III CAPILLARITE TENSION SUPERFICIELLE



Documents pareils
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Chapitre 10 : Mécanique des fluides

Chapitre 7: Dynamique des fluides

Premier principe de la thermodynamique - conservation de l énergie

Premier principe : bilans d énergie

1 Mise en application

Plan du chapitre «Milieux diélectriques»

A B C Eau Eau savonneuse Eau + détergent

3 Charges électriques

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Voyez la réponse à cette question dans ce chapitre.

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

BREVET 2 * Principes physiques régissant la plongée. Première partie

Chapitre 11 Bilans thermiques

Rappels sur les couples oxydantsréducteurs

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Problèmes sur le chapitre 5

LA MESURE DE LA PRESSION

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Fonctions de plusieurs variables

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Cours de Mécanique du point matériel

TP 7 : oscillateur de torsion

Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.

Chapitre 02. La lumière des étoiles. Exercices :

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Exercice 1. Exercice n 1 : Déséquilibre mécanique

MÉCANIQUE DES FLUIDES TRAVAUX DIRIGÉS

Oscillations libres des systèmes à deux degrés de liberté

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost

Thème 17: Optimisation

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Comprendre l Univers grâce aux messages de la lumière

DISQUE DUR. Figure 1 Disque dur ouvert

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Électricité statique. Introduction. Quelques étapes historiques importantes

Vanne " Tout ou Rien" à siège incliné Type 3353

DIFFRACTion des ondes

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Electrostatique. Le mot électrostatique se divise en deux parties : électron qui en grec veut dire "ambre" et statique qui signifie "ne bouge pas".

MISE À LA TERRE POUR LA SÉCURITÉ ÉLECTRIQUE

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Notions physiques Niveau 2

Différents types de matériaux magnétiques

LES EAUX USÉES. L évacuation des eaux usées. Les eaux vannes (EV) : eaux provenant des cuvettes de WC.

Matériel de laboratoire

eedd LA PLANETE N EST PAS UNE POUBELLE 1/7

La charge électrique C6. La charge électrique

Chapitre 5. Le ressort. F ext. F ressort

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Les Conditions aux limites

TD 9 Problème à deux corps

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

FICHE TECHNIQUE POSTE METALLIQUE

PHYSIQUE Discipline fondamentale

Défauts dan les sachets souples état date stérilisables en autoclave nouveau 31/05/2002 Caractérisation et classification

TP N 1 : ÉLECTRISATION PAR FROTTEMENT

Fiche de lecture du projet de fin d étude

Ces deux systèmes offraient bien sur un choix, mais il était limité à deux extrêmes.

DYNAMIQUE DE FORMATION DES ÉTOILES

La soudure à l arc. électrique. Jean-Claude Guichard. Groupe Eyrolles, 2006, ISBN :

Précision d un résultat et calculs d incertitudes

5. Les conducteurs électriques

Angles orientés et trigonométrie

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Chapitre 2 : Caractéristiques du mouvement d un solide

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

CIRCUITS DE PUISSANCE PNEUMATIQUES

Communauté française de Belgique ENSEIGNEMENT À DISTANCE. Cours 219 Série 9 PHYSIQUE C2D. Synthèse

Cours 1. Bases physiques de l électronique

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

OCEANE Machine de brasage double vague

FICHE TECHNIQUE. Domaines d applications. Stockage / Mise en oeuvre. Caractéristiques physiques et techniques STOCKAGE MISE EN OEUVRE

Systèmes de ventilation double flux CWL

Comment la sève monte-t-elle dans les arbres?

