FORMATION HADOOP Administrateur pour Hadoop (Apache)
|
|
|
- Nathalie Cantin
- il y a 9 ans
- Total affichages :
Transcription
1 FORMATION HADOOP Administrateur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.
2 Sommaire I. OBJECTIFS... 3 II. PUBLIC CONCERNE... 3 III. PRE-REQUIS... 3 IV. CONDITIONS GENERALES... 3 V. CONTENU DE LA FORMATION... 3 Introduction... 3 HDFS... 4 Alimenter un cluster Hadoop... 4 MapReduce... 4 Installation et configuration d un cluster... 5 Ecosystème Hadoop... 5 Sécurité - Hadoop... 5 Ordonnancement des jobs... 6 Tâches courantes... 6 Initiation à Hbase... 6 Conclusion
3 I. Objectifs Encadrée par un formateur qualifié, cette formation vous permettra d exploiter et de gérer un cluster Hadoop. De l installation à la configuration en passant par l optimisation, toutes les étapes seront traitées pour que vous soyez apte à administrer Hadoop. Les thématiques abordées seront les suivantes : Le système de fichiers distribués HDFS et l algorithme MapReduce Bâtir une architecture Hadoop Déployer et configurer Hadoop, choix de l infrastructure Comment alimenter un cluster Hadoop L optimisation des configurations et les techniques d améliorations des performances Diagnostic, problèmes et résolutions Initiation à Hbase Préparation à la certification Cloudera II. Public concerné Cette formation convient aux administrateurs système qui ont déjà une expérience avec Linux. III. Pré-requis Connaissances en système d exploitation Linux. IV. Conditions Générales Formation Référence Durée Tarif Administrateur pour Hadoop (Apache) HADADM1 4 jours (32 heures) A partir de H.T. / personne V. Contenu de la formation Introduction Tour d horizon de Hadoop, cette introduction revient sur les origines du projet et détaille les problématiques «Big Data» auxquelles les entreprises sont confrontées. A l issue de ce module le stagiaire a une vision claire des tenants et aboutissants du projet Hadoop. 3
4 Enjeux et limites des systèmes actuels Quels besoins? Approche «Big Data» HDFS Ce module présente le système de fichiers interne de Hadoop. A la fin de ce module, le stagiaire possède les connaissances nécessaires pour comprendre et utiliser un environnement HDFS. Fonctionnalités HDFS Ecriture/Lecture Namenode, clé de voute Sécurité Exercices : «Premiers pas» Alimenter un cluster Hadoop Comprendre les enjeux et les techniques d alimentation. Le stagiaire intégrera des données provenant de sources extérieures via Flume et depuis des SGBDR via Sqoop. Best practices Intégration au fil de l eau via Flume Intégration depuis SGBDR via Sqoop MapReduce Ce module présente le mécanisme de traitement de Hadoop. A la fin de ce module, le stagiaire possède les connaissances nécessaires pour comprendre et utiliser un environnement MapReduce. 4
5 Introduction Fonctionnalités MapReduce JobTracker et MapReduce v2 Exercices : «Configuration MapReduce» Installation et configuration d un cluster Ce module permet de découvrir les processus d installation et de configuration de cluster Hadoop. A la fin de ce module, le stagiaire peut installer et configurer un environnement complet. Techniques de déploiement Installation Configuration HDFS et MapReduce Exercices : «Déployer un cluster Hadoop» Ecosystème Hadoop Présentation des différents projets gravitant autour de Hadoop. Ce module se consacre sur l installation et la configuration des produits Hive, Pig et Impala Installation et configuration Exercices : Déployer des services supplémentaires» Sécurité - Hadoop Ce module présente les différents aspects pour permettre de sécuriser un environnement Hadoop au travers Kerberos. Il permet de comprendre les enjeux et les moyens disponibles pour sécuriser Hadoop. 5
6 Introduction Présentation Kerberos Sécurisation avec Kerberos Ordonnancement des jobs Nous verrons les différentes politiques d ordonnancement des jobs. De manière plus globale, nous verrons comment faire gérer l allocation MapReduce pour plusieurs équipes au sein d un même cluster. Politiques d ordonnancement Capacity Scheduler et Fair Scheduler Exercices : «Configurer une politique d ordonnancement» Tâches courantes Maitriser les opérations de maintenance Ce module débute avec une présentation des commandes essentielles d exploitation du cluster. La seconde partie du module sera consacrée au diagnostic et à la résolution des erreurs et problèmes que l on peut rencontrer sur un cluster. Commandes essentielles Diagnostic et résolution d anomalies Maintenance Initiation à Hbase - Architecture Globale - Système Hbase ( Master et région serveur) - Modélisation de la rowkey orientée performance Conclusion 6
Big Data Concepts et mise en oeuvre de Hadoop
Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12
Déploiement d une architecture Hadoop pour analyse de flux. franç[email protected]
Déploiement d une architecture Hadoop pour analyse de flux franç[email protected] 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les
Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop
Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
Offre formation Big Data Analytics
Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une
Labs Hadoop Février 2013
SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL
L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
Les journées SQL Server 2013
Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne
API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture
API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant
Fouillez facilement dans votre système Big Data. Olivier TAVARD
Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche
Hadoop, les clés du succès
Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject
Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1
Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
Programmation parallèle et distribuée (Master 1 Info 2015-2016)
Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions
Tables Rondes Le «Big Data»
Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution
Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015
Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS Salon du Big Data 11 mars 2015 Accélération de l innovation +500 +280 Amazon EC2 Container Service +159 AWS Storage Gateway Amazon Elastic Transcoder
Anticiper et prédire les sinistres avec une approche Big Data
Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO [email protected] @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél
Panorama des solutions analytiques existantes
Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase
Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet
FORMATION PostgreSQL Réplication / Haute Disponibilité
FORMATION PostgreSQL Réplication / Haute Disponibilité Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès
Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.
Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision
Introduction à MapReduce/Hadoop et Spark
1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -
Les quatre piliers d une solution de gestion des Big Data
White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno
Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant
Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be
Surmonter les 5 défis opérationnels du Big Data
Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications
Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia
Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,
AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL
AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES
Document réalisé par Khadidjatou BAMBA
Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big
MapReduce et Hadoop. Alexandre Denis [email protected]. Inria Bordeaux Sud-Ouest France ENSEIRB PG306
MapReduce et Hadoop Alexandre Denis [email protected] Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera [email protected] @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi
http://blog.khaledtannir.net
Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net [email protected] 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected]
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected] Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux
Maîtriser les technologies Big Data pour obtenir des résultats en quasi-temps réel
LIVRE BLANC Processeurs Intel Xeon Unités de stockage SSD Intel Cartes réseau convergé Ethernet Intel Distribution Intel pour logiciel * Maîtriser les technologies Big Data pour obtenir des résultats en
Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts
Big Data, un nouveau paradigme et de nouveaux challenges
Big Data, un nouveau paradigme et de nouveaux challenges Sebastiao Correia 21 Novembre 2014 Séminaire Thématique : Traitement et analyse statistique des données massives, Poitiers. 1 Présentation Sebastiao
Département Informatique 5 e année 2013-2014. Hadoop: Optimisation et Ordonnancement
École Polytechnique de l Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr Département Informatique 5 e année 2013-2014 Hadoop: Optimisation
Formation Symantec Veritas Cluster Server 6.x pour Unix
La Pédagogie au service de la Technologie TECHNOLOGIE Formation Symantec Veritas Cluster Server 6.x pour Unix Objectif >> A la fin de ce cours, les stagiaires seront à même d effectuer les tâches suivantes
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC RAPPORT DE PROJET PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC RAPPORT DE PROJET PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L OBTENTION DE LA MAÎTRISE EN GÉNIE PAR Sébastien SERVOLES
Big Data. Les problématiques liées au stockage des données et aux capacités de calcul
Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des
MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15
MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué
NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Le Big Data Vers de nouveaux usages! 18/03/2015
Le Big Data Vers de nouveaux usages! 18/03/2015 Atos en bref est une société internationale spécialisée dans les services technologiques innovants, les services transactionnels à haute valeur et le conseil,
Les technologies du Big Data
Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR
Exploration des Big Data pour optimiser la Business Intelligence
Intel IT Meilleures pratiques IT Business Intelligence Juillet 2012 Exploration des Big Data pour optimiser la Business Intelligence Vue d ensemble La capacité à extraire et analyser les Big Data permet
Change the game with smart innovation
Change the game with smart innovation Master Thesis 2013 2014 Faculty of Science engineering 12/08/2012 Master Thesis proposal for the academic year 2013. TABLE OF CONTENTS Section Un Introduction... 3
R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata!
