Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés"

Transcription

1 Énoncés Exercice 1 Nommer tous les rectangles, les losanges et les carrés de la figure ci-contre dont les noms sont constitués uniquement de consonnes. J I B M A O E L K U Y Exercice onner la nature précise des figures suivantes : Exercice 3 olorier de la même couleur les figures ayant des périmètres égaux. Exercice 4 alculer la valeur exacte puis une valeur approchée au mètre du périmètre des figures suivantes : a] ercle de diamètre 13 dm. b] Quart de cercle de rayon 10 m. c] emi-cercle de diamètre 1, hm. Exercice 5 Par observation et par découpage, déterminer le périmètre en u.l. (unité de longueur) et l'aire en u.a. (unité d'aire) de chaque figure. éducmat Page 1 sur 8

2 Exercice 6 On donne les mesures suivantes : 185 dm² ; 30cm² ; 0,5 ha. 1. Placer les mesures dans un tableau de conversion d'aires.. onvertir chaque mesure en mètres carrés. Exercice 7 alculer l'aire des figures suivantes en justifiant brièvement. 7,m 8m A 3,5m B 3mm 4mm 5mm E L I J km K 5km 9,km Exercice 8 alculer la valeur exacte puis une valeur approchée au millimètre carré des aires des figures suivantes : a] isque de diamètre 7 mm. b] Quart de disque de rayon 5 cm. c] emi-disque de diamètre 1, dm. Exercice 9 1. alculer la longueur réelle du parcours ci-contre au mètre près.. Séparer le parcours en trois portions de même longueur. Exercice 10 Le rectangle ci-dessous est partagé en 9 carrés. Le petit carré noir a 1 cm de côté et le carré gris a 10 cm de côté. éterminer les dimensions de ce rectangle, en nommant éventuellement des points de la figure. éducmat Page sur 8

3 Exercice 11 Tracer sur feuille blanche les figures suivantes : a] Le carré AB de côté 6cm. b] Le rectangle E dont la longueur E est le double de la largeur, avec = 4,cm. c] Le losange KLMN de côté 5cm et dont la diagonale d'extrémité K mesure 8cm. Exercice 1 alculer l'aire du triangle sachant que : A B AB est un rectangle de longueur 1cm et de largeur 6cm. = cm et = 9 cm E Exercice 13 Soit un rectangle de largeur l, de longueur L, de périmètre P et d'aire A. ompléter les tableaux suivants : l 4 cm 5 dm 1 m L 5 cm 1, m 10 hm P 36 hm 480 cm l 4 cm 5 dm 1,5 m L 5 cm 1, m 10 hm A 36 hm² 480 dm² Exercice Quelle est l'aire d'un carré de périmètre 3 cm?. Quel est le périmètre d'un rectangle de largeur 6 m et d'aire 48 m²? Exercice 15 éterminer l'aire du triangle AB ci-contre. 4,9 m,7 m A 4,1 m 3 m B éducmat Page 3 sur 8

4 Exercice 16 Sur la figure ci-contre, le point X se déplace librement sur le segment []. On donne les mesures A = 3 cm ; AB = cm ; = 6 cm et B = 5 cm. 1. émontrer que si le point X est placé au milieu de [] alors le périmètre du quadrilatère ABX est égal au périmètre du triangle BX.. Placer en rouge le point X tel que ABX soit un rectangle. alculer alors les aires du rectangle ABX et du triangle BX. Que remarque-t-on? Exercice 17 On considère le dessin ci-contre, sachant que AE est un rectangle et que : AB = 9 cm ; = 7 cm ; E = 11 cm ; = 11 cm ; E = 9 cm et B = 1 cm. 1. alculer le périmètre du rectangle AE.. alculer l'aire du quadrilatère B. Exercice 18 Le drapeau suisse est constitué d'un fond rouge et d'une croix blanche en son centre. On sait que la largeur et la longueur de chaque trait blanc sont respectivement de 4 cm et 5,5 cm, et que la largeur et la longueur du drapeau sont respectivement de 0 cm et 35 cm. 1. alculer l'aire de la surface blanche du drapeau.. alculer l'aire de la surface rouge du drapeau. 3. alculer le périmètre de la surface blanche du drapeau. Exercice 19 alculer le périmètre de la figure grisée ci-contre au mm près. Exercice 0 La figure ci-contre est formée de carrés. Son aire est 3,43 dm². Quel est son périmètre? éducmat Page 4 sur 8