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Le nouveau programme en quelques mots :

Eau chaude sanitaire FICHE TECHNIQUE

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Chapitre 1 Régime transitoire dans les systèmes physiques

INSTRUCTIONS DE POSE

Matériau S235JR - DIN EN Finition de surface. Epaisseur du matériau 1,5 mm. Désignation Filetage M Cote X Longueur L Charge de traction

Angles orientés et fonctions circulaires ( En première S )

Recommandations pour la surveillance de la température de l eau chaude sanitaire

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

Normes CE Equipements de Protection Individuelle

3. Artefacts permettant la mesure indirecte du débit

SIMULATION DU PROCÉDÉ DE FABRICATION DIRECTE DE PIÈCES THERMOPLASTIQUES PAR FUSION LASER DE POUDRE

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

Version 1. Demandeur de l étude : VM - BETON SERVICES 51 Boulevard des Marchandises L'HERBERGEMENT. Auteur * Approbateur Vérificateur(s)

Fonctions de deux variables. Mai 2011

CHAPITRE 2 : Structure électronique des molécules

Transcription:

III CAPILLAITE TENSION SUPEFICIELLE La «tension de surface» est un phénomène qui fait apparaître une grandeur intensive propre aux liquides qui peut revêtir une grande importance dans des problèmes spécifiques : capillarité, formation de gouttes et de bulles, mouillabilité Elle peut être généralement négligée dans les problèmes avec des écoulements, en dynamique des fluides, mais pas dans les systèmes de petite taille (microfluidique ) 1. Mise en évidence Différents exemples permettent d illustrer l influence de la tension de surface : bien que l acier ait une masse volumique plus de 7 fois supérieure à celle de l eau, on peut poser à la surface de l eau une aiguille à coudre ou un trombone sans qu ils ne coulent au fond du récipient, certains insectes se déplacent à la surface de l eau comme s ils glissaient sur un film souple, on observe des ménisques sur les bords des verreries (verres, pipettes, récipients ) contenant un liquide. Lorsqu on mets en contact un milieux poreux (papier, brique ) ou des tubes très fins (capillaires) avec un liquide, celui-ci «monte» dans le milieu des gouttes de liquide posées sur un plan horizontal ne s étalent pas, mais prennent une forme oblongue. Dans tous ces exemples, le principe fondamental de la statique est pris en défaut. Cela s explique par la présence d une force complémentaire à la surface du liquide : la force de tension superficielle. Mécanique des fluides Manuel Marcoux III - 1

2. Origine physique : L origine des forces de tension superficielle est à chercher au niveau microscopique, dans les interactions électrostatiques qui existent entre les atomes (ou molécules, ou ions ). Soit un liquide avec une surface libre au contact de l air. Une molécule à l intérieur du liquide subit de la part de ses voisines des forces d attraction (forces de Van der Waals). Son environnement étant symétrique, celles-ci se compensent, en conséquence la résultante est nulle en moyenne. A la surface ; ce n est plus le cas : la situation est alors disymétrique. Les attractions dues aux molécules du liquide sont beaucoup plus grandes que celles des molécules du gaz (moins nombreuses et plus éloignées) et tendent à faire replonger la molécule de la surface vers l intérieur. Il subsiste à la surface une résultante non nulle, dirigée vers l intérieur du liquide. Il faut donc fournir de l énergie pour amener une molécule en surface et créer ainsi l interface. A toute surface est associée une énergie supplémentaire dite énergie de tension superficielle, ou énergie interfaciale, qui est proportionnelle à la surface. Ceci explique que tout liquide tend spontanément à diminuer sa surface de contact avec le gaz (ou encore à prendre la surface minimale) de manière à minimiser son énergie interfaciale formation de gouttes ou de bulles, pour lesquelles la forme sphérique présente le plus faible rapport surface/ volume. La sphère est la surface d énergie minimale Exemple : Paille dans une bulle de savon Mécanique des fluides Manuel Marcoux III - 2