R+Hadoop = Rhadoop* * Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! 27 Janvier 2014 / Université Paul Sabatier / DTSI / David Tsang-Hin-Sun Big
Avant-propos. Organisation du livre
Avant-propos Avec Hadoop par la pratique, les développeurs vont apprendre à maîtriser Hadoop et vont acquérir de nombreuses compétences sur la résolution de problèmes à l aide de ce framework. Ils vont
Professeur-superviseur Alain April
RAPPORT TECHNIQUE PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE DANS LE CADRE DU COURS GTI792 BASE DE DONNÉES DISTRIBUÉE APPLIQUÉE EN GÉNÉTIQUE DANS LE CADRE DE L'ANALYSE DE SÉQUENÇAGE GÉNOMIQUE JEAN-PHILIPPE
Catalogue des stages Ercom 2013
Catalogue des stages Ercom 2013 Optimisations sur Modem LTE Poste basé à : Caen (14) Analyse et optimisation des performances des traitements réalisés dans un modem LTE. - Profiling et détermination des
QLIKVIEW ET LE BIG DATA
QLIKVIEW ET LE BIG DATA Livre blanc sur la technologie QlikView Juillet 2012 qlikview.com Introduction Le Big Data suscite actuellement un vif intérêt. En l exploitant dans un cadre opérationnel, nombre
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les
BIG DATA PLATFORM FOR RESEARCH AND INNOVATION TERALAB
BIG DATA PLATFORM FOR RESEARCH AND INNOVATION TERALAB Présentation Vocation Encourager l exploitation massive des données Une plateforme dédiée à la recherche / innovation / enseignement projets de recherche
Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012
Livre blanc Solution Hadoop d entreprise d EMC Stockage NAS scale-out Isilon et Greenplum HD Par Julie Lockner et Terri McClure, Analystes seniors Février 2012 Ce livre blanc d ESG, qui a été commandé
Safe Harbor Statement
Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment
Titre : La BI vue par l intégrateur Orange
Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,
Hadoop : une plate-forme d exécution de programmes Map-Reduce
Hadoop : une plate-forme d exécution de programmes Map-Reduce Jonathan Lejeune UPMC 8 octobre 2013 PSIA 2013 Inspiré du cours des années précédentes de Luciana Arantes J. Lejeune (UPMC) Hadoop Map-Reduce
IBM SPSS Analytic Server Version 1. Instructions d'installation
IBM SPSS Analytic Server Version 1 Instructions d'installation Table des matières Avis aux lecteurs canadiens...... v Instructions d'installation d'ibm SPSS Analytic Server............ 1 Plateformes prises
Analytics & Big Data. Focus techniques & nouvelles perspectives pour les actuaires. Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014
Analytics & Big Data Focus techniques & nouvelles perspectives pour les actuaires Local Optimization European Minded Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014 Intervenants : Alexandre
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
MARS 2015 DATA LAB. TechTrends - Publication de Xebia IT Architects. Imaginer. Matérialiser. Exploiter
#6 MARS 2015 TechTrends - Publication de Xebia IT Architects DATA LAB Imaginer Matérialiser Exploiter Introduction Imaginer Matérialiser Exploiter Depuis quelques années maintenant, les «Big Data» font
Évaluer la tolérance aux fautes de systèmes MapReduce
Évaluer la tolérance aux fautes de systèmes MapReduce Laurent Lemke, Amit Sangroya, Damián Serrano, Sara Bouchenak Université de Grenoble I Laboratoire LIG {Amit.Sangroya, Damian.Serrano, Sara.Bouchenak}@imag.fr
Formation continue. Ensae-Ensai Formation Continue (Cepe)
CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat
Machine Learning 9:HSMBKA=\WU\YX: Big Data et machine learning. Manuel du data scientist. InfoPro
type d ouvrage se former retours d expérience Pirmin Lemberger, Marc Batty Médéric Morel, Jean-Luc Raffaëlli Management des systèmes d information applications métiers études, développement, intégration
Grid 5000 : Administration d une infrastructure distribuée et développement d outils de déploiement et d isolation réseau
: Administration d une infrastructure distribuée et développement d outils de déploiement et d isolation réseau Nicolas Niclausse - INRIA Sophia Antipolis Méditerranée - projet Aladdin Grid 5000 2 juillet
Hadoop : une plate-forme d exécution de programmes Map-Reduce
Hadoop : une plate-forme d exécution de programmes Map-Reduce Jonathan Lejeune École des Mines de Nantes Janvier 2015 CODEL 2014/2015 J. Lejeune (École des Mines de Nantes) Hadoop Map-Reduce Janvier 2015
Introduction à Hadoop & MapReduce
Introduction à Hadoop & MapReduce Cours 2 Benjamin Renaut MOOC / FUN 2014-2015 5 Hadoop: présentation Apache Hadoop 5-1 Projet Open Source fondation Apache. http://hadoop.apache.org/
Email : [email protected] - Portable : 06 42 43 15 81 - Adresse : 77000 (Ile de France) - Homepage : http://jpmatencio.e-monsite.