5 orrigés Exercice 1 Rectangles : L, JBK, BML. Losanges : JBK, B. arré : JBK. Exercice NUL est un triangle rectangle en N. La figure est un carré de,5cm de côté. La figure 3 est un rectangle de largeur 3,3cm et de longueur 5,4cm. La figure 4 est un losange de 5cm de côté dont une diagonale mesure 6,5cm. Exercice 3 Exercice 4 a] Le cercle de diamètre 13 dm a pour rayon 6,5 dm et pour périmètre π 6,5 = 13π dm soit environ 4 m par défaut. b] Périmètre du quart de cercle de rayon 10 m : 1 π 10 = 5π m. soit environ 16 m par excès. 4 c] Le demi-cercle de diamètre 1, hm a pour rayon 0,6 hm et pour périmètre : 1 π 0,6 = 0,6π hm.soit environ 1,88 hm par défaut.. Exercice 5 igure Périmètre en u.l Aire en u.a ,5 4,5 3,5,5 Exercice 6 1. km² hm² ou ha dam² ou a m² dm² cm² mm² dm² = 18,5 m² ; 30 cm² = 0,003 m² ; 0,5 ha = m². éducmat Page 5 sur 8

6 Exercice 7 Exercices de 6 ème hapitre 6 Périmètres et aires AB A omme AB est un triangle rectangle en A alors son aire vaut soit 3,5 7, =1,6 m. omme E est un rectangle de largeur 3 mm et de longueur 4 mm alors son aire mesure 3 4 = 1 mm². omme JKL est un losange alors son aire vaut K JL soit 9, 4 =18,4 km. Exercice 8 a] Un disque de diamètre 7 mm a un rayon de 3,5 mm et une aire valant π 3,5² =1,5π mm² soit environ 38 mm² par défaut. b] Un quart de disque de rayon 5 cm a une aire valant 5 =6,5 cm soit environ 19,63 cm² par défaut. 4 c] Un demi-disque de diamètre 1, dm a un rayon de 6 cm et une aire valant 6 =18 cm soit environ 56,55 cm² par excès. Exercice 9 1. Le parcours est constitué de : 6 segments mesurant chacun 500 m, de longueur totale = m. 4 quarts de cercle de rayon 500 m, formant un cercle de périmètre π 500 = 1000π m. 4 quarts de cercle de rayon 1000 m, formant un cercle de périmètre π 1000 = 000π m. La longueur totale du parcours est donc π + 000π = π m soit environ 1,45 km par excès.. Si l'on souhaite séparer le parcours en trois portions de même longueur, chaque portion mesurera π m, soit deux segments et : 4 quarts de petit cercle ou quarts de grand cercle ou quarts de petit avec 1 quart de grand. 'où le partage ci-contre : Exercice 10 Le carré 1 a pour côté 10 1 = 9 cm. Le carré a pour côté 9 1 = 8 cm. Le carré 3 a pour côté 8 1 = 7 cm. Le carré 4 a pour côté = 15 cm. 6 7 La largeur du rectangle vaut = 3 cm. 5 Le carré 5 a pour côté = 4 cm. Le carré 6 a pour côté = 14 cm. Le carré 7 a pour côté = 18 cm. La longueur du rectangle vaut = 33 cm Exercice 11 a] A 6 cm B b] E c] 5 cm L 6 cm,1 cm 8 cm K M 4, cm N éducmat Page 6 sur 8

7 Exercice 1 Soit le point de [] tel que [] est perpendiculaire à []. Les triangles et ont pour aires respectives la moitié des aires des rectangles E et. Par conséquent, a une aire qui vaut la moitié de celle du rectangle E. Elle vaut donc 9 6 =7cm. E Exercice 13 l 4 cm 5 dm 8 hm 1 m 100 cm L 5 cm 1, m 1 dm 10 hm 140 cm P 18 cm 34 dm 36 hm 480 cm l 4 cm 5 dm 3,6 hm 1,5 m L 5 cm 1, m 1dm 10 hm 3, m A 0 cm² 60 dm² 36 hm² 480 dm² 4,8 m² Exercice haque côté du carré de périmètre 3 cm mesure 3 : 4 = 8 cm. Son aire vaut donc 8 8 = 64 cm².. Un rectangle de largeur 6 m et d'aire 48 m² a pour longueur 48 : 6= 8 m et pour périmètre = 8 m. Exercice 15 Le triangle AB est composé de deux triangles A et B rectangles en. L'aire de A vaut 4,1,7 =5,535 m et l'aire de B vaut 3,7 =4,05 m. L'aire de AB vaut donc 5, ,05 = 9,585 m². Exercice Le périmètre du trapèze AB vaut = 16 cm. Si on place X au milieu de [] alors le périmètre de BX vaut B + X + BX soit BX = 8 + BX. e plus le périmètre de ABX vaut AB + A + X + BX soit BX = 8 + BX. Par conséquent, le périmètre du quadrilatère ABX est égal au périmètre du triangle BX.. Si ABX soit un rectangle alors X = AB donc X = cm et X vaut 6 = 4 cm. L'aire du rectangle ABX est AB A soit 3 = 6 cm². BX X L'aire du triangle BX rectangle en X vaut soit 3 4 =6cm. On remarque que ABX et BX ont des aires égales. éducmat Page 7 sur 8

