Indexation d images. Tina Nikoukhah & Jonathan Pucci
|
|
|
- Renaud Morneau
- il y a 9 ans
- Total affichages :
Transcription
1 Indexation d images Tina Nikoukhah & Jonathan Pucci
2 But du jeu :
3 Comment? Chaque minute de chaque jour : - 72 heures de vidéos sur Youtube photos sur Instagram messages sur Tweeter publications sur Facebook Comment organiser au mieux toutes ces données afin de pouvoir retrouver facilement ce qui m intéresse?
4 L indexation Constituer une base de donnée - extraction des descripteurs - stockage par similarité dans un index Interroger la base - extraction des descripteurs - comparaison
5 Comment? - par le texte L indexation sémantique (textuelle) Indexation textuelle manuelle - iconographe - hard indexing / soft indexing -> problème du choix des termes : non subjectifs, pas assez variés Indexation textuelle automatique - pas d intervention humaine nécessaire - texte environnant/contenu -> problème de pertinence : beaucoup trop d erreurs
6 Comment? - par le contenu Etape d extraction des caractéristiques visuelles de l image : Texture, couleur, forme, Histogramme des couleurs -> problème d invariance aux changements de luminosité
7 Comment? - Contextuel - A/ Detection des points d intérêt : Harris, Laplace, blablabla Detecteur de contours, de coins, de blobs (zones uniformes) - B/ Extraction des caractéristiques Sift,PCA-Sift, SURF : vecteur de pixels but : robuste et rapide - C/ Construction du voc contextuel Caractéristiques -> mots (1 vecteur de feature = 1 mot? Trop) Clustering : 1 mot = centre du cluster Ainsi, un mot est assigné à chaque région et une image peut-être représentée par un histogramme des mots visuels contenus dans cette image. D/ Comparaison des images Recherche dans les arbres avec les notions de distances entre histogrammes (ou simple distance euclidienne des mots)
8 Comment? - Contextuel _ Feature Detection Détection des caractéristiques: Détecteur de coins/contours de Harris -> Pas invariant aux changement d échelle Détecteur de points d intérêts Maxima de la Hessienne
9 Comment? - Contextuel _Feature extraction - Extraction des caractéristiques But : se servir des points d intérêt trouvés précédemment pour caractériser l image => extraire les features. Moyen : Une feature = Un mot du vocabulaire visuel. Un mot = Un vecteur à? dimensions. Méthodes : Sift,PCA-Sift, SURF
10 Scale Invariant Feature Transform (SIFT) Détection de points clés : Défini par ses coordonnées sur l image (x,y) et son facteur d échelle En gros : zone d intérêt circulaire de rayon proportionnel à. Méthode : LoG (Laplacian of Gaussian) Détection des extremums dans l espace des échelles (avec une pyramide)
11 Scale Invariant Feature Transform (SIFT) Pb des extremums : zones larges, points approximatifs, répétitifs Améliorations : Supprimer les faibles contrastes Supprimer les points sur arrêtes
12 Scale Invariant Feature Transform (SIFT) Une dernière étape avant de donner le descripteur SIFT: Rendre invariant par rotation 1 descripteur décrit un point d intérêt son orientation : Gradient( ).
13 Scale Invariant Feature Transform (SIFT) Le descripteur SIFT: Un point clé : - Modifier le sys de coord local Rotation de -θ - Région de pixels, subdivisée en 4 4 zones de 4 4 pixels chacune - histogramme des orientations Comportant 8 intervalles 16 histogrammes concaténés, normalisés = Vecteur dimension 128 : DESCRIPTEUR
14 Speeded Up Robust Feature (SURF) Même principe pour les points d intérêt mais plus rapide! Box filter (Approx. D^2(Gauss)) Image intégrale
15 SURF Extraction des features : Orientation
16 SURF Extraction des features : Descripteur
17 SURF Extraction des features : Descripteur Chaque sous-région est décrite par un vecteur de 4 éléments : (Σdx, Σdy, Σldxl, Σldyl). 16 sous-régions Signature => Vecteur de dimension 64.
