Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu"

Transcription

1 P a e 1 TS Chimie Le lancer de poids aux championnats du monde Exercice résolu Enoncé Lors des championnats du monde d'athlétisme qui eurent lieu à Paris en août 3, le ainqueur de l'épreue du lancer du poids, le bélarusse Andrey Mikhneich, a réussi un jet à une distance D = 1,69 m. L'entraîneur de l'un de ses concurrents souhaite étudier ce lancer en traaillant sur le mouement du centre d inertie G du boulet (nom courant donné au poids). Pour cela, il dispose de la aleur (mesurée aec un cinémomètre) du ecteur itesse initiale de G et de l altitude H du même point à la date t = : = 13,7 m.s -1 et H =,6 m. Un loiciel informatique lui permet de réaliser une simulation de ce lancer et de déterminer la aleur de l'anle du ecteur itesse initiale aec l'horizontale : = 43,. L étude est réalisée dans le repère (O, i, j ) représenté sur le schéma ci-contre. y G j O i H x L entraîneur obtient trois raphes (pour lesquels les dates correspondant à deux points successifs sont séparées par le même interalle de temps) : - en annexe n 1, le raphe de la trajectoire du point G représentatif de la fonction x y(x), - ci-dessous (fiures 1 et ), les raphes représentatifs des fonctions t x (t) et t y (t) où x et y sont les coordonnées du ecteur itesse G du point G. Fiure 1 Fiure Fiure Fiure

2 P a e A. Première partie : étude des résultats de la simulation 1. Étude de la projection horizontale du mouement du boulet En utilisant la fiure 1, déterminer : a) La composante x du ecteur itesse du point G à l'instant de date t = s. b) La nature du mouement de la projection du point G du boulet sur l'axe (Ox). c) La composante Sx ecteur itesse du point G lorsque le boulet est au sommet S de sa trajectoire.. Étude des conditions initiales du lancer a) En utilisant la fiure, déterminer la composante y du ecteur itesse à l'instant de date t = s. b) À partir des résultats précédents, érifier que la aleur du ecteur itesse initiale du point G et l'anle de tir sont compatibles aec les aleurs données dans le texte. 3. Étude du ecteur itesse du centre d'inertie du boulet a) Déterminer toutes les caractéristiques du ecteur itesse du centre d'inertie du boulet au sommet de la trajectoire. b) Sur le raphe donné en annexe n 1, tracer le ecteur itesse du centre d'inertie du boulet à l'instant du lancer et le ecteur itesse trajectoire (aucune échelle n est exiée). S du centre d'inertie du boulet au sommet S de la B. Deuxième partie : étude théorique du mouement du centre d inertie du boulet Données : - le boulet est une sphère de olume V et de masse olumique = 7,1 1 3 k.m 3 - la masse olumique de l'air est = 1,9 k.m 3 - la aleur du ecteur champ de pesanteur est = 9,8 N.k a) Exprimer littéralement la aleur P A de la poussée d'archimède exercée par l'air sur le boulet ainsi que la aleur P de son poids. b) Montrer que P A est nélieable deant P.. En appliquant la ème loi de Newton dans le référentiel terrestre supposé aliléen, déterminer l expression du ecteur accélération a G du centre d'inertie du boulet lors du mouement (on supposera que, compte tenu des faibles itesses atteintes, les frottements dus à l'air au cours du jet sont nélieables). 3. a) Établir les équations horaires du mouement du centre d inertie du boulet. b) En déduire l équation de la trajectoire du point G. 4. a) Calculer la portée théorique D du lancer. b) Arrondies à l entier le plus proche, les aleurs de D et D sont-elles en cohérence? 5. a) Calculer l altitude maximale théorique h atteinte par le point G. b) Le résultat obtenu est-il en accord aec le raphe en annexe n 1?