8 Exercice On a A = AB + B donc A vaut = 30cm. e même E vaut = 0cm. omme AE est un rectangle alors A = E et A = E. Le périmètre de AE vaut donc = 100 cm soit 1m.. L'aire du quadrilatère B est égale à la différence entre l'aire du rectangle et les aires des quatre triangles. L'aire du rectangle AE vaut A E soit 30 0 = 600 cm². On a A = 0 7 donc A = 13 cm et = donc = 9 cm. AB A L'aire du triangle AB rectangle en A vaut soit 9 13 =58,5 cm. e même : l'aire de B vaut 115,5 cm² ; l'aire de E vaut 49,5 cm² ; l'aire de vaut 66,5 cm². L'aire du quadrilatère B vaut par conséquent ,5 115,5 49,5 66,5 = 310 cm². Exercice La surface blanche du drapeau est composée de : Quatre rectangles d'aire 4 5,5 = cm² pour une aire totale de 4 = 88 cm². Un carré blanc de côté 4 cm et d'aire 4 4 = 16 cm². La surface blanche du drapeau a donc pour aire = 104 cm².. L'aire de la surface rouge est égale à la différence entre l'aire du drapeau, qui vaut 0 35 = 700 cm², et l'aire de la surface blanche, qui vaut 104 cm². L'aire de la surface rouge est donc égale à = 596 cm². 3. Le contour de la surface blanche est composé de 4 petits segments, de longueur totale 4 4 = 16 cm, ainsi que de 8 grands segments, de longueur totale 8 5,5 = 44 cm. Le périmètre de la surface blanche vaut donc = 60 cm. Exercice 19 Par découpage, on voit que le contour de la figure est formé de quatre demi-cercles formant : Un cercle de rayon 4 cm et de périmètre π 4 = 8π cm. Un cercle de rayon 6 cm et de périmètre π 6 = 1π cm. Le périmètre de la figure vaut donc 8π + 1π = 0π cm soit environ 6,8 cm par défaut. Exercice 0 omme la figure est formée de 7 carrés, alors chacun a une aire de 3,43 : 7 =0,49 dm². On en déduit que les carrés ont 0,7 dm de côté. omme le contour de la figure est constitué de 14 côtés de carré alors son périmètre vaut 0,7 14 = 9,8 dm. éducmat Page 8 sur 8

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Version 2: 13.11.2014 Livret de formules Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Economie d entreprise Boulangère-Pâtissière-Confiseuse CFC Boulanger-Pâtissier-Confiseur

Plus en détail

MATHEMATIQUES GRANDEURS ET MESURES

MATHEMATIQUES GRANDEURS ET MESURES FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

Chapitre N2 : Calcul littéral et équations

Chapitre N2 : Calcul littéral et équations hapitre N : alcul littéral et équations Sujet 1 : Le problème des deux tours Deux tours, hautes de 0 m et de 0 m, sont distantes de 0 m. Un puits est situé entre les deux tours. Deux oiseaux s'envolent

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales. Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE SUJET DE CONCOURS COMMUN AUX CENTRES DE GESTION : CONCOURS D ADJOINT TECHNIQUE DE 1ERE CLASSE SESSION 2014 SPECIALITE «ENVIRONNEMENT, HYGIENE» Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014

Plus en détail

Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13

Tp_chemins..doc. Dans la barre arche 2 couleur claire 1/5 21/01/13 TP de création : utilisation des chemins vectoriels Finis les mauvais rêves : vous aurez enfin votre dreamcatcher (Indienss des Grands Lacs) 1 ) Créez une nouvelle image de 300 pixels sur 600 pixels en

Plus en détail

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie? Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.

Plus en détail

www.imprimermonlivre.com

www.imprimermonlivre.com 0 www.imprimermonlivre.com Composition d une couverture avec Word L objectif de ce guide est de vous proposer un mode opératoire pour créer une couverture avec Word. Nous vous rappelons toutefois que Word

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

4G2. Triangles et parallèles

4G2. Triangles et parallèles 4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

Fête de la science Initiation au traitement des images

Fête de la science Initiation au traitement des images Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

Trois personnes mangent dans un restaurant. Le serveur

Trois personnes mangent dans un restaurant. Le serveur 29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

My Custom Design ver.1.0

My Custom Design ver.1.0 My Custom Design ver.1.0 Logiciel de création de données de broderie Mode d emploi Avant d utiliser ce logiciel, veuillez lire attentivement ce mode d emploi pour bien l utiliser correctement. Conservez

