Les points de Lagrange

Documents pareils
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

La gravitation universelle

3 - Description et orbite d'un satellite d'observation

TS Physique Satellite à la recherche de sa planète Exercice résolu

Chapitre 2 : Caractéristiques du mouvement d un solide

Sur les vols en formation.

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

La révolution des satellites de Jupiter

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

PHYSIQUE Discipline fondamentale

Seconde Sciences Physiques et Chimiques Activité ère Partie : L Univers Chapitre 1 Correction. Où sommes-nous?

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Chapitre 7 - Relativité du mouvement

Activité 34 Du bateau à la fusée

COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

TD 9 Problème à deux corps

Baccalauréat ES Amérique du Nord 4 juin 2008

Cours IV Mise en orbite

Le Soleil. Structure, données astronomiques, insolation.

Chapitre 0 Introduction à la cinématique

TP 03 B : Mesure d une vitesse par effet Doppler

Le satellite Gaia en mission d exploration

MATIE RE DU COURS DE PHYSIQUE

Quantité de mouvement et moment cinétique

COMMENT ALLER D'UNE PLANETE A, A UNE PLANETE B DANS UN SYSTEME SOLAIRE?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Cours Fonctions de deux variables

Repérage d un point - Vitesse et

COMMENT RÉUSSIR SON RENDEZ VOUS ORBITAL ET SE DOCKER?

Michel Henry Nicolas Delorme

Chapitre 1 Cinématique du point matériel

Chapitre 4 : Guide de Mouvement et Masque

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)

FUSION PAR CONFINEMENT MAGNÉTIQUE

LES DÉTERMINANTS DE MATRICES

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

OPTIMISATION À UNE VARIABLE

La notion de temps. par Jean Kovalevsky, membre de l'institut *

RÈGLEMENT INTÉRIEUR DE LA SAML ÉDITION DU 1er SEPTEMBRE 2013

Le Système solaire est-il stable?

Oscillations libres des systèmes à deux degrés de liberté

6. Les différents types de démonstrations

modélisation solide et dessin technique

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Cours d Analyse. Fonctions de plusieurs variables

La Mesure du Temps. et Temps Solaire Moyen H m.

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Présentation d un télescope, de ses composants et de quelques consignes d utilisation

Correction du Baccalauréat S Amérique du Nord mai 2007

Cours de Mécanique du point matériel

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Calcul intégral élémentaire en plusieurs variables

III. Transformation des vitesses

I- Les différents champs selon les télescopes utilisés. II- Application à l'observation des astéroïdes: leur détection et leur identification

TABLE DES MATIÈRES. Volume 9

Chapitre 1 Régime transitoire dans les systèmes physiques

Comprendre l Univers grâce aux messages de la lumière

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Travaux dirigés de mécanique du point

Les mesures à l'inclinomètre

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Hassen Ghalila Université Virtuelle de Tunis

1S Modèles de rédaction Enoncés

TOUT CE QUE VOUS AVEZ VOULU SAVOIR SUR MERCURE

La magnitude des étoiles

L'équilibre général des échanges

La vie des étoiles. La vie des étoiles. Mardi 7 août

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

DYNAMIQUE DE FORMATION DES ÉTOILES

À TOI DE JOUER! VIVRE EN FRANCE L EXPLORATION DE L ESPACE. 1. Observez ces documents et cochez la bonne réponse.

L'insertion professionnelle des diplômés DNSEP 2003 trois ans après le diplôme

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

3 Approximation de solutions d équations

Chapitre 2/ La fonction de consommation et la fonction d épargne

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

Epilepsies : Parents, enseignants, comment accompagner l enfant pour éviter l échec scolaire?