3 P a e 3 C. Troisième partie : comment améliorer la performance d un lanceur? L'entraîneur eut ensuite saoir sur quel(s) paramètre(s) il peut traailler pour améliorer la performance de l'athlète. Celui-ci est plus petit que le champion du monde : sa taille est telle que l'altitude initiale de ses lancers n'est au maximum que de H' =,45 m. L'entraîneur décide donc d'étudier l'influence de la aleur de la itesse initiale du lancer et de l'anle de tir. Pour cela, il réalise des séries de simulations rassemblées dans les réseaux de courbes ci-dessous (fiures 3 et 4) : - sur la fiure 3, l'anle de tir est maintenu constant, soit = 41, - sur la fiure 4, la itesse est maintenue constante, soit = 13,8 m.s 1 Fiure 3 Fiure 4 1. À partir des fiures 3 et 4, entourer, dans le tableau en annexe n, la proposition correcte donnant l'éolution de la portée du lancer pour : a) l'anle fixé, b) la aleur fixée.. Confronter les fiures 3 et 4 pour déterminer les combinaisons qui permettent : a) d éaler le record du monde, b) de battre le record du monde.

4 P a e 4 Annexe Annexe n 1 Annexe n Quand aumente, la portée D du lancer : fixé aumente diminue reste la même aumente, passe par un maximum puis diminue diminue, passe par un minimum puis aumente Quand aumente, la portée D du lancer : fixée aumente diminue reste la même aumente, passe par un maximum puis diminue diminue, passe par un minimum puis aumente

5 P a e 5 Corrié A. Première partie : étude des résultats de la simulation 1. Étude de la projection horizontale du mouement du boulet En utilisant la fiure 1, déterminer : a) La composante x du ecteur itesse du point G à l'instant de date t = s. Par lecture raphique : x = 1, m.s -1 b) La nature du mouement de la projection du point G du boulet sur l'axe (Ox). La composante x est constante : le mouement de la projection de G sur (Ox) est uniforme. c) La composante Sx ecteur itesse du point G lorsque le boulet est au sommet S de sa trajectoire. Par lecture raphique : Sx = x = 1, m.s -1. Étude des conditions initiales du lancer a) En utilisant la fiure, déterminer la composante y du ecteur itesse à l'instant de date t = s. Par lecture raphique : y = 9, m.s -1 b) À partir des résultats précédents, érifier que la aleur du ecteur itesse initiale du point G et l'anle de tir sont compatibles aec les aleurs données dans le texte. = soit : = x y arrondie à l entier le plus proche). cos = x de 5% près). 1, 9, = 14 m.s -1 (compatible aec la donnée du texte soit : cos = 1, =,71 et = 45 (compatible aec la donnée du texte à moins Étude du ecteur itesse du centre d'inertie du boulet a) Déterminer toutes les caractéristiques du ecteur itesse du centre d'inertie du boulet au sommet de la trajectoire. Oriine : le point S Direction : horizontale Sens : ers la droite Valeur : S = Sx = Sy 1, = 1 m.s -1 b) Sur le raphe donné en annexe n 1, tracer le ecteur itesse du centre d'inertie du boulet à l'instant du lancer et le ecteur itesse S du centre d'inertie du boulet au sommet S de la trajectoire (aucune échelle n est exiée). Pour, on trace un ecteur tanent à la trajectoire à la date t =. Pour S, on trace un ecteur tanent à la trajectoire au point S (attention : S < ). B. Deuxième partie : étude théorique du mouement du centre d inertie du boulet 1. a) Exprimer littéralement la aleur P A de la poussée d'archimède exercée par l'air sur le boulet ainsi que la aleur P de son poids. P A =.V. et P = m. b) Montrer que P A est nélieable deant P. P P = m.. => '.V. A P P = ' A P soit : P = 7,1 1 1,9 A 3 = 5,5 x 1 3 P >> P A : la poussée d Archimède est nélieable deant le poids.

