TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun avec Yacouba Boubacar Maïnassara Conférence Séries Temporelles, Économétrie et Finance Besançon 6 et 7 mai 2014
PLAN MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE REPRÉSENTATION ARMA(p, q) FAIBLE Un processus stationnaire au second ordre, tel que pour t Z p q X t a 0i X t i = ɛ t b 0i ɛ t j. i=1 j=1 Les paramètres a 0i, i {1,..., p} et b 0j, j {1,..., q} sont des réels, p et q sont des entiers appelés ordres. Le terme d erreur ɛ t est un bruit blanc faible i.e : une suite de v.a. centrées (Eɛ t = 0), non corrélées (Cov (ɛ t, ɛ t+h ) = 0 h, t Z, h 0), de même variance σ 2 0. MODÈLES ARMA FAIBLES ET FORTS Si on suppose le processus ɛ = (ɛ t ) est un bruit blanc fort, à savoir une suite de variables iid, alors on dit que X = (X t ) est un modèle ARMA(p, q) fort. Si on suppose simplement que ɛ est non corrélé, on dit que X admet une représentation ARMA(p, q) faible. On a la relation suivante {ARMA forts} {ARMA faibles}.
MODÈLES ARMA FAIBLES ET MOTIVATIONS CADRE D ÉTUDE INVERSIBILITÉ DE LA REPRÉSENTATION p q X t a i X t i = ɛ t b i ɛ t j. i=1 j=1 On note θ = (a 1,..., a p, b 1,..., b q) le paramètre du modèle. Forme compacte : a(l)x t = b(l)ɛ t où L est l opérateur retard défini pour t, k Z) par LX t = X t 1 et L k X t = X t k. Définissons a(z) = 1 p i=1 a i z i et b(z) = 1 q j=1 b j z j. HYPOTHÈSE (A1) : a(z)b(z) = 0 implique que z > 1. CONSÉQUENCE ɛ t (θ) = b 1 (L)a(L)X t = X t + c i (θ)x t i i=1
MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES MÉTHODES DES MOINDRES CARRÉS ORDINAIRES (MCO) Observations X 1,..., X n de longueur n. Pour 0 < t n, les variables aléatoires e t (θ) sont définies récursivement par p q e t (θ) = X t a i X t i + b j e t j (θ), où les valeurs initiales inconnues sont remplacées par zéro : e 0 (θ) = = e 1 q (θ) = X 0 = = X 1 p = 0. i=1 Un estimateur des MCO de θ 0 est défini comme toute solution, p.s., mesurable ˆθ n de Francq et Zakoïan (1998). j=1 1 Q n(ˆθ n) = min Qn(θ), où Qn(θ) = θ Θ 2n n et 2 (θ). t=1
MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES PROPRIÉTÉS ASYMPTOTIQUES DE L ESTIMATEUR DES MCO HYPOTHÈSES (A2) : Le processus (ɛ t ) est stationnaire et ergodique. (A3) : On a θ 0 Θ, où Θ désigne l intérieur de Θ. (A4) : Il existe un réel ν > 0 tel que E ( ɛ t 4+2ν) < les coefficients de mélange du processus (ɛ t ) vérifient k=0 {αɛ(k)} 2+ν ν <. Hypothèse de mélange qui nous permet de contrôler la dépendance dans le temps du processus (ɛ t ) THÉORÈME (FZ 98) Sous les hypothèses (H1) à (H4), on a n (ˆθ n θ 0 ) L N (0, Ω := J 1 IJ 1 ), où J = J(θ 0 ) et I = I(θ 0 ), avec J(θ) = lim n 2 ( ) Q n(θ) n θ θ p.s., I(θ) = lim Var n θ Qn(θ).