18 SIFT - SURF Clustering Maintenant que les descripteurs sont donnés, on a le vocabulaire visuel de l image. Il faut en faire des classes pour les futures comparaisons. Exemple : K-means
19 Histogramme visuel
20 SIFT -SURF Représentation des images avec un vocabulaire créé: - Detection des points d intérêt Elagage Invariant par rotation Définition des descripteurs Indexation par classes Définition de l histogramme des images Comment retrouver mon image dans une base de donnée?
21 La recherche par similarité -> dépend des choix faits lors de la phase d indexation des images de la base de données Recherche dans un arbre de données La similarité est mesurée par une distance -> méthode d intersection des histogrammes -> distance euclidienne directement entre les descripteurs Algorithme de recherche des plus proches voisins Sélection des cellules les plus pertinentes Sélection des vecteurs les plus pertinents
22 Un Beau Schéma Pour résumer
23 CONCLUSION Le choix de la méthode dépend de l application. Les étapes à retenir : extraire des images les descripteurs visuels qui permettent de retrouver efficacement des images similaires, trouver une représentation pertinente de ces descripteurs, trouver une mesure de similarité efficace, accéder rapidement à l'information.
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel
Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly [email protected] INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé
L évaluation d algorithmes d analyse vidéo Quelques pistes
L évaluation d algorithmes d analyse vidéo Quelques pistes Jean-François GOUDOU 1, Louise NAUD 1, Laurent GIULIERI 2, Jaonary RABARISOA 3, Olivier PIETQUIN 4, Dana CODREANU 5, Dijana PETROVSKA 6 1 THALES
Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO
Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Cognit Ive Cas d utilisation
Cognit Ive Cas d utilisation 96-98, rue de Montreuil - 75011 Paris _ opicot@ _ + 33 (0)1 40 09 71 55 Sommaire Présentation de la plateforme Cognit Ive SemanticMail : Traitement sémantique des mails Projets
Traitement numérique de l'image. Raphaël Isdant - 2009
Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Reconnaissance de gestes : approches 2D & 3D
Reconnaissance de gestes : approches 2D & 3D Maher Mkhinini et Patrick Horain Institut Mines-Télécom/Télécom SudParis Département Électronique et Physique, 9 rue Charles Fourier, 91011 Evry, France Email
Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image
IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire
Codage vidéo par block matching adaptatif
Traitement et analyse d'images(39) Codage vidéo par block matching adaptatif Abdelhamid Djeffal Département d informatique Université Mohamed Khider BISKRA, ALGERIE [email protected] Zine Eddine
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
7. ECONOMIE 7.1. TRAVAIL DE BUREAU ENCODEUR / ENCODEUSE DE DONNEES
CCPQ Rue A. Lavallée, 1 1080 Bruxelles Tél. : 02 690 85 28 Fax : 02 690 85 78 Email : [email protected] www.enseignement.be 7. ECONOMIE 7.1. TRAVAIL DE BUREAU ENCODEUR / ENCODEUSE DE DONNEES PROFIL DE FORMATION
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data
Commencer avec doo sous OS X
Commencer avec doo sous OS X La mise en route de doo est rapide, facile, gratuite et sans risque Avec doo vous pouvez vous connecter et accéder à tous vos emplacements de stockage et à toutes les sources
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
Masses de données et calcul : à l IRIT. 8 octobre 2013
Masses de données et calcul : la recherche en lien avec les Big Data à l IRIT 8 octobre 2013 08/10/2013 1 L IRIT en qq chiffres 700 personnes sur tous les sites toulousains 5 tutelles 7 thèmes et 21 équipes
Clé USB. Quel type de données peut contenir une clé USB?
