MAT2027 Activités sur Geogebra
|
|
|
- Jean-François Bonneau
- il y a 10 ans
- Total affichages :
Transcription
1 MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il peut être intéressant de les prendre en note... Tâche 1 : Faire une maison Histoire de vous familiariser un peu avec le logiciel, faites simplement une maison Tâche 2 : un cercle le plus grand possible? Dessinez un cercle le plus grand possible. Dessinez une corde reliant deux points du cercle. Dessinez 3 triangles dont la base est la corde que vous avez dessinée et le sommet un point du cercle. Mesurez les angles de chacun de ces triangles. Que remarquezvous? Est-ce que ce sera la même chose si vous dessinez vos triangles de l'autre côté de la corde? Faites une hypothèse et vérifiez-la. Quelle corde vous permettra d'obtenir des triangles rectangles? Qu'est-ce que cette activité vous a permis de découvrir (ou de vous rappeler) à propos du cercle et des triangles? Question didactique : Quelles connaissances et quelles habiletés l'élève pourra-t-il développer en réalisant ces activités? Précisez quelles sont variations possibles permettant de favoriser ces apprentissages? Tâche 3: Deux points, un droite! Dessinez une droite passant par deux points. Dessinez une parallèle à cette droite. Ajoutez un point sur la première droite, et 2 points sur la deuxième. Reliez ces points à l'aide de l'outil polygone pour former un triangle (dont un sommet est sur la première droite et les deux autres sur la deuxième). Avec l'outil "mesure" et l'outil «surface», mesurez le périmètre et l'aire de ce triangle. Faites bouger à tour de rôle chacun des sommets du triangle (sans changer la distance entre les droites). Qu'observez-vous? Comment pouvezvous expliquer cela? En particulier, que se passera-t-il si deux sommets du triangle sont sur la première droite et l autre sommet sur la deuxième? Pouvezvous expliquer ce que vous observez? Question didactique : Quelles connaissances du triangle les élèves peuvent-ils être amenés à observer et
2 expliquer suite à cette activité? Précisez quelles sont les variations possibles permettant de favoriser ces découvertes. Tâche 4: quadrilatères Déterminez une démarche qui vous permettra de construire les quadrilatères suivants : un trapèze rectangle ; un trapèze isocèle ; un trapèze quelconque ; un parallélogramme ; un losange ; un rectangle. De quelles caractéristiques de ces figures devez-vous tenir compte pour réussir les constructions? Tâche 5 : Hypothèses triangulaires Tracez un triangle quelconque. Trouvez le point milieu de chacun de ses côtés et reliez-les. Qu'observez-vous? Quels polygones pouvez-vous construire en reliant certains points de cette figure? Vérifiez vos conclusions. Expliquez pourquoi cela est possible. Question didactique : Commentez cette activité au plan didactique. Quelles variations feriez-vous? Tâche 6 : Construire une maison (15 min) À l aide des outils, essayer cette fois de construire une maison. Pouvez-vous construire une porte, une fenêtre, etc.? Tâche 7 : Quelques observations en lien avec le papier-crayon À la séance d exercices précédente, vous avez fait certaines constructions «papier-crayon». En voici quelques unes, et d autres : Comparez vos observations quand vous faites la même chose dans le logiciel. a) Dessiner un polygone quelconque et un axe de symétrie. Effectuer une réflexion du polygone par rapport à l axe dessiné. Que se passe-t-il lorsqu on bouge l axe de symétrie? b) Construire un rectangle dont la diagonale mesure 5 unités c) Construire un losange dont une diagonale mesure la moitié de l autre diagonale d) Construire un triangle rectangle isocèle dont l hypoténuse mesure 5 unités
3 Tâche 9 : Carrément carré! a) Construire un carré de trois manières différentes. b) Pour chacun, écrire une définition qui correspond à la construction que vous avez réalisée c) Voici 2 définitions assez peu communes du carré. Pouvez-vous construire un carré à partir de celles-ci? - Un carré est un quadrilatère dont les diagonales sont des axes de symétrie qui sont perpendiculaires et de même longueur. - Un carré est un quadrilatère dont les médiatrices des côtés sont des axes de symétrie qui sont perpendiculaires et de même longueur Tâche 10 : Des triangles dans un cercle Quelles(s) relation(s) lient les deux triangles qui sont créés en reliant 4 points du cercle par deux segments qui se croisent? Faites plusieurs essais et prenez en note vos mesures et observations. Tâche 11 : D autres triangles dans un cercle Reliez 3 points d un cercle pour construire un triangle. Dans quelles conditions obtient-on : - un triangle équilatéral? - un triangle rectangle? - un triangle isocèle? - un triangle isocèle rectangle? Tâche 12 : la chasse au trésor Tiré de : Pallascio, R. et Labelle, G. (dir.) (2000), Mathématiques d'hier et d'aujourd'hui. Modulo Editeur. Mise en situation: Le prince Yvan, Tsarévitch découvre un vieux manuscrit sur lequel on donne les instructions suivantes pour trouver un fabuleux trésor qui est caché dans la forêt derrière son château: 1. Allez sous le plus grand cèdre de la forêt; de là, vous verrez le plus grand chêne et le plus grand érable de la forêt;