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Le second nuage : questions autour de la lumière

OM 1 Outils mathématiques : fonction de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

Lumière zodiacale et nuage zodiacal

Analyse de la vidéo. Chapitre La modélisation pour le suivi d objet. 10 mars Chapitre La modélisation d objet 1 / 57

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Angles orientés et trigonométrie

METEOROLOGIE CAEA 1990

Transcription:

Les points de Lagrange résumé 1 Rappels Les points de Lagrange Commençons par les 3 lois du mouvement de Newton : 1 ere loi du mouvement de Newton ou principe d'inertie : en l'absence d'application de toute force F, un objet M de masse m reste au repos ou en mouvement rectiligne uniforme (à vitesse constante) eme loi du mouvement de Newton ou Relation Fondamentale de la Dynamique (RFD) bien connue de nos manuels scolaires : F=m a où a est le vecteur accélération résultant de la dérivée seconde par rapport au temps du vecteur position r, soit a= d r. Cette relation dt n'est applicable que dans un repère galiléen : un moyen de contrôler le caractère galiléen d'un repère est de vérifier que les mouvements y obéissent bien à la RFD. Un repère est galiléen (ou inertiel) lorsqu'il est au repos ou en mouvement rectiligne uniforme par rapport à un autre repère galiléen : tous les corps célestes étant animés d'un mouvement de rotation, il n'existe donc pas de véritable repère galiléen mais seulement des repères galiléens approchés. Le repère galiléen utilisé pour l'étude du problème des corps est un repère orthonormé accroché sur leur centre de masse C. 3 eme loi du mouvement de Newton ou principe de l'action-réaction : si un système A exerce une force F sur un système B alors le système B exerce une force F sur le système A. Enchaînons par la loi de la gravitation universelle également énoncée par Newton et qui exprime la force qu'exerce un corps sur un corps M : F 1 = G m r u 1 où G est la constante de gravitation universelle, r la distance séparant les deux corps de masses respectives et m et u 1 le vecteur unité radial (dirigé de 1 vers ) : Force d attraction gravitationnelle F Et terminons par les lois de Kepler énoncées dans le cadre du problème des corps et M (voir figure suivante) : 1 ere loi de Kepler : les corps décrivent des ellipses dont l'un des foyer est leur centre de masse C eme loi de Kepler ou loi des aires : le rayon vecteur qui joint le centre d'un corps au centre de masse C balaie des aires égales en des temps égaux 3 eme loi de Kepler : le carré de la durée de révolution T r est proportionnel au cube du demi-grand axe a avec a=a 1 a, soit T r = a3 où = 1 =G G m, µ 1 et µ étant les coefficients gravitationnels respectifs des corps et M.

Les points de Lagrange résumé y. Ellipse de demi-grand axe a1, de foyer C et période Tr M1 C M x. a 1 = m a T r = a 1 a 3 G m Ellipse de demi-grand axe a, de foyer C et période Tr Orbites Képleriennes Le problème restreint des 3 corps Considérons pour commencer un système à corps et M de masses respectives et m. Nous avons déjà démontré que ces corps décrivent une ellipse autour de leur centre de masse C conformément aux lois de Kepler avec la période de révolution T r définie précédemment. Ajoutons maintenant un troisième corps M 3 : il est clair que ce nouveau corps va exercer une force d'attraction gravitationnelle sur chacun des corps et M, et venir ainsi perturber la belle mécanique céleste qui n'obéira plus aux lois simples énoncées dans le cadre du problème des corps. Pour s'en sortir il va falloir faire des hypothèses simplificatrices. Une de ces hypothèses est que le corps M 3 possède une masse m 3 suffisamment faible pour que le mouvement des corps et M continue de suivre les lois définies pour un système à corps, d'où le terme de problème restreint des 3 corps. La deuxième hypothèse est que et M suivent des orbites circulaires, donc tournent autour de C à une vitesse angulaire constante ω. A partir de là, nous allons chercher les solutions statiques dans le repère tournant à la vitesse ω ou points de Lagrange, c'est à dire les solutions dont la position est invariante par rapport aux corps principaux. L'étude mathématique montre que les points de Lagrange sont les 5 points du plan orbital pour lesquels la force centrifuge compense la force d'attraction gravitationnelle combinée des corps et M. Position des points L 1, L et L 3 Considérons d'abord le cas correspondant aux points d'équilibre placés sur la droite reliant les corps et M. La recherche de ces solutions d'équilibre conduit à la détermination de la position des points de Lagrange L 1, L et L 3, qui sont placés respectivement entre et M, au-delà de M et au-delà de. La position exacte de ces 3 points dépend du rapport de masse m /.