Qu est-ce qu une clé USB? Clé USB Une clé USB est un support de stockage amovible. Ce qui, en français, signifie que c est une mémoire que vous pouvez brancher et débrancher sur n importe quel ordinateur
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Introduction aux Bases de Données Relationnelles Conclusion - 1
Pratique d un : MySQL Objectifs des bases de données Où en sommes nous? Finalement, qu est-ce qu un? Modèle relationnel Algèbre relationnelle Conclusion SQL Conception et rétro-conception Protection de
Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation
Laboratoire Vision & Robotique Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Emilie KOENIG, Benjamin ALBOUY, Sylvie TREUILLET, Yves Lucas Contact : Sylvie Treuillet Polytech'Orléans
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
IFT3913 Qualité du logiciel et métriques. Chapitre 2 Modèles de processus du développement du logiciel. Plan du cours
IFT3913 Qualité du logiciel et métriques Chapitre 2 Modèles de processus du développement du logiciel Plan du cours Introduction Modèles de processus du développement du logiciel Qualité du logiciel Théorie
De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues
De la modélisation linguistique aux applications logicielles: le rôle des Entités Nommées en Traitement Automatique des Langues Maud Ehrmann Joint Research Centre Ispra, Italie. Guillaume Jacquet Xerox
Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par
Mode d'emploi du plugin Grayscale_Granulometry
Mode d'emploi du plugin Grayscale_Granulometry D. Legland 27 mars 2013 Mode d'emploi rapide du plugin Grayscale Granulometry pour ImageJ. Le plugin permet de calculer des courbes de granulométrie en niveaux
IFO. Soleil. Antoine COUSYN 29/07/2012 08/02/2015. Vidéo. Manipur, Inde. Saturation du capteur CMOS. 19 Juin 2011. 15h11 heure locale.
Rapport d expertise IPACO Nom de l expert Antoine COUSYN Date du rapport 29/07/2012 Dernière mise à jour 08/02/2015 Type IFO Classe A Explication Saturation du capteur CMOS Complément Soleil Document Lieu
Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien
Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation
Décompresser, créer une archive au format «ZIP»
Décompresser, créer une archive au format «ZIP» Qu'est-ce qu'une archive? Une archive est tout simplement une collection de fichiers stockée dans un fichier unique. Rien de plus, rien de moins. Il existe
GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction
GMEC1311 Dessin d ingénierie Chapitre 1: Introduction Contenu du chapitre Introduction au dessin technique Normes Vues Traits Échelle Encadrement 2 Introduction Les dessins ou graphiques sont utilisés
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
PROJET ALGORITHMIQUE ET PROGRAMMATION II
PROJET 1 ALGORITHMIQUE ET PROGRAMMATION II CONTENU DU RAPPORT A RENDRE : o Fiche signalétique du binôme o Listing des différents fichiers sources o CD sources o Il sera tenu compte de la présentation du
GED: Gestion Electronique de Document (Support de cours) R. MAHMOUDI ([email protected]) www.research-ace.net/~mahmoudi 1 Gestion Electronique de Documents Plan du cours - Introduction générale - Spécificités
Description de Produit Logiciel. AMI News Monitor v2.0. SPD-AMINM-10 v1.0
Description de Produit Logiciel AMI News Monitor v2.0 SPD-AMINM-10 v1.0 Octobre 2010 Sommaire 1 Préambule... 3 2 Approbations... 3 3 Fonctionnalités... 4 3.1 Principes... 4 3.2 Sources d information...
Master 2 Recherche en Informatique Responsable du master : Prof. Zoubir MAMMERI
Master 2 Recherche en Informatique Responsable du master : Prof. Zoubir MAMMERI Spécialité RIBD «Recherche d Information et Base de données» Responsable de la formation : Prof. Mohand BOUGHANEM Équipe
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
1S9 Balances des blancs
FICHE 1 Fiche à destination des enseignants 1S9 Balances des blancs Type d'activité Étude documentaire Notions et contenus Compétences attendues Couleurs des corps chauffés. Loi de Wien. Synthèse additive.
Analyseur d émotions à partir d expressions faciales
- Rapport de stage de fin d études Éffectué dans le laboratoire DOMUS à l Université de Sherbrooke Pour l obtention du Diplôme National d Ingénieur Présenté et soutenu par Wathek Bellah LOUED Analyseur
Documalis. Denis SCHIRRA Email [email protected] GSM : 06 68 06 00 10. Plus d information sur notre site Internet www.documalis.