4 2. Du cèdre, marchez en ligne droite jusqu'à l'érable et comptez bien vos pas; rendu à l'érable, tournez à droite de 90 et marchez en ligne droite dans cette direction d'autant de pas que vous venez de faire; là, posez un piquet; 3. Revenez ensuite au cèdre; maintenant marchez en ligne droite vers le chêne en comptant bien vos pas; rendu au chêne, tournez à gauche de 90 et marchez en ligne droite dans cette direction d'autant de pas que vous venez de faire; là, posez un piquet; 4. Le trésor se trouve exactement à mi-chemin entre les deux piquets. Ces instructions paraissent fort simples et le prince Yvan Tsarévitch voudrait bien trouver les pierres. Aussi décide-t-il de partir à la recherche du trésor. Toutefois, avant de partir, le prince trace un plan de la forêt sur lequel on voit l'emplacement du plus grand cèdre, du plus grand érable et du plus grand chêne. Le prince se demande alors s'il ne pourrait pas trouver tout de suite l'emplacement du trésor sur ce plan. Pouvez-vous aider le prince? Voici un schéma du château et des 3 arbres : Tâche 13 : Polygones et dallage Tiré du recueil «MAP 113 Didactique de la géométrie au primaire», Université de Sherbrooke En vous inspirant des instructions suivantes, pouvezvous construire votre propre dallage? Trace un carré à l'aide de l'outil «Polygone Régulier». Divise ensuite ce carré en deux rectangles congrus. Sur le rectangle du bas, dessine un vecteur sur chacun des côtés de façon à ce qu'ils aient tous un sens différent.
5 Ceux-ci te seront utiles lors des prochaines étapes. Mais avant d aller plus loin : avec un click-droit, rend invisible le carré que tu as construit au départ. Effectue ensuite chacune des étapes suivantes: 1. À l'aide de l'outil «Polygone», reproduis la figure ci-dessous : Fais-lui subir une translation de grandeur c vers la droite (c étant la longueur d'un côté du carré de départ). 2. Toujours à l aide de l'outil «Polygone», ajoute la partie ci-bas au carré initial et fais-lui subir une translation de c/2 vers le bas. 3. Fait de même avec les troisième et quatrième parties, mais cette fois-ci, c'est une translation de c vers la gauche que tu effectueras sur la 1ère et de c/2 vers le haut pour la 2 e. 4. Toujours à l'aide de l'outil «Polygone», relie tous les points qui forment cette nouvelle image. Donne-lui la couleur que tu désires à l'aide des propriétés. 5. À partir de la figure obtenue, confectionne un dallage. 6. Quelle est l'utilité du rectangle de départ?
6 Tâche 14 - Mathématiques élémentaires en ligne avec Geogebra Explorer le site : entaire/elementaire.htm NOTE ; Ces activités sont tirées ou inspirées de deux documents pédagogiques, l un réalisé par Renée Caron et l autre par Marie-Pier Morin.
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Cabri et le programme de géométrie au secondaire au Québec
Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec [email protected] 1. Introduction - Exercice de didactique fiction Que signifie intégrer
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Je découvre le diagramme de Venn
Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Math 5 Dallage Tâche d évaluation
Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)
Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème
Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org
Introduction à Version 4.4 www.geogebra.org Traduction et adaptation française Introduction à GeoGebra Dernière modification : 23 novembre 2013, adaptée à la version GeoGebra 4.4. Ce livre expose une introduction
Quels polygones sont formés par les milieux des côtés d un autre polygone?
La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine
Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième
GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Prénom : J explore l orientation et l organisation spatiale. Date de retour :
Prénom : J explore l orientation et l organisation spatiale Date de retour : Message aux parents Les fascicules «Mes défis au préscolaire» suggèrent des activités à réaliser avec votre enfant. Le choix
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME
I.U.F.M Académie de Montpellier Site de Montpellier BUFFET Charles UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME Contexte du mémoire Discipline : Mathématiques
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Réalisation de cartes vectorielles avec Word
Réalisation de cartes vectorielles avec Word Vectorisation de la carte Après avoir scanné ou avoir récupéré un fond de carte sur Internet, insérez-la dans votre fichier Word : Commencez par rendre visible
VOS PREMIERS PAS AVEC TRACENPOCHE
Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,
PRATIQUE DU COMPAS ou
PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par
Les problèmes de la finale du 21éme RMT
21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur
Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur I- Ouverture d une nouvelle feuille de travail Fichier / Nouveau (ou ctrl + N) Indiquer dans la fenêtre qui s ouvre
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Ecrire Savoir rédiger une réponse claire à une question
Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille.