6 P a e 6. En appliquant la ème loi de Newton dans le référentiel terrestre supposé aliléen, déterminer l expression du ecteur accélération a G du centre d'inertie du boulet lors du mouement (on supposera que, compte tenu des faibles itesses atteintes, les frottements dus à l'air au cours du jet sont nélieables). Système : le boulet de masse m et de centre d inertie G. Référentiel : terrestre, supposé aliléen. Bilan des forces : P, poids du boulet. ème loi de Newton : P = m. a G => m. a G = m. => a G = 3. a) Établir les équations horaires du mouement du centre d inertie du boulet. Dans le repère (O, i, j), les coordonnées du ecteur accélération ag sont : a x = et a y = - Le ecteur accélération est la dériée du ecteur itesse par rapport au temps. Les coordonnées du ecteur itesse sont donc des primities des coordonnées du ecteur accélération : x = cte et y = -.t + cte. Or, à t =, x =.cos et y =.sin => x =.cos et y = -.t +.sin Le ecteur itesse est la dériée du ecteur position par rapport au temps. Les coordonnées du ecteur position (équations horaires du mouement) sont donc des primities des coordonnées du ecteur itesse : x = (.cos ).t + cte et y = - 1..t + (.sin ).t + cte Or, à t =, x = et y = H => x = (.cos ).t (1) et y = - 1..t + (.sin ).t + H () b) En déduire l équation de la trajectoire du point G. x (1) => t =.cos => () : y = - 1..( x x.cos ) + (.sin ).(.cos ) + H => y = - 1..cos.x + (tan ).x + H 4. a) Calculer la portée théorique D du lancer. La portée D du lancer est la aleur de x pour y = => - 1..cos.x + (tan ).x + H = => -,488.x +,933.x +,6 = = (-,933) [4 x (-,488) x,6] = 1,38 x =,933 1,38 = -,48 m et 1,6 m, 488 La aleur néatie est à exclure et on obtient : D = 1,6 m b) Arrondies à l entier le plus proche, les aleurs de D et D sont-elles en cohérence? Les aleurs D et D sont en cohérence car, si on les arrondit à l entier supérieur, on obtient : D = D = m

7 P a e 7 5. a) Calculer l altitude maximale théorique h atteinte par le point G. Au point S, à la date t S, le ecteur itesse S est horizontale et Sy = => -.t S +.sin =.sin et t S = => h = ys = - 1..t S + (.sin ).t S + H et : h = (.sin.sin 1 ) + (.sin ). + H => h = -. (. sin ) (. sin ) ) + Finalement : h = 1. (. sin ) 1 + H soit : h = x (13,7 sin 43, ) 9,8 +,6 = 7,7 m b) Le résultat obtenu est-il en accord aec le raphe en annexe n 1? Sur le raphe, l ordonnée du point S est sensiblement éale à 7,1 m : les résultats sont cohérents. C. Troisième partie : comment améliorer la performance d un lanceur? 1. À partir des fiures 3 et 4, entourer, dans le tableau en annexe n, la proposition correcte donnant l'éolution de la portée du lancer pour : a) l'anle fixé : aumente b) la aleur fixée : aumente, passe par un maximum puis diminue.. Confronter les fiures 3 et 4 pour déterminer les combinaisons qui permettent : a) d éaler le record du monde : = 13,8 m.s -1 et = 41 b) de battre le record du monde : = 14, m.s -1 et = 41 + H

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

TS Physique Satellite à la recherche de sa planète Exercice résolu

TS Physique Satellite à la recherche de sa planète Exercice résolu P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

11/2004 EXERCICE III. LE LANCER DU POIDS AUX CHAMPIONNATS DU MONDE

11/2004 EXERCICE III. LE LANCER DU POIDS AUX CHAMPIONNATS DU MONDE Nouvelle Calédonie 11/2004 EXERCICE III. LE LANCER DU POIDS AUX CHAMPIONNATS DU MONDE 2003 (5,5 points) Lors des derniers championnats du monde d'athlétisme qui eurent lieu à Paris en août 2003, le vainqueur

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement

Plus en détail

Exercice n 1 : Questions de cours. Exercice n 2 : Effets d'une action mécanique. Exercice n 3 : L'enfant et son traineau (6 pts)

Exercice n 1 : Questions de cours. Exercice n 2 : Effets d'une action mécanique. Exercice n 3 : L'enfant et son traineau (6 pts) THEME : SPORT Sujet N 8 Exercice n 1 : Questions de cours 1- Qu'est ce qu'un référentiel? 2- Enoncer le principe d'inertie. Exercice n 2 : Effets d'une action mécanique 1- Quels sont les effets possibles

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Tir au pigeon d argile

Tir au pigeon d argile Tir au pigeon d argile On étudie le mouvement d un pigeon d argile lancé pour servir de cible à un tireur de ball-trap. Le pigeon d argile de masse m P = 0,10 kg assimilé à un point matériel M est lancé