Documalis Plus d information sur notre site Internet www.documalis.com Documalis for Solutions de dématérialisation des courriers et des factures d entreprise Transformation PDF, OCR et reconnaissance
http://www.content-square.fr
http://www.content-square.fr Les intervenants 2 Interviendront sur le thème : "Big Data et Data Mining : le couple gagnant du E-commerce et de vos fiches produits!" Partez à la découverte du Big Data Mining
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous :
BASE BioArray Software Environment (BASE) est une base de données permettant de gérer l importante quantité de données générées par des analyses de bio-puces. BASE gère les informations biologiques, les
Présentation BAI -CITC
Présentation BAI -CITC Expertise reconnue dans des niches technologiques Technologies embarquées Technologies sans contact Technologies d identification et d authentification Sécurité des objets connectés
EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE
ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École
TP SIN Traitement d image
TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types
Optimiser le référencement naturel de son site web
Rodez, le 15 avril 2011 Les moteurs de recherche Les moteurs utilisés dans le monde Les moteurs utilisés en Europe Où clique un internaute? Référencement «payant» 35-40% des clics sur Google Référencement
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
DATA ANALYTICS Des données aux connaissances et à la création de valeur
DATA ANALYTICS Des données aux connaissances et à la création de valeur Sommaire Rencontres Inria Industrie p 3 Vos contacts au centre Inria Saclay - île-de-france p 4 Technologies Bertifier Sparklificator
Synthèse d'images I. Venceslas BIRI IGM Université de Marne La
Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image
LIVRE BLANC Décembre 2014
PARSING MATCHING EQUALITY SEARCH LIVRE BLANC Décembre 2014 Introduction L analyse des tendances du marché de l emploi correspond à l évidence à une nécessité, surtout en période de tension comme depuis
Nouveau Web Client marquant, Cumulus Video Cloud, optimisations de la base de données, et plus..
INFORMATION PRODUIT : Quoi de Neuf dans Cumulus 9.0? Nouveau Web Client marquant, Cumulus Video Cloud, optimisations de la base de données, et plus.. Les nouveautés marquantes et les améliorations disponibles
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
L environnement de travail de Windows 8
4 L environnement de travail de Windows 8 Mais où est donc passé le bouton Démarrer? L écran d accueil joue le rôle de l ancien bouton Démarrer. Si l icône de l application que vous voulez lancer n est
Ressources lexicales au service de recherche et d indexation des images
RECITAL 2011, Montpellier, 27 juin - 1er juillet 2011 Ressources lexicales au service de recherche et d indexation des images Inga Gheorghita 1,2 (1) ATILF-CNRS, Nancy-Université (UMR 7118), France (2)
Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans
Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans [email protected] Plan 1. Un peu de
Entrepôt de données 1. Introduction
Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de
Je travaille mon image! Diffuser ses photos sur le web Mardi 14 avril 2015
Je travaille mon image! Diffuser ses photos sur le web Mardi 14 avril 2015 On se présente! Au programme Le pouvoir de l image Connaître la réglementation du droit à l image Des photos oui, mais de belles
Analyse dialectométrique des parlers berbères de Kabylie
Saïd GUERRAB Analyse dialectométrique des parlers berbères de Kabylie Résumé de la thèse (pour affichage) Il est difficile de parler du berbère sans parler de la variation. Il y a d abord une variation
Indexmed : Le big data en écologie? Pas encore disent certains. Pas si sûr! Avec IndexMed. Relevons ce challenge!
Indexmed : Le big data en écologie? Pas encore disent certains Pas si sûr! Avec IndexMed Relevons ce challenge! Origine du consortium L état des lieux (source : séminaire Allenvie, séminaire Indexmed1)
Analyse multi-échelle de trajectoires de points critiques pour la reconnaissance d actions humaines
Analyse multi-échelle de trajectoires de points critiques pour la reconnaissance d actions humaines Cyrille Beaudry, Renaud Péteri, Laurent Mascarilla Laboratoire MIA, Univ. La Rochelle Avenue Michel Crépeau
GKR. Geological Knowledge Representation Base de connaissances métallogéniques
GKR Geological Knowledge Representation Base de connaissances métallogéniques Objets Organiser un ensemble d informations complexes et hétérogènes pour orienter l exploration minière aux échelles tactiques
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
Ministère des Affaires étrangères et européennes
Ministère des Affaires étrangères et européennes Direction de la coopération culturelle et du français Regards VI, DVD 1 Culture Réalisation Isabelle Barrière, Thomas Sorin (CAVILAM) Rédaction Thomas Sorin
Utiliser Access ou Excel pour gérer vos données
Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
Comment sélectionner des sommets, des arêtes et des faces avec Blender?