1 Guide de l enseignant p.64 Écris les nombres dictés. Je fais le point 1 PrénoM :.... 2 Écris les nombres effacés par Gribouille. 2 20 1 4 11 10 1 16 1 3 Écris combien il y a d oiseaux. sur l image d
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Initiation au dessin Bitmap
Sébastien Stasse Initiation au dessin Bitmap Guide d apprentissage et notions de base 2e édition Nom : Classe : Produit par l École Alex Manoogian AW version 6 Initiation au dessin bitmap Initiation au
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D
SolidWorks Logiciel de DAO (Dessin Assisté par Ordinateur) Palonnier Servomoteur SOMMAIRE : 1 Création d une pièce 1-1 Réglage des barres d outils 1-2 Exemples de réalisation de pièces à l aide d un modeleur
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1
c Séquence 4 Ce que tu devais faire Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 SÉQUENCE 4 Séance 1 Les commentaires du professeur 1) Pour calculer combien Paul dépense, on effectue
Traceur de courbes planes
Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm
La C.A.O (Conception Assistée par Ordinateur). Le logiciel de C.A.O.
CAO1 La C.A.O (Conception Assistée par Ordinateur). Aujourd'hui, lorsque des ingénieurs décident de concevoir un nouveau produit, ils n'utilisent plus de stylo. Les plans sont réalisés sur ordinateur.
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Construction de la bissectrice d un angle
onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
"#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/<-'#,9=,!.,!+0(>-+0(%?9,&!.9!1536!&,&&%$)!@;AB!
!!! "#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
TP1 : Initiation à l algorithmique (1 séance)
Université de Versailles Vanessa Vitse IUT de Vélizy - Algorithmique 2006/2007 TP1 : Initiation à l algorithmique (1 séance) 1 Prise en main de l environnement Unix : rappels et compléments Le but de la
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Introduction à Adobe Illustrator pour la cartographie et la mise en page
Atelier Carto. Septembre 2009 Dept. Géographie / Université de Toulouse-Le Mirail Laurent Jégou Introduction à Adobe Illustrator pour la cartographie et la mise en page Le présent support n'a pas prétention
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
EQUATIONS ET INEQUATIONS Exercices 1/8
EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
PR OC E D U RE S D E B A S E
Photofiltre Préparé par Philipe Lampron, auxiliaire du cours FPE 7650 en 2004-2005. *** Pour optimiser une image : enregistrer sous et augmenter la compression PR OC E D U RE S D E B A S E PhotoFiltre
Préparation au CAP Installateur sanitaire (Incluant modules dépannage chaudières et chauffe-eau solaire / thermodynamique)
Préparation au CAP Installateur sanitaire (Incluant modules dépannage chaudières et chauffe-eau solaire / thermodynamique) Sommaire 1. PREAMBULE... 2 2. INTRODUCTION... 2 3. L INSTALLATEUR SANITAIRE...
Classe de troisième. Exercices de Mathématiques
lasse de troisième Exercices de Mathématiques 2 hapitre I : Révision d algèbre 1 alculer : = 21 7 + 2 4 21 = 7 2 1 5 2 = 84 17 4 27 5 2 D = 4 9 2 + 25 9 10 E = 7 12 (1 9 + 18 7 ) F = 12 7 2 5 + 8 5 2 Soit
Tombez en amour avec Charlie Brown et les
Tombez en amour avec Charlie Brown et les! Chère enseignante/cher enseignant, Vous connaissez et aimez fort probablement déjà les personnages intemporels de la bande de Peanuts. La bande dessinée la plus
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE Utilisation des TBI UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE T B utoriel de base, ce mode d emploi a pour objectif de vous présenter les principales
4G2. Triangles et parallèles
4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Aide GeoGebra. Manuel Officiel 3.2. Markus Hohenwarter et Judith Hohenwarter www.geogebra.org
Aide GeoGebra Manuel Officiel 3.2 Markus Hohenwarter et Judith Hohenwarter www.geogebra.org 1 Aide GeoGebra 3.2 Auteurs Markus Hohenwarter, [email protected] Judith Hohenwarter, [email protected] Traduction