MODÈLES ARMA FAIBLES ET MOTIVATIONS ESTIMATION DES PARAMÈTRES Q n(θ) = 1 2n n t=1 et 2 1 (θ) et On := 2n n ɛ 2 t (θ) sont "proches" car t=1 ( n θ Qn(θ 0) ) θ On(θ 0) = o P (1). IDÉE DE LA PREUVE 0 = n Qn(ˆθ n) θ = n Qn(θ 0) θ = n On(θ 0) θ ˆθ n θ 0 = J 1 On(θ 0) θ + o P (1) + 2 Q n(θ ) θ θ n (ˆθ n θ 0 ) + o P (1) + 2 O n(θ 0 ) θ θ } {{ } J + o P (1) = J 1 1 n t=1 n (ˆθn θ 0 ) + o P (1). n ɛ t (θ 0 ) ɛ t (θ 0 ) θ } {{ } :=Y t +o P (1). (1)
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL ON VEUT TESTER POUR DES ORDRES p ET q DONNÉS H 0 : (X t ) satisfait une représentation ARMA(p, q) avec bruit blanc faible H 1 : (X t ) n admet pas une représentation ARMA ou admet une représentation ARMA(p, q ), p > p ou q > q. ENJEUX : Choisir des ordres trop grands introduction d un grand nombre de paramètres non pertinents à estimer, une perte de précision de l estimation des paramètres. Choisir des ordres trop petits perte d information détectable par une corrélation des résidus ou estimation non convergente des paramètres. AUTOCOVARIANCES EMPIRIQUES DU BRUIT DE RETARD h : Pour 0 h < n, elles sont définies par : γ(h) = 1 n ɛ t ɛ t h. n t=h+1 Les γ(h) ne sont pas des statistiques (sauf si p 0 = q 0 = 0) puisqu elles dépendent des innovations théoriques ɛ t = ɛ t (θ 0 ). Vecteurs des m (pour m 1) premières autocovariances empiriques du bruit : γ m = (γ(1),..., γ(m)).
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL AUTOCOVARIANCES ET AUTOCORRÉLATIONS RÉSIDUELLES On note ê t = e t (ˆθ n). Autocovariances résiduelles de retard h définies par ˆγ(h) = 1 n ê t ê t h pour 0 h < n. n t=h+1 Nous utilisons des vecteurs de ces autocovariances résiduelles ˆγ m = (ˆγ(1),..., ˆγ(m)) et les vecteurs des autocorrélations résiduelles ˆρ(l) = ˆγ(l)/ˆγ(0), avec γ(0) := σ 2. ˆρ m = (ˆρ(1),..., ˆρ(m)), pour m 1 et
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL STATISTIQUES DE TESTS PORTMANTEAU Statistique du test portmanteau (BP, 1970) Q BP m m = n ˆρ 2 (h) h=1 et statistique modifiée du test portmanteau (LB, 1978) Q LB m = n(n + 2) m h=1 ˆρ 2 (h) n h. DÉVELOPPEMENT DE ˆγ(m) Pour h {1,..., m}, en utilisant la fonction θ 1 n n t=h+1 ɛ t (θ) ɛ t h (θ) on obtient Ainsi où la ligne h de la matrice Φ m est φ h. ( ) ɛt (θ 0 ) ˆγ(h) = γ(h) + E θ ɛ t h (θ 0 ) (ˆθ n θ 0 ) + o P (1). } {{ } :=φ h ˆγ m = γ m + Φ m (ˆθ n θ 0 ) + o P (1), (2)
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL DISTRIBUTIONS ASYMPTOTIQUES DES AUTOCOVARIANCES ET AUTOCORRÉLATIONS RÉSIDUELLES (FRZ05) Supposons p > 0 ou q > 0. Sous les hypothèses (A1) à (A4), quand n, nous avons n ˆγm N ( ) 0, Σˆγm et n ˆρm N ( ) 0, Σ ˆρm où, Σˆγm = Σ γm + Φ mσ ˆθn Φ m + ΦmΣ ˆθn,γ m + Σ ˆθn,γ Φ m m Σ ˆρm = Σˆγm /σ 4 où les matrices Σ γm, Σ ˆθn et Σ ˆθ proviennent de la distribution asymptotique jointe de n,γ m l estimateur MCO et des autocovariances empiriques du bruit.
