affiche la suite semble "bornée" si les 100 premiers termes ont un module inférieur à 2. Vous programmerez cet algorithme sous algobox avec c = 0,16 + 0,12i et joindrez les impression des résultats obtenus avec z 0 = 0,75 + 0,52i et avec z 0 = 0,04 + 1,024i. Nous avons ainsi construit un algorithme de décision concernant le caractère "bornée" ou non de la suite (z n ).

Mathématiques 2013-2014 p5 Ensemble de Julia : Démonstration A rendre pour le Dans la suite de ce travail, on considère un nombre complexe c de module inférieure strictement à 1 et la suite complexe (z n ) définie par n N, z n+1 = zn 2 + c On note (m n ) la suite réelle définie pour tout entier naturel n par m n = z n (suite des modules associée à (Z n )). 1. Démonstration d une propriété du module : a. Une conjecture : On considère deux nombres complexes z A et z B tels que z B > z A et on note z C = z A + z B. Ouvrir à l aide de Geogebra la figure triangul.ggb. Dans cette figure sont représentés le plan complexe muni du repère ( O, u, v ), les points A, B et C d affixes z A, z B et z C, ainsi que les images vectorielles de ces trois nombres complexes. De plus, trois cercles de centre O ont été tracés : en noir les cercles de rayon z A et z B et en rouge le cercle que nous nommerons Γ de rayon z B z A. En déplaçant les points A et B, que peut-on conjecturer de la position relative de C et de Γ? b. Traduire la conjecture précédente sous forme d une inégalité entre les modules de z A, z B et z C. c. Démonstration de la conjecture : Soit e et f deux nombres complexes. On note ( E et F leur image respective dans le plan complexe rapporté au repère orthonormal O, u, ) v. On considère D l image du nombre complexe e + f. i. Faire une figure en prenant soin d éviter le cas particulier où O, E et F sont alignés. ii. Quel est la nature du quadrilatère OEDF? Justifier votre réponse. iii. Comparer OD et OE + ED. iv. En déduire que pour tout nombre complexe e et f, e + f e + f. v. En posant e = z A + z B et f = z A, justifier la conjecture énoncée précédemment. 2. Justifier que pour tout n tel que z n 2 alors z n 2 > z n + 1. 3. On note N un entier naturel tel que z N 2. On pose r = 1 c, et on note (u n ) la suite arithmétique définie à partir du rang N, de premier terme u N = z N et de raison r. a. Justifier que pour tout n > N, u n > 2. b. En utilisant le résultat démontré à la question précédente, démontrer alors par récurrence que pour tout n > N, z n > u n 4. Ainsi, s il existe un rang N tel que u N 2, alors pour tout n > N, la suite m n > u n. Déterminer, dans ce cas, la limite de (m n ).

Mathématiques 2013-2014 p6 1. On considère l algorithme suivant : Lignes de niveau xi EST_DU_TYPE NOMBRE yi EST_DU_TYPE NOMBRE x EST_DU_TYPE NOMBRE y EST_DU_TYPE NOMBRE POUR xi ALLANT_DE -20 A 20 DEBUT_POUR POUR yi ALLANT_DE -20 A 20 DEBUT_POUR x PREND_LA_VALEUR xi/10 y PREND_LA_VALEUR yi/10 SI (x+y<1) ALORS DEBUT_SI TRACER_POINT_Rouge (x,y) FIN_SI SINON DEBUT_SINON TRACER_POINT_Bleu (x,y) FIN_SINON FIN_POUR FIN_POUR a. Ouvrir le fichier niveau_ enon.alg avec algobox, et exécuter ce programme. b. Décrire ce que trace ce programme. c. Modifier ce programme pour qu il trace un réseau de 401 points par 401 points dans la même fenêtre graphique. 3((x + 1) 2 + y 2 ) + 4 2. On considère la fonction définie par f (x, y) = 2((x 1) 2 + (y + 1) 2. Dans un repère orthonormé de l espace, à chaque point M du plan (Ox y) de coordonnées (x, y,0), on associe le point ) + 3 M de coordonnées (x, y, f (x, y)). L ensemble des points M forme une surface S dont plusieurs vues sont fournies ci-dessous : Pour représenter dans le plan cette surface, on peut choisir de dessiner une perspective de celleci comme ci-dessus ou de dessiner des courbes ou lignes de niveau. Chaque représentation à un intérêt différent. La courbe de niveau k est la projection orthogonale de la section de la surface S par le plan d équation z = k.

Mathématiques 2013-2014 p7 a. Modifier le programme obtenu à la question, pour qu il trace en rouge les points du réseau dont les coordonnées (x, y) vérifient f (x, y) = 3. Que constatez-vous? b. Pour palier le problème de la question précédente, il convient d introduire une "tolérance" et de tracer les points du réseau dont les coordonnées (x, y) vérifient f (x, y) 3 < 0,01. Modifier votre programme et visualisez le résultat. c. Compléter votre programme qu il trace simultanément les lignes de niveau : 0,5;1;1,5;2;2,5;3;3,5;4;4,5;5;5,5;6;6,5;7.

Mathématiques 2013-2014 p8 Ensemble de Julia : représentation d un ensemble de Julia A rendre pour le Dans la suite de ce travail, on considère un nombre complexe c de module inférieure strictement à 1 et la suite complexe (z n ) définie par n N, z n+1 = zn 2 + c On note (m n ) la suite réelle définie pour tout entier naturel n par m n = z n (suite des modules associée à (Z n )). Ce travail fait suite aux différents devoirs à la maison et séances en classe consacrés à cette suite (z n ), mais aussi au travail sur les lignes de niveau. 1. Modifier le programme niveau_ enon.alg sous algobox fourni pour l activité "Lignes de niveau", pour qu il trace un réseau de 201 points par 241 points dans la fenêtre graphique Xmin=-1, X=max=1, Ymin=-1,2 et Ymax=1,2(il s agit de modifier le programme pour qu il trace sur 241 lignes parallèles à l axe des abscisses de 201 points, mais aussi de modifier dans "Dessiner dans un repère" les paramètres de la fenêtre graphique). 2. a. En utilisant l algorithme de décision concernant le caractère "bornée" ou non de la suite (z n ), modifier le programme de la question précédente pour tracer en bleu les points d affixe z tels que si z 0 = z et c = 0,285+0,013i alors la suite (z n ) est "bornée" (les autres points seront tracés en blanc). b. Exécuter votre programme et imprimer le programme et la figure obtenue. L ensemble ainsi tracé est appelé ensemble de Julia rempli pour la constante c = 0,285 + 0, 013i. 3. Reprendre la question précédente pour tracer les ensembles de Julia remplis pour la constante c = 0,8+0,156i, puis pour la constante c = 0,3+0,5i (Vous adapterez la fenêtre graphique lorsque c est nécessaire pour tracer une figure complète). 4. Exploration : Utiliser votre programme pour d autres valeurs de c. Vous constaterez que les résultats sont très variables suivant les valeurs choisies. Joindre à votre copie l ensemble de Julia qui vous paraîtra le plus original en fournissant la valeur de c correspondante. Ensemble de Julia rempli : Notion étudiée par Gaston Julia, mathématicien français (1893-1979) en 1918. Les mathématiciens ont démontré que pour certaines valeurs de c l ensemble de Julia rempli est d un seul tenant, alors que pour d autres, il est réduit à un nuage de points. Ces valeurs sont liées à un ensemble célèbre lui aussi défini à l aide des suites complexes que l on appelle ensemble de Mandelbrot qui est représenté ci-dessous :