3. Définition Quand on gonfle un ballon de baudruche, on étire sa surface en lui fournissant un travail qui augmente son énergie potentielle élastique (comme pour un ressort). Cette énergie peut être récupérée sous forme de travail ou de chaleur. De la même façon, les molécules superficielles possèdent une énergie potentielle liée aux forces de cohésion du liquide (elles compriment les autres molécules du milieu). Pour accroître la surface, il faut donc apporter de l énergie, et l expérience montre qu il y a proportionnalité entre le travail à apporter dw et l augmentation da de l aire de la surface de liquide. On écrit alors simplement : dw = σ da σ est le coefficient de proportionnalité est appelé cœfficient de tension superficielle ou tout simplement tension superficielle. C est une propriété de l interface entre le liquide et le gaz. Quand l interface correspond à la surface de contact entre deux liquides non miscibles,ou entre un liquide et un solide, on définit alors de la même façon un cœfficient de proportionnalité appelé coefficeint de tension interfaciale. Conséquences : Ce travail à apporter pour augmenter l aire superficielle correspond à celui d une force F, tangent à la surface, qu il faudrait appliquer sur un une longueur L de surface pour produire la même variation da. Considérons une bulle de savon piégée sur un cadre fermé par une tige. La lame de liquide, tendue, exerce une force en cherchant à minimiser sa surface. Pour augmenter cette surface A, il faut exercer une force F qui tire le film. Mécanique des fluides Manuel Marcoux III - 3

Pour déplacer la tige de dx et augmenter la surface de L dx, il faut fournir le travail : dw = σ da, et dw = F dx soit encore la force : F = σ L. Ceci signifie inversement que la surface de liquide exerce une force de sens opposé qui s exerce sur le liquide,et en particulier sur les parois qui le limitent. Dans ce cas r F liquide (cf. fil dans un cadre métallique) r r = F avec = σ L F liquide emarque : Diviser un liquide en fines gouttelettes (pulvérisation, atomisation émulsification ) ou produire de fines bulles d air ou de gaz dans un liquide (aération, oxygénation ) revient à augmenter considérablement la surface de contact avec le milieu environnant, gaz ou liquide. Ce sont donc des opérations qui consomment de l énergie. 4. Unités La relation de définition précédente nous donne pour unité de la tension superficielle : [ σ ] [ W ] 2 [ L] [ F] [ L] 2 1 2 = = = J m = N m = kg s Exemples : Quelques valeurs sous 1 bar : emarques : On constate que la tension superficielle dépend d une part de la nature des liquides en contact, d autre part de la température (diminue quand la température augmente). (exemple : eau sur une poêle chauffée ) Mécanique des fluides Manuel Marcoux III - 4

Pour de faibles variations de température, la relation σ = σ (1 α ) offre un accord 0 σ θ satisfaisant avec les résultats expérimentaux En pratique, σ varie peu en fonction de la nature du gaz qui surmonte le liquide. La tension superficielle est très sensible aux impuretés, aussi bien dissoutes en volume, qu à la surface du liquide étudié 5. Surfaces sphériques - Loi de Laplace En un point d une surface liquide plane, les forces de tension superficielle, tangentes à la surface, s équilibrent en moyenne. Sur une surface courbe (bulle, goutte, ménisque ), ce n est plus le cas. Il apparaît une résultante des forces superficielles dirigée vers l intérieur du liquide qui donne naissance à une pression intérieur P, supérieure à la pression extérieure P. i e Il en résulte donc une surpression : Δ P = P e P. i C est cette surpression qu il faut exercer pour faire des bulles avec de l eau savonneuse (similaire à la surpression qu il faut appliquer pour gonfler une baudruche en caoutchouc) a) Cas de la goutte: Considérons une goutte de liquide, sphérique, de rayon, immobile (la pression du liquide pousse vers l extérieur, que la tension de surface contient) La goutte est à l équilibre, donc le travail des forces extérieures est compensé par le travail des forces intérieures. Mécanique des fluides Manuel Marcoux III - 5

Bilan : forces de pression : F pression = P S = ( P P ) 4π ext i 2 ds forces de tension superficielle : F tension = σ = σ 8π d Finalement, à équilibre : F r = 0 r, ce qui donne l expression de la suppression interne : Il s agit de la loi de Laplace Δ P = P ext P int = 2σ Cette surpression interne est celle qui a tendance à faire éclater la goutte, et qui est contenue et équilibrée par les forces de tension superficielle qui tendent le film de molécules de surface comme le ferait une membrane élastique b) Cas de la bulle Pour une bulle d eau savonneuse sphérique, le raisonnement est exactement le même, mais dans ce cas l eau savonneuse crée une double interface entre l air intérieur et l air extérieur de la bulle, il faut alors considérer 2 couches superficielles. La différence de pression entre l intérieur et l extérieur de la bulle devient : Δ P = P ext P int = 4σ emarque : il existe donc une discontinuité de pression à la traversée d une interface sphérique gazliquide ou liquide-liquide, la pression étant toujours plus élevée du coté concave, aussi bien pour les gouttes que pour les bulles Mécanique des fluides Manuel Marcoux III - 6