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL THÉORÈME : (COMPORTEMENT ASYMPTOTIQUE DES STATISTIQUES DES TESTS PORTMANTEAU) Sous les précédentes, les statistiques Qm BP et Qm LB convergent en distribution, quand n, vers Z m(ξ m) = m i=1 ξ i,m Z 2 i où ξ m = (ξ 1,m,..., ξ m,m) est un vecteur des valeurs propres de la matrice Σ ˆρm = Σˆγm /σ 4, et Z 1,..., Z m sont des variables indépendantes de loi N (0, 1). ESTIMATION DE Σˆρm Dans la littérature économique, il existe (principalement) deux méthodes La méthode d estimation non paramétrique du noyau aussi appelée HAC (Heteroscedasticity and Autocorrelation Consistent). La méthode d estimation paramétrique de la densité spectrale.
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE GÉNÉRAL DESCRIPTION DU TEST Pour un niveau asymptotique α, le test portmanteau de LB (resp. de BP) consiste à rejeter l adéquation de modèle ARMA(p, q) faible quand où S 1 α m ( est telle que P Q LB m > Sm 1 α (resp. Qm BP > Sm 1 α ) ) Z m(ˆξ m) > S 1 α m = α. ˆξ m = (ˆξ 1,m,..., ˆξ m,m) le vecteur des valeurs propres de ˆΣ ˆρm. Z m(ˆξ m) sera évaluer grâce à l algorithme d Imhof (1961). BUT : Trouver une loi qui ne dépend pas (d un ou) des paramètres inconnus.
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION IDÉE On va "plus loin" dans le développement de ˆγ m donné par (2) : ˆγ m = γ m + Φ m (ˆθ n θ 0 ) + o P (1). On injecte le développement de ˆθ n ˆθ 0 donné par (1) : n ˆθ n θ 0 = J 1 1 n t=1 ɛ t (θ 0 ) ɛ t (θ 0 ) θ } {{ } :=Y t +o P (1), et on obtient avec n ˆγm = 1 n ΓU t + o P (1), ( U t = ɛ t (θ 0 ) ɛ ) t (θ 0 ), ɛ t ɛ t 1,..., ɛ t ɛ t m R p+q+m θ et Γ la matrice bloc de R m (p+q+m) définie par ) Γ = ( Φ mj 1 I m, où I m est la matrice identité d ordre m.
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION Il existe Ξ = ΥΥ avec Υ triangulaire inférieure avec des termes diagonaux strictement positifs telles que 1 n d U t N (0, Ξ). n n t=1 THÉORÈME LIMITE CENTRAL Avec ΓΞΓ = (ΓΥ)(ΓΥ) := ΨΨ, 1 n n d ΓU t N (0, n ΨΨ ). t=1 THÉORÈME LIMITE CENTRAL FONCTIONNEL nr 1 ΓU j n j=1 où (B m(r)) r 0 est un brownien m-dimensionnel. D m n ΨBm(r) CONSÉQUENCE DU "CONTINUOUS MAPPING THEOREM" (I) nr ( ) 1 Γ U j 1 n D U i m n n Ψ( B n m(r) rb ) m(1). j=1 i=1
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION ( ) On rappelle que U t = ɛ t (θ 0 ) ɛ t (θ 0 ), ɛ θ t ɛ t 1,..., ɛ t ɛ t m et on note ( t S t = Γ U j 1 n U i ). n j=1 i=1 C m = 1 n n 2 S t S t. t=1 CONSÉQUENCE DU "CONTINUOUS MAPPING THEOREM" (II) ( ) 1 d C m Ψ (B n m(r) rb m(1)) (B m(r) rb m(1)) dr Ψ. 0 } {{ } :=V m AUTO-NORMALISATION n ˆγ m C 1 m ˆγ m = 1 n n t=1 d n ( ) (ΓU t ) Cm 1 (ΓU t ) + o P (1) ( (ΨBm(1)) ΨV mψ ) 1 (ΨBm(1)) = B m 1 (1)Vm B m(1) := U m. La loi de la variable aléatoire U m est obtenue par simulation (Voir Lobato (JASA 2001)).