Les points de Lagrange résumé 3 M -1 L 0 L 1 3 1 L m 0 m 0 m 0 Position des points de Lagrange L 1, L et L 3 L 3 L L 1 M -1 0 1 x. Ω Cas particulier d'un système planétaire, m / #0 Dans le cas Terre/Soleil le rapport m / est égal à 1/33946 : L 3 se situe à 149,6 millions de kilomètres de l'autre côté du Soleil à l'opposé de la Terre L 1 se situe à 1,51 millions de kilomètres de la Terre dans la direction du Soleil. L'observatoire solaire SOHO est placé en L 1. L se situe à 1,49 millions de kilomètres de la Terre dans la direction opposée au Soleil. Les projets d'observatoires astronomiques MAP (Microwave Anisotropy Probe) et NGST (Next Generation Space Telescope) sont prévus en L. Position des points L 4 et L 5 La recherche des solutions d'équilibre en dehors de l'axe reliant et M conduit à la détermination de la position des points de Lagrange L 4 et L 5. La position de ces points ne dépend pas du rapport de masse m /. Ils sont placés symétriquement de part et d'autre de l'axe reliant les corps et M, chacun d'entre eux formant avec et M un triangle équilatéral : y Ω 3. x x 1 L 4 π/3 π/3 M x 1 C x 1 x x x. Ω 3 x x 1 L 5 Position des points de Lagrange L 4 et L 5

Les points de Lagrange résumé 4 Stabilité des points de Lagrange L'étude de la stabilité des points de Lagrange consiste à examiner les conséquences de petits mouvements autour des points L 1 à L 5 : si le corps M 3 rejoint alors naturellement le point de Lagrange considéré, celui-ci est stable ; dans le cas contraire il est instable, il n'est alors pas possible pour un objet céleste d'y rester naturellement (un véhicule spatial ne pourra y stationner durablement qu'en utilisant un propulseur). L'examen de l'orientation du champ de force gravitationnel est déjà un indicateur précieux : le champ de force en L 1, L et L 3 a tendance à éloigner les corps de leur position d'équilibre selon l'axe reliant et M et à les maintenir dans leur position d'équilibre selon l'axe perpendiculaire à la ligne reliant et M (potentiel en forme de selle de cheval), on peut donc conclure intuitivement qu'un objet dérivant légèrement de la position d'équilibre s'en éloignera irrémédiablement et que ces 3 points sont donc instables ; le champ de force en L 4 et L 5 a tendance à éloigner les corps de leur position d'équilibre dans toutes les directions et ces points ne devraient pas être stables, cependant l'étude mathématique montre le contraire à la condition que le rapport de masse m / reste inférieur à 1/5 environ... ceci grâce à la force de Coriolis. Les figures suivantes indiquent l'orientation du champ de force gravitationnel autour des 5 points de Lagrange : L 1à3 L 4/5 Orientation du champ de force autour des points de Lagrange L'étude mathématique de la stabilité des points L 1, L et L 3 conclut à leur instabilité : la moindre dérive initiale depuis la position d'équilibre se traduira par une croissance exponentielle de cette dérive de sorte qu'un objet ne peut y être maintenu qu'artificiellement ; aucune chance donc d'y trouver le moindre astéroïde, sauf de façon temporaire. La vitesse de cette dérive exponentielle e t / dépend de la vitesse de rotation ω des corps principaux et de leur rapport de masse µ r : pour le couple Terre-Soleil, la constante de temps τ est approximativement égale à 3 jours pour L 1 et L, et à 57 ans pour L 3. Le propulseur de l'observatoire européen SOHO placé en L 1 est allumé toutes les 8 semaines environ pour corriger cette dérive. L'étude mathématique de la stabilité des points L 4 et L 5 indique que ce sont des points de libration (autour desquels les corps décrivent des mouvements périodiques) et conclut à leur stabilité tant que le rapport de masse m / vérifie la relation r 5 3 69 ou r 5 3 69 Cette condition est largement vérifiée pour toutes les planètes du système solaire par rapport au Soleil ainsi que pour tous les satellites des planètes du système solaire par rapport à leur planète. Il est donc au premier ordre tout à fait possible de trouver des corps célestes en L 4 et L 5 : c'est le cas des planètes troyennes que l'on trouve sur l'orbite de Jupiter à 60 en aval et en amont de la planète géante, et c'est d'ailleurs, avec les astéroïdes troyens de Mars et le troyen de Neptune découvert en 001, le seul exemple de ce type connu dans le système solaire (Achille et Hector furent respectivement les premiers à être découverts en 1906 et 1907, soit près de 130 ans après les prédictions de Joseph Lagrange ; les premiers troyens martiens furent découverts en 1990). Les planètes troyennes oscillent avec des périodes longues autour des points L 4 et L 5 : en effet, un objet situé initialement en L 4 ou L 5 va s'en éloigner sous l'action du gradient de potentiel, prendre de