Plus en détail

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants

Plus en détail

TS - III.2 Quantité de mouvement et lois de Newtons Exercices Supplémentaires MECANIQUE SUJET

TS - III.2 Quantité de mouvement et lois de Newtons Exercices Supplémentaires MECANIQUE SUJET MECANIQUE Sommaiire SUJET LE GRAND SAUT : UNE CHUTE LIBRE? ------------------------------------- 2 LE LANCER DU POIDS AUX CHAMPIONNATS DU MONDE 2003 ----------------- 3 LE TREBUCHET. ---------------------------------------------------------

Plus en détail

TS 1 DM n 7 02/05/2007 EXERCICE n 1.

TS 1 DM n 7 02/05/2007 EXERCICE n 1. EXERCICE n 1. Lors des championnats du monde d'athlétisme qui eurent lieu à Paris en août 2003, le vainqueur de l'épreuve du lancer du poids (Andrey Mikhnevich) a réussi un jet à une distance D = 21,69

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

EXEMPLE DE CALCUL D UNE MISSION AVION

EXEMPLE DE CALCUL D UNE MISSION AVION EXEMPLE DE CALCUL D UNE MISSION AVION On considère un Boeing 747 dont la masse maxi au décollage est de 383000 kg. Il est propulsé par quatre turboréacteurs et réalise quotidiennement des missions de type

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section : i-prépa annuel - 61 Chapitre 7 : Chute d une bille dans un fluide I. Deux nouvelles forces : a) la Poussée d Archimède : Tout corps

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Document du professeur 1/7 Niveau 3 ème Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Programme C. De la gravitation à l énergie mécanique

Plus en détail

Physique - Chimie. De la gravitation à l énergie mécanique. Poids et masse d un corps.

Physique - Chimie. De la gravitation à l énergie mécanique. Poids et masse d un corps. Nom : Prénom : Classe : Date : Physique - Chimie De la gravitation à l énergie mécanique. Poids et masse d un corps. Fiche élève 1/5 Objectifs o Déterminer les caractéristiques du poids d un corps. o Savoir

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

Comment battre Milos Raonic?

Comment battre Milos Raonic? Comment battre Milos Raonic? Milos Raonic est un jeune joueur de tennis professionnel Canadien. Il dispose de capacités physiques impressionnantes avec une taille de 1,96 m pour 90 kg. Depuis le début

Plus en détail

III Univers / IV. Le Sport

III Univers / IV. Le Sport III Univers / IV. Le Sport Mouvements et forces Exercice n 1 : Dynamomètre Exercice n 2 : Une petite voiture dans un train Un enfant est assis dans un train qui circule sur une voie rectiligne et horizontale.

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Comment mesure-t-on la masse des planètes?

Comment mesure-t-on la masse des planètes? Comment mesure-t-on la masse des planètes? Evidemment, les planètes ne sont pas mises sur une balance. Ce sont les mathématiques et les lois physiques qui nous permettent de connaître leur masse. Encore

Plus en détail

τ dt R Si le mouvement est accéléré alors dv > 0,

τ dt R Si le mouvement est accéléré alors dv > 0, Bac S 5 olnésie orrection http://labolcee.org EXERIE I : ERRMANE D UNE ATHLÈTE ( points). Étude du mouvement du boulet avant le lâcher du marteau par l athlète.. ar définition a =, or au cours d un mouvement

Plus en détail

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J.

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J. Séance n 12 Conservation de l énergie Exercice n 1 Au service Au service, un joueur de tennis frappe, à l instant de date t 0 = 0 s, une balle de masse m = 58,0 g à une hauteur h = 2,4 m au dessus du sol

Plus en détail

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde :

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde : Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements 1 Relativité du mouvement en classe de Seconde : 1.1 Programme : Exemples d activités Contenus Connaissances et savoir-faire exigibles

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

X X X. Verre. Remarque : Les interactions à distance peuvent être :

X X X. Verre. Remarque : Les interactions à distance peuvent être : Physique : 2 nde Chapitre.7 : Forces et mouvements I. Modèles et interactions 1. Interactions entre deux objets : L énoncé suivant s applique à des objets au repos ou en mouvement. Quand un objet agit