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES PRINCIPE DE L AUTO-NORMALISATION TABLE DES QUANTILES DE LA VARIABLE ALÉATOIRE U m TABLE: Upper Critical Values of the Distribution of U m. m\α 90 95 97.5 99 99.5 1 28.43 45.73 66.57 100.02 129.26 2 70.68 102.94 138.85 194.00 239.47 3 126.58 174.62 227.21 304.16 370.03 4 194.23 258.68 330.13 429.21 510.05 5 274.32 357.02 444.63 566.13 665.13 6 365.09 466.60 571.74 717.55 836.68 10 838.06 1023.06 1205.85 1462.63 1654.02 20 2734.79 3161.32 3572.52 4122.45 4541.10 22 3232.17 3707.30 4176.87 4782.44 5243.65 23 3499.66 4011.67 4516.08 5157.49 5646.50 24 3772.57 4313.92 4835.70 5491.94 5990.39 36 7789.22 8710.34 9587.04 10701.47 11566.64 48 13126.85 14515.20 15754.06 17328.84 18466.33
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU Posons Ĉm = 1 n n 2 Ŝ t Ŝ t t=1 Statistique modifiée du test portmanteau (BP) Q SN m = n ˆσ4 ˆρ mĉ 1 m ˆρ m et la statistique modifiée du test portmanteau (LB) Q SN m = n(n + 2) ˆσ4 ˆρ m Dn,mĈ 1 m ˆρ m où la matrice diagonale D n,m a pour entrée (1/(n 1),..., 1/(n m)). THÉORÈME : (COMPORTEMENT ASYMPTOTIQUE DES STATISTIQUES MODIFIÉES DES TESTS PORTMANTEAU) Sous les hypothèses (A1) à (A4), les statistiques Qm SN et Q SN m convergent en distribution, quand n, vers la variable aléatoire U m = B m(1)v m 1 B m(1) où V m = 1 0 (Bm(r) rbm(1)) (Bm(r) rbm(1)) dr.
TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES STATISTIQUES MODIFIÉES DE TESTS PORTMANTEAU ( ) On rappelle que U t = ɛ t (θ 0 ) ɛ t (θ 0 ), ɛ θ t ɛ t 1,..., ɛ t ɛ t m R m+p+q et on note ( t St = U j 1 n U i ). n j=1 i=1 Cm+p+q = 1 n S n 2 t S t. REMARQUE t=1 ( ) 1 d Cm+p+q Ψ (B n m+p+q(r) rb m+p+q(1)) (B m+p+q(r) rb m+p+q(1)) dr Ψ. 0 } {{ } :=V m+p+q COMPORTEMENT ASYMPTOTIQUE DE (ˆθ n, ˆγ m ) Sous les hypothèses (A1) à (A4), quand n, nous avons 1 n(ˆθ n θ 0, γ m) C m+p+q (ˆθ n θ 0, γ m) d Um+p+q où U m+p+q := B m+p+q(1)v 1 m+p+q Bm+p+q(1).
ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : BRUIT FORT Considérons le modèle ARMA(1,1) suivant X t = ax t 1 + ɛ t + bɛ t 1, où ɛ t = η t 1 + α 1 ɛ 2 t 1 et (η t ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of above strong ARMA model with the parameter θ 0 = (0,0) and α 1 = 0. The nominal asymptotic level of the tests is α = 5%. m = 2 m = 3 m = 4 Length n 100 300 1, 000 100 300 1, 000 100 300 1, 000 BPSN 4.4 5.6 3.7 3.9 6.1 3.2 3.8 6.3 3.9 BPFRZ 3.2 4.2 4.7 2.5 4.0 4.3 2.3 4.3 4.8 BP S 4.2 4.5 4.7 3.0 5.2 4.2 3.2 5.3 5.0 m = 6 m = 10 m = 18 Length n 100 300 1, 000 100 300 1, 000 100 300 1, 000 BPSN 3.5 5.6 5.2 2.3 5.4 6.1 1.3 3.0 6.1 BPFRZ 1.7 4.3 4.8 1.7 4.1 4.3 1.6 3.5 4.8 BP S 3.4 5.7 4.8 3.8 5.5 4.7 3.3 4.9 5.0
ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : ARMA FORT Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of the above strong ARMA(1,1) model with the parameter θ 0 = (0.95, 0.6) and α 1 = 0. The nominal asymptotic level of the tests is α = 5%. m = 1 m = 2 m = 3 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 5.0 5.2 5.7 5.4 4.2 3.9 BP FRZ 5.3 4.8 5.5 4.9 3.3 3.3 BP S n.a. n.a. n.a. n.a. 15.0 13.5 m = 6 m = 12 m = 18 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 7.0 5.7 6.2 5.8 4.7 6.5 BP FRZ 2.2 1.7 1.9 1.3 2.4 1.7 BP S 7.8 7.5 6.9 5.6 6.4 6.5
ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : BRUIT FAIBLE Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the above weak ARMA(0,0) model with the parameter θ 0 = (0,0) and α 1 = 0.4. The nominal asymptotic level of the tests is α = 5%. m = 2 m = 3 m = 4 Length n 300 1, 000 300 1, 000 300 1, 000 BP SN 5.1 3.9 3.4 4.5 4.0 4.4 BPFRZ 3.1 4.0 2.5 3.9 3.1 4.0 BP S 18.8 19.4 17.5 20.0 15.6 18.7 m = 6 m = 12 m = 18 Length n 300 1, 000 300 1, 000 300 1, 000 BP SN 4.3 4.4 1.9 4.7 1.1 4.7 BPFRZ 2.3 3.8 2.3 2.0 1.4 3.2 BP S 13.8 16.0 10.8 13.4 9.7 12.3
ILLUSTRATIONS NUMÉRIQUES APPLICATION NUMÉRIQUE ARMA (1,1) RÉSULTAT EMPIRIQUE DES TESTS PORTMANTEAU : ARMA FAIBLE Modèle ARMA(1,1) : X t = ax t 1 + ɛ t + bɛ t 1 où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). TABLE: Empirical size (in %) of the standard and modified versions of the BP test in the case of the above weak ARMA(1,1) model with the parameter θ 0 = (0.95, 0.6) and α 1 = 0.4. The nominal asymptotic level of the tests is α = 5%. m = 1 m = 2 m = 3 Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000 BPSN 4.5 4.7 5.0 4.8 3.8 2.9 BP FRZ 4.3 4.8 3.8 4.7 2.1 2.7 BP S n.a. n.a. n.a. n.a. 25.4 26.7 m = 6 m = 12 m = 18 Length n 1, 000 2, 000 1, 000 2, 000 1, 000 2, 000 BPSN 6.2 5.6 5.3 3.8 3.5 4.6 BP FRZ 1.2 1.0 0.7 0.6 0.6 0.6 BP S 13.3 15.0 9.0 10.6 7.2 8.9
ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PUISSANCE EMPIRIQUE DES TESTS PORTMANTEAU : CAS FORT Les observations sont générées par le modèle ARMA(2,1) : X t = X t 1 0.2X t 2 + ɛ t + 0.8ɛ t 1, où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). On teste si le modèle est un ARMA(1,1). TABLE: Empirical power (in %) of the standard and modified versions of the BP test for the above weak ARMA(2,1) model and α 1 = 0. m = 1 m = 2 m = 3 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 77.0 95.0 65.8 88.5 46.2 73.8 BPFRZ 95.3 99.6 92.2 99.0 65.9 76.4 BP S n.a. n.a. n.a. n.a. 95.3 99.9 m = 4 m = 6 m = 10 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 53.5 81.8 48.3 77.3 38.9 73.5 BPFRZ 71.6 88.0 68.0 91.3 55.8 87.1 BP S 90.1 99.7 87.6 99.4 81.6 98.6