Généralisation : Dans le cas général d une surface courbe non sphérique, ayant deux rayons de courbure 2, la surpression est donnée par la formule de Laplace généralisée : 1 et 1 ΔP = σ 1 1 + 2 Le cas de la goutte sphérique correspond au cas particulier où = 1 = 2 6. Angle de raccordement - Mouillabilité Une goutte de liquide posée sur une surface plane s étale plus ou moins. Son étalement dépend de la surface du solide, du liquide, et du gaz en contact. Entre chaque couple de phases (solide, liquide et gaz) existe une tension superficielle spécifique, notées σ SL, σ LG et σ SG. Si la goutte s étale (eau ou huile sur verre propre), il y a mouillage total Ceci signifie que la situation (solide mouillé) est énergétiquement plus favorable que le contact solide-gaz, ce qui peut se traduire par σ, σ << σ Si le liquide reste en goutte (eau sur plastique, mercure), le solide n est pas recouvert et le mouillage est partiel L énergie du contact solide-gaz est plus faible que celle des 2 autres contacts : σ << σ, σ SG SL LG SL LG SG Dans le cas du mouillage partiel, la goutte reste hémisphérique, et son rayon de courbure diminue d autant que plus que le solide est mouillant vis-à-vis du liquide Mécanique des fluides Manuel Marcoux III - 7

L équilibre du mouillage partiel se traduit par un raccordement du liquide au solide le long d une ligne faisant un angle θ avec le solide tel que : σ θ = SG σ σ LG SL La valeur de cet angle renseigne donc sur la propriété de mouillabilité du solide par le liquide. Ainsi θ = 0 traduit un étalement complet du liquide et un mouillage parfait. Plus θ augmente, moins le liquide mouille la surface solide. Pour θ > 90, le liquide ne mouille plus la surface (non-mouillant) Exemples Eau ou alcool sur une surface de verre propre : θ 0, mercure sur du verre : θ = 130 emarque : Ce phénomène a une grande importance dans de nombreux domaines domestiques et industriels, pour tout ce qui concerne les opérations de nettoyage par exemple (les lessives et détergents doivent à la fois mouiller les surfaces sales et dissoudre ou disperser les impuretés. Ces produits abaissent donc les tensions superficielles ou interfaciales au sein du milieu à traiter pour ensuite pénétrer, s étaler et prendre contact avec les surfaces à la place des souillures. 7. Ascension capillaire. Loi de Jurin Au contact d une paroi verticale plongeant dans un liquide, on retrouve les 3 cas de mouillage: parfait, imparfait et pas de mouillage, avec les même angles de raccordement que sur un support horizontal. Dans le cas du mouillage parfait, le liquide remonte sur la paroi et forme un film liquide (monomoléculaire). Mécanique des fluides Manuel Marcoux III - 8

L existence d un angle de raccordement différent de 90 a pour conséquence une différence de niveau Δh entre la surface plane du liquide et la ligne du contact liquide-solide. Si on plonge maintenant deux lames parallèles dans un liquide qui les mouille parfaitement et que l on diminue progressivement leur distance e, on constate qu à partir du moment où la surface plane disparaît entre les deux lames, le niveau du liquide s élève au dessus du niveau environnant. La formation d un ménisque quasi cylindrique s accompagne de l apparition d une surpression Δ P dans le liquide, analogue à celle qui existe dans les gouttes et dans les bulles. Cette surpression est responsable de l ascension du liquide entre les plaques jusqu a une hauteur h au dessus du niveau normal. A l équilibre, deux forces se compensent : les forces de tension superficielle (longueur mouillée = 2 L ) : F = 2 Lσ le poids de liquide qui s est élevé (~parallélépipède) : P = ρ h L e g D où la hauteur d ascension : 2σ h = ρ g e Dans le cas où l angle de raccordement n est pas nul, les forces de tension font un angle α avec la verticale. La hauteur d ascension devient : 2σ cosα h = ρ g e Le même phénomène se produit lorsqu on plonge un tube de très petit diamètre intérieur ( d = 2 r ) dans un liquide qui mouille sa paroi. Mécanique des fluides Manuel Marcoux III - 9