Plus en détail

cos sin Quelle est l abscisse x C du point d impact C du pigeon d argile et de la balle? x C =x A =OA=45m I. TIR AU PIGEON D'ARGILE

cos sin Quelle est l abscisse x C du point d impact C du pigeon d argile et de la balle? x C =x A =OA=45m I. TIR AU PIGEON D'ARGILE I. TIR AU PIGEON D'ARGILE On étudie le mouvement d un pieon d arile lancé pour servir de cible à un tireur de ball-trap. Le pieon d arile de masse m P =,1 k assimilé à un point matériel M est lancé avec

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45)

DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) DS n o 5 TS1 2012 Chutes des boulets (8 points, 1h45) Exercice 1 Galilée à Pise (5,5 points) O i Selon la légende, Galilée (1564-1642) aurait étudié la chute des corps en lâchant divers objets du sommet

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

PREMIERE PARTIE : THEORIE

PREMIERE PARTIE : THEORIE Examen de Physique, juin 2014 BA1 EN INFORMATIQUE EXAMEN DE PHYSIQUE juin 2014 Nom : Prénom : PREMIERE PARTIE : THEORIE Question 1 (10 points) : a. [3] Quelles sont les propriétés qui doivent être fournies

Plus en détail

ROBOT DE PRESSE INJECTION PLASTIQUE (Banque PT SIA 2006)

ROBOT DE PRESSE INJECTION PLASTIQUE (Banque PT SIA 2006) 1.MISE EN SITUATION ROBOT DE PRESSE INJECTION PLASTIQUE (Banque PT SIA 2006) Les pièces injectées représentent aujourd'hui une grande part de la production industrielle. Le déchargement des presses d'injection

Plus en détail

Baccalauréat STG Mercatique Polynésie 10 juin 2011

Baccalauréat STG Mercatique Polynésie 10 juin 2011 Baccalauréat STG Mercatique Polynésie 0 juin 0 La calculatrice (conforme à la circulaire N 99-86 du 6--99) est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). 4 points Pour

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Etude du mouvement de la pierre de curling

Etude du mouvement de la pierre de curling Activité expérimentale Etude du mouvement de la pierre de curling Compétences attendues : Effet d une force sur le mouvement d un corps : modification de la vitesse, modification de la trajectoire. Savoir

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x FONCTION LINEAIRE & FONCTION AFFINE 3 e I. Fonction linéaire a désigne un nombre relatif. Définition La fonction qui, à tout nombre x, associe le produit de a par x est appelée fonction linéaire de coefficient

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Exercice n 1 : Les taches solaires

Exercice n 1 : Les taches solaires Vendredi 14 octobre Contrôle de physique TS spé Sauf indication contraire, tout résultat doit être justifié. Calculatrice autorisée Exercice n 1 : Les taches solaires On se propose d étudier une lunette

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet

Réponds. Réponds. questions. questions. détermine la relation entre le poids et la masse d un objet ( P P B P C bjectifs distinguer le poids et la masse d un objet utiliser la relation de proportionnalité entre le poids et la masse énoncer et utiliser la condition d équilibre d un solide soumis à deux

Plus en détail

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N

On peut mesurer l intensité (ou la «valeur») d une force à l aide d un dynamomètre. L intensité d une force s exprime en newton, symbole : N CH5 FORCES ET PRINCIPE D INERTIE A) POURQUOI LE MOUVEMENT D UN OBJET EST-IL MODIFIE? POURQUOI SE DEFORME-T-IL? I - RAPPELS. L existence d une force est conditionnée à l identification d une interaction,

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Chapitre 7 : Cinématique et dynamique newtonienne

Chapitre 7 : Cinématique et dynamique newtonienne Chapitre 7 : Cinématique et dynamique newtonienne De l atome aux galaxies, la matière est en mouvement. La mécanique se donne pour but de décrire le mouvement d objets appelés systèmes ; l étude est dans

Plus en détail

F p. Par définition : S. F p = P x S avec F p en Newton (N) P en Pascal (P) et S en m 2

F p. Par définition : S. F p = P x S avec F p en Newton (N) P en Pascal (P) et S en m 2 Physique : 2 nde Exercices d application : Les gaz CORRECTION I. Force pressante et pression : Exercice 1 : 1. a) Calculer la valeur F p de la force pressante exercée par l air atmosphérique sur une vitre

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!!