Comment sélectionner des sommets, des arêtes et des faces avec Blender? VVPix v 1.00 Table des matières 1 Introduction 1 2 Préparation d une scène test 2 2.1 Ajout d objets dans la scène.........................................
Un duo de choc : DocuWare et Microsoft Outlook
Connect to Outlook Product Info Un duo de choc : DocuWare et Microsoft Outlook Avec Connect to Outlook, vous pouvez archiver vos e-mails directement depuis MS Outlook dans DocuWare. Grâce à la recherche
Extraction d informations stratégiques par Analyse en Composantes Principales
Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 [email protected] 1 Introduction
Fouille de données massives avec Hadoop
Fouille de données massives avec Hadoop Sebastiao Correia [email protected] Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques
Les escaliers nécessitent quelques particularités pour assurer la sécurité de tous.
SUJETS DE LA FICHE-CONSEILS 1. Marches et contremarches 2. Mains-courantes 3. Dégagement sous une volée d escaliers 4. Surfaces repères et sécurité fonctionnelle Les escaliers nécessitent quelques particularités
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
Object Removal by Exemplar-Based Inpainting
Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013
Communications immersives : Enjeux et perspectives
Journée Futur et Ruptures Communications immersives : Enjeux et perspectives Béatrice Pesquet-Popescu Télécom ParisTech, Département TSI 5 mars 2015 Institut Mines-Télécom Tendances actuelles Plus, plus,
FORMATION TIC. Animer une communauté sur les réseaux sociaux
FORMATION TIC Animer une communauté sur les réseaux sociaux # OBJECTIFS DE LA FORMATION Connaître les différents média et réseaux sociaux (Facebook, Youtube, Viadeo, Linkedin...) et leurs usages ; Comprendre
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Chapitre 18 : Transmettre et stocker de l information
Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
NEC Virtual PC Center
NEC Virtual PC Center 24 mai 2007 Thomas LUQUET 1 Problématiques du poste client Sécurité & accès à l information Protéger l information contre les menaces internes Séparer l utilisation du PC personnel
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités
Cliquez sur une image pour l'agrandir
Cliquez sur une image pour l'agrandir LA VIDEO SURVEILLANCE À LA PORTÉE DE TOUS LES BUDGETS ET EN RÉPONSE À TOUTES LES EXIGENCES La vidéo-surveillance à la portée de tous les budgets et en réponse à toute
L usage des concepts du web sémantique dans le filtrage d information collaboratif
Ministère de l enseignement Supérieur et de la recherche scientifique Institut National d Informatique Alger Mémoire présenté pour l obtention du diplôme de Magistère Option : Ingénierie des Systèmes d
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Licence ODbL (Open Database Licence) - IdéesLibres.org
Licence ODbL (Open Database Licence) - IdéesLibres.org Stipulations liminaires La licence ODbL (Open Database License) est un contrat de licence ayant pour objet d autoriser les utilisateurs à partager,
Sillage Météo. Notion de sillage
Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une
ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans
ANALYSE CATIA V5 1 GSA Generative Structural Analysis 2 Modèle géométrique volumique Post traitement Pré traitement Maillage Conditions aux limites 3 Ouverture du module Choix du type d analyse 4 Calcul
Chapitre 02. Gestion de l'information
Chapitre 02 Gestion de l'information BONJOUR Nouvelles règles en cours de technologie Leçon 01 Qu'est - ce qu'un réseau informatique? Situation exposé du problème L habitat d aujourd hui (et de demain)
Atelier numérique Développement économique de Courbevoie
Atelier numérique Développement économique de Courbevoie Mardi 18 mars 2014 Référencement naturel Référencement payant Atelier numérique de Courbevoie Intervenants : Olivier CARTIERI, Animateur Conseil