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

DOSSIER D'ACTIVITES SUR TUXPAINT Dessiner avec Tuxpaint. Objectifs :

DOSSIER D'ACTIVITES SUR TUXPAINT Dessiner avec Tuxpaint. Objectifs : DOSSIER D'ACTIVITES SUR TUXPAINT Dessiner avec Tuxpaint Objectifs : Apprendre à l apprenant à connaître l'ordinateur Apprendre à l'apprenant à allumer l'ordinateur Faire découvrir à l'apprenant Linux Faire

Plus en détail

INFO 2 : Traitement des images

INFO 2 : Traitement des images INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

TUTORIEL IMPRESS. Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer»

TUTORIEL IMPRESS. Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer» TUTORIEL IMPRESS Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer» Une page impress s'ouvre : Le volet gauche contiendra toutes les diapositives

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Cercle trigonométrique et mesures d angles

Cercle trigonométrique et mesures d angles Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse

Plus en détail

Cours de D.A.O. Mécanique

Cours de D.A.O. Mécanique Cours de D.A.O. Mécanique Institut Sainte-Begge 3ème & 4ème qualification technique Site Cobegge électromécanique QCad, le DAO libre Qcad est un logiciel libre de dessin apte à dresser des plans, tout

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Vous devez tout d abord réaliser l esquisse (le dessin de la pièce en 2 dimensions) avant de mettre cette pièce en volume.

Vous devez tout d abord réaliser l esquisse (le dessin de la pièce en 2 dimensions) avant de mettre cette pièce en volume. Lancer le logiciel SolidWorks en double-cliquant sur l icône ci-contre. Cliquer sur «fichier», puis «nouveau» puis cliquer sur l icône ci-contre et Cliquer sur OK. Vous devez tout d abord réaliser l esquisse

Plus en détail

La C.A.O (Conception Assistée par Ordinateur). Le logiciel de C.A.O.

La C.A.O (Conception Assistée par Ordinateur). Le logiciel de C.A.O. CAO1 La C.A.O (Conception Assistée par Ordinateur). Aujourd'hui, lorsque des ingénieurs décident de concevoir un nouveau produit, ils n'utilisent plus de stylo. Les plans sont réalisés sur ordinateur.

Plus en détail

Championnat de France de Grilles Logiques Finale 7 juin 2014. Livret d'instructions

Championnat de France de Grilles Logiques Finale 7 juin 2014. Livret d'instructions Championnat de France de Grilles Logiques Finale 7 juin 0 Livret d'instructions Épreuve Thème Horaires Durée Points Déjà vu? h h minutes 0 Medley international h h 0 minutes 00 Futur proche? h h0 minutes

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA

Plus en détail

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur I- Ouverture d une nouvelle feuille de travail Fichier / Nouveau (ou ctrl + N) Indiquer dans la fenêtre qui s ouvre

Plus en détail

Comment créer votre propre lampes LED

Comment créer votre propre lampes LED Comment créer votre propre lampes LED Intro Un tutorial pour faire fabriqué des ampoules LED comme à l usine. Après de nombreuses tentatives pour faire toutes sortes de conversions LED, j ai enfin trouvé

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D SolidWorks Logiciel de DAO (Dessin Assisté par Ordinateur) Palonnier Servomoteur SOMMAIRE : 1 Création d une pièce 1-1 Réglage des barres d outils 1-2 Exemples de réalisation de pièces à l aide d un modeleur

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

PRATIQUE DU COMPAS ou

PRATIQUE DU COMPAS ou PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par

Plus en détail

SPECIALITE : RESTAURATION À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET

SPECIALITE : RESTAURATION À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET AGENT DE MAÎTRISE TERRITORIAL Concours interne et de 3 ème voie Centre Interdépartemental de Gestion de la Grande Couronne de la Région d Île-de-France SESSION 2015 Epreuve écrite d admissibilité Vérification

Plus en détail

REPRESENTER LA TERRE Cartographie et navigation

REPRESENTER LA TERRE Cartographie et navigation REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)

Plus en détail

FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL

FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL Article 1er : Pas de Tir : Il est composé d'un cercle d'un mètre de diamètre comportant les marques

Plus en détail

Jean Dubuffet AUTOPORTRAIT II - 1966

Jean Dubuffet AUTOPORTRAIT II - 1966 Jean Dubuffet AUTOPORTRAIT II - 1966 MON VISAGE A LA MANIERE DE JEAN DUBUFFET OBJECTIFS - utiliser son expérience sensorielle visuelle pour produire une œuvre picturale. - réaliser une œuvre s'inspirant

Plus en détail