La forme du ménisque est ici pratiquement celle d une calotte sphérique rayon. On peut alors écrire la relation : r = cosθ où θ est l angle de mouillage Entre les points E, I, A et S on peut écrire (théorème de Pascal, statique des fluides): P E PS = ρ g h et P E = PI, avec P E = PA = Patm Et d après la loi de Laplace, la surpression au niveau du ménisque est P A 2σ PS = (force ascensionnelle, fait monter le ménisque) 2σ cosθ On obtient finalement la valeur du dénivelé d eau : h = ρ g r Il s agit de la loi de Jurin : La hauteur de remontée capillaire h est proportionnelle à la tension superficielle σ du liquide et inversement proportionnelle au rayon du tube capillaire. emarques : L équilibre des forces, avec une longueur mouillée égale à 2 π r même résultat Dans le cas où le liquide ne mouille pas la paroi, l angle de raccordement est alors supérieur à 90. La relation précédente est toujours valable, mais cos θ est alors négatif, la dénivellation h est donc aussi négative abaissement de niveau Extension : La tension superficielle permet d expliquer les phénomènes d attraction et de répulsion qui apparaissent entre les corps de petite taille qui flottent à la surface d un liquide, ainsi qu entre ces corps et les parois d un récipient. L attraction a lieu lorsqu elles sont toutes le deux soit mouillées, soit non mouillées par le liquide. En revanche, si l une est mouillée, et l autre ne l est pas, elles subissent une répulsion mutuelle. Mécanique des fluides Manuel Marcoux III - 10

8. Mesure de la tension superficielle Il existe différentes méthodes pour mesurer le cœfficient σ méthode par arrachement: on mesure directement, grâce à un dynamomètre, de la force nécessaire à l arrachement d un solide de forme simple (cylindre creux, plaque ), parfaitement mouillant, plongé dans le liquide dont on veut mesurer la tension superficielle F = P + σ L, où L est la longueur mouillée σ Méthode du tube capillaire Observation de l ascension d un liquide dans un tube capillaire. Connaissant ( r, α, ρ), la mesure de h σ Nécessite l utilisation d un cathétomètre et d un microscope pour mesurer h et r avec précision Méthode des gouttes (goniomètre) Comme la tension superficielle est responsable de la formation des gouttes, l étude ces dernières permet la détermination de σ. Deux méthodes : Méthode de la goutte posée (ou goutte sessile) : une analyse d une photographie de la goutte de profil permet de mesurer θ directement, et d obtenir σ, car σ = 1 2 ρ g h 2 Mécanique des fluides Manuel Marcoux III - 11

où h est la distance entre le point de contact d un plan vertical tangent à la goutte et la surface supérieur de celle-ci Méthode de la goutte tombante (stalagnomètre) Méthode reposant sur la loi de Tate : «la masse des gouttes issues d un tube capillaire est proportionnelle à la tension superficielle m goutte = k σ où k est une constante indépendante du liquide et du rayon du tube capillaire» Mesure relative m σ = σ 0 m 0 Méthode de la pression maximale de bulle La génération de bulles dans un liquide à partir d une pression minimale profondeur z vérifie : P m dans un tube à la P m 2σ = ρ g z + m où m est le rayon maximal de la bulle avant qu elle ne s échappe du tube Mesure insensible aux impuretés de surface. Méthode des ondes de surface La célérité c des ondes de surface dépend de la longueur d onde, de la tension superficielle, de la masse volumique et de l épaisseur de la couche de liquide. Mesure de c σ Mécanique des fluides Manuel Marcoux III - 12