JEAN PIERRE MATENCIO (Anglais courant) + de 10 d expérience «CLOUDERA APACHE HADOOP CERTIFIED PROFESSIONAL» «SOLUTIONS ARCHITECTE JAVA, J2EE» «IT PROJECT MANAGEMENT SUPPORT» EXPERIENCES ET QUALIFICATIONS
Professeur superviseur ALAIN APRIL
RAPPORT TECHNIQUE PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE DANS LE CADRE DU COURS LOG792 PROJET DE FIN D ÉTUDES EN GÉNIE LOGICIEL OPTIMISATION DE RECHERCHE GRÂCE À HBASE SOUS HADOOP ANNA KLOS KLOA22597907
Big Data Analyse et valorisation de masses de données PREAMBULE
xxx Page 2 PREAMBULE SMILE Smile est une société d ingénieurs experts dans la mise en œuvre de solutions open source et l intégration de systèmes appuyés sur l open source. Smile est membre de l APRIL,
BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS
BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels
Technologies du Web. Ludovic DENOYER - [email protected]. Février 2014 UPMC
Technologies du Web Ludovic DENOYER - [email protected] UPMC Février 2014 Ludovic DENOYER - [email protected] Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les
Importation et exportation de données dans HDFS
1 Importation et exportation de données dans HDFS Introduction Dans une installation type, Hadoop se trouve au cœur d un flux de données complexe. Ces données proviennent souvent de systèmes disparates
Sommaire. 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan
1 Sommaire 1. Google en chiffres 2. Les raisons d être de GFS 3. Les grands principes de GFS L architecture L accès de fichier en lecture L accès de fichier en écriture Bilan 4. Les Evolutions et Alternatives
Catalogue des Formations Techniques
Catalogue des Formations Techniques Items Média Concept 4, allées Pierre-Gilles de Gennes - 33700 Mérignac Téléphone : 05.57.35.73.73 Télécopie : 05.57.35.73.70 Courriel : [email protected] 2 Préambule
Certificat Big Data - Master MAthématiques
1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia
MapReduce. Nicolas Dugué [email protected]. M2 MIAGE Systèmes d information répartis
MapReduce Nicolas Dugué [email protected] M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce
Introduc)on à Map- Reduce. Vincent Leroy
Introduc)on à Map- Reduce Vincent Leroy Sources Apache Hadoop Yahoo! Developer Network Hortonworks Cloudera Prac)cal Problem Solving with Hadoop and Pig Les cours seront mis en ligne sur hhp://membres.liglab.fr/leroy/
IBM BigInsights for Apache Hadoop
IBM BigInsights for Apache Hadoop Gérer et explorer efficacement le Big Data pour exploiter tous les signaux Points clés : Plateforme Hadoop prête à l'emploi pour le traitement, le stockage et l'analyse
Vos experts Big Data. [email protected]. Le Big Data dans la pratique
Vos experts Big Data [email protected] Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB
Big Data Jean-Michel Franco
28/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions [email protected] Twitter : @jmichel_franco Définition Le
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant
Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Filière métier : Administrateur Virtualisation
Filière métier : Administrateur Virtualisation La réduction des coûts, la simplification et l automatisation des procédures, la protection des données et l optimisation de la gestion des infrastructures
M2 GL UE DOC «In memory analytics»
M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les
OFFRE MDB Service & Architecture Technique. MyDataBall Saas (Software as a Service) MyDataBall On Premise
OFFRE MDB Service & Architecture Technique MyDataBall Saas (Software as a Service) MyDataBall On Premise L offre Produit / Service 1 Implantation Rédaction collaborative du cahier des charges 2 3 de la
LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data
LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC
Comment la gestion de l identité numérique peutelle résoudre les cinq failles de sécurité d Hadoop?
LIVRE BLANC Comment la gestion de l identité numérique peutelle résoudre les cinq failles de sécurité d Hadoop? WWW.CENTRIFY.COM Comment la gestion de l identité numérique peut-elle résoudre les cinq failles