ILLUSTRATIONS NUMÉRIQUES PUISSANCE EMPIRIQUE, ARMA(2,1) PUISSANCE EMPIRIQUE DES TESTS PORTMANTEAU : CAS FAIBLE Les observations sont générées par le modèle ARMA(2,1) : X t = X t 1 0.2X t 2 + ɛ t + 0.8ɛ t 1, où ɛ t = η t ( 1 + α1 ɛ 2 t 1) 1/2 et (ηt ) est une suite i.i.d. de loi N (0,1). On teste si le modèle est un ARMA(1,1). TABLE: Empirical power (in %) of the standard and modified versions of the BP test for the above weak ARMA(2,1) model and α 1 = 0.4. m = 1 m = 2 m = 3 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 60.5 84.4 49.1 72.9 29.9 56.1 BPFRZ 81.8 97.5 74.8 94.9 29.4 59.3 BP S n.a. n.a. n.a. n.a. 91.0 99.5 m = 4 m = 6 m = 10 Length n 500 1, 000 500 1, 000 500 1, 000 BPSN 35.4 63.7 27.5 54.5 22.4 49.1 BPFRZ 42.9 77.4 45.1 81.9 35.3 74.8 BP S 84.2 98.4 81.5 97.5 74.2 95.5
ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS RENDEMENT CAC40 TABLE: α = 5% Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40 returns is a white noise (α = 5%). Lag m 2 3 4 5 10 18 24 p BP SN 0.24178 0.27574 0.18250 0.22440 0.43814 0.90674 0.98519 p BP FRZ 0.29725 0.03491 0.03810 0.00916 0.02100 0.17544 0.24482 p BP S 0.08684 0.00023 0.00000 0.00000 0.00000 0.00000 0.00000 CONCLUSION Cette série n est donc pas issue d un bruit blanc fort mais pourrait provenir d un bruit blanc faible.
ILLUSTRATIONS NUMÉRIQUES DONNÉES RÉELLES-INDICES BOURSIERS CARRÉ DU RENDEMENT DU CAC40 TABLE: Standard and modified versions of portmanteau tests to check the null hypothesis that the CAC40 squared returns follow an ARMA(1,1) model (α = 5%). Lag m 1 2 3 4 5 6 7 p BP p BP p BP SN 0.30061 0.45998 0.66183 0.84391 0.93822 0.97709 0.98991 FRZ 0.11789 0.18310 0.34218 0.48687 0.29368 0.36159 0.38899 S n.a. n.a. 0.00033 0.00155 0.00000 0.00000 0.00000 Lag m 8 9 10 12 18 20 24 p BP p BP p BP SN 0.99600 0.99897 0.99278 0.99679 0.99987 0.99999 0.99995 FRZ 0.33821 0.40250 0.33892 0.39191 0.48829 0.45635 0.45503 S 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 CONCLUSION L hypothèse d un modèle ARMA(1;1) fort est rejetée ; L hypothèse d un modèle ARMA(1;1) faible n est pas rejetée. On obtient le modèle X t = 0.98262X t 1 + ɛ t 0.89978ɛ t 1, avec Var(ɛ t ) = 26.66141 10 8, compatible avec la modélisation par un GARCH(1,1).
ILLUSTRATIONS NUMÉRIQUES CONCLUSION PLAN DE L EXPOSÉ MODÈLES ARMA FAIBLES ET MOTIVATIONS Cadre d étude Estimation des paramètres TESTS D ADÉQUATION DE MODÈLES ARMA FAIBLES Principe général Principe de l auto-normalisation Statistiques modifiées de tests portmanteau ILLUSTRATIONS NUMÉRIQUES Application numérique ARMA (1,1) Puissance empirique, ARMA(2,1) Données réelles-indices boursiers Conclusion
ILLUSTRATIONS NUMÉRIQUES CONCLUSION CONCLUSION Les versions modifiées des tests portmanteau sont plus faciles à implémenter que celles existantes dans la littérature car leurs valeurs critiques ne sont plus calculées à partir des données. Confirmation de la non validité des versions standards en présence de dépendance temporelle. Les résultats numériques confirment bien qu en présence ou non de dépendance temporelle, les tests proposés donnent des résultats très satisfaisants.
ILLUSTRATIONS NUMÉRIQUES CONCLUSION Merci de votre attention