Les points de Lagrange résumé 5 la vitesse et subir l'action de la force de Coriolis pour voir sa trajectoire s'enrouler et décrire une orbite le plus souvent complexe autour du point de Lagrange. La recherche des mouvements périodiques autour de L 4 et L 5 donne un mouvement vertical (selon l'axe z) avec une période égale à la période de rotation T r des corps principaux (la période de ce mouvement vertical stable est différente de T r pour L 1, L et L 3 ) et un mouvement dans le plan (x,y) résultant de la combinaison de deux orbites elliptiques de période courte (épicycle) et de période longue (libration) dont 3 l'excentricité est respectivement au premier ordre égale à et 1 3 r. Planète Rapport de masse µ r Période de révolution T r Vitesse angulaire ω Troyens période courte Troyens période longue Mercure 1 / 6 03 000 87,969 j 8,67 10-7 rad/s 87,969 j 7 a 185 j Vénus 1 / 407 700 4,7 j 3,194 10-7 rad/s 4,7 j 151 a 70 j Terre 1 / 33 946 365,5 j (1 a) 1,991 10-7 rad/s 1 a a 33 j Mars 1 / 3 098 710 1 a 31 j 1,060 10-7 rad/s 1 a 31 j 1 73 a j Jupiter 1 / 1 047 11 a 38 j 1,679 10-8 rad/s 11 a 38 j 147 a 134 j Saturne 1 / 3 498 9 a 177 j 6,759 10-9 rad/s 9 a 177 j 670 a 45 j Uranus 1 / 869 84 a 1 j,370 10-9 rad/s 84 a 1 j 4 889 a 349 j Neptune 1 / 19 314 164 a 91 j 1,08 10-9 rad/s 164 a 91 j 8 81 a 189 j Périodes courte et longue des astéroïdes troyens pour le système solaire Ces orbites elliptiques élémentaires sont parcourues dans le sens opposé au sens de rotation des corps principaux : si les corps et M tournent autour de leur centre de masse C dans le sens trigonométrique alors les objets en L 4 et L 5 orbitent sur les ellipses élémentaires dans le sens horaire, sous l'action de la force de Coriolis. Autre caractéristique remarquable : les demi-grands axes des ellipses ont exactement la même orientation (même azimut). y,y Ω L 4 libration épicycle M C x,x. Ω L 5 Mouvement composé autour des points L 4 et L 5

Les points de Lagrange résumé 6 Ellipse de période courte (épicycle) autour de L 4 pour µ r =0,01 Excentricité de 0,8698 environ Ellipse de période longue (libration) autour de L 4 pour µ r =0,01 Excentricité de 0,9845 environ Excentricité des ellipses élémentaires

Les points de Lagrange résumé 7 Azimut du demi-grand axe des ellipses élémentaires pour L 4 (azimut identique pour les types d'ellipse) par Didier Levavasseur le 19 juin 004 Trajectoire de libration autour de L 4 pour µ r =0,01 Conditions initiales x 0 =100 m, y 0 =100 m, x 0 =0, y 0 =0