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! Brenda Semeda-Moreiro, une élève de, décide de passer tout son week-end à réviser le contrôle de physique prévu pour lundi.

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

1 ) Métropole STLB 2015

1 ) Métropole STLB 2015 1 ) Métropole STLB 2015 Partie A : détermination de la vitesse du véhicule Procès-verbal des enquêteurs : L accident s est produit sur une portion de route départementale goudronnée dont la vitesse est

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

SP. 5. forces er principe d inertie exercices. Savoir son cours QCM :

SP. 5. forces er principe d inertie exercices. Savoir son cours QCM : SP. 5 forces er principe d inertie exercices Savoir son cours QCM : Des noms pour des mouvements m t de la droite vers la gauche m t du haut vers le bas m t de la gauche vers la droite m t dans le sens

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Mobile autoporteur et plan incliné

Mobile autoporteur et plan incliné Mobile autoporteur et plan incliné Exercice : Un mobile autoporteur, de masse m = 400 g, est abandonné avec une vitesse initiale de 394 mm/s sur une table inclinée d un angle α = 12 par rapport à l horizontale.

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder.

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder. P a g e 1 TS Spécialité Physique Exercice résolu Enoncé Depuis une vingtaine dannées la microscopie confocale a connu un développement considérable. Ces microscopes équipent maintenant un grand nombre

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

EPREUVE DE SCIENCES PHYSIQUES

EPREUVE DE SCIENCES PHYSIQUES EPREUVE DE SCIENCES PHYSIQUES Exercice 1 : Question de cours. Q1 : Que faut-il pour que la troisième loi de Newton s applique à deux corps A et B en interaction? Q2 : Qu observe t-on lorsque l on réalise

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

TS Physique L automobile du futur Electricité

TS Physique L automobile du futur Electricité P a g e 1 TS Physique Electricité Exercice résolu Enoncé Le moteur thermique, étant très certainement appelé à disparaître, les constructeurs automobiles recourront probablement au «tout électrique» ou

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

BACCALAUREAT PROFESSIONNEL. MAINTENANCE de VEHICULES AUTOMOBILES. MATHEMATIQUES (15 points)

BACCALAUREAT PROFESSIONNEL. MAINTENANCE de VEHICULES AUTOMOBILES. MATHEMATIQUES (15 points) BACCALAUREAT PROFESSIONNEL MAINTENANCE de VEHICULES AUTOMOBILES MATHEMATIQUES (15 points) Une automobile hybride est un véhicule disposant de deux types de motorisation : un moteur thermique et un moteur

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Baccalauréat STG Mercatique Polynésie 10 juin 2011 correction

Baccalauréat STG Mercatique Polynésie 10 juin 2011 correction accalauréat STG Mercatique Polynésie 0 juin 0 correction La calculatrice (conforme à la circulaire N 99-86 du 6--99) est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). 4

Plus en détail

Un petit rien... qui peut tout changer! Octobre 2014

Un petit rien... qui peut tout changer! Octobre 2014 Un petit rien... qui peut tout changer! Octobre 2014 Présentation de l outil Présentation de l outil Vous êtes : 1 enseignant au collège. 2 enseignant au lycée. 3 les deux. 4 aucune des réponses précédentes.

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Epreuve de physique chimie tronc commun : (Durée 3h30)

Epreuve de physique chimie tronc commun : (Durée 3h30) Bac blanc Avril 2012 Lycée de la Côtière Epreuve de physique chimie tronc commun : (Durée 3h30) L usage de la calculatrice n est pas autorisé. Pour faciliter le travail des correcteurs, rédiger chaque

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale

1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale 1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale I. BUT - Utiliser un oscilloscope pour mesurer des fréquences et des tensions - Déterminer la fréquence d un émetteur à ultrasons (noté US)

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

( ) et orienté dans le

( ) et orienté dans le FONCTIONS COSINUS ET SINUS I. Rappels ) Définitions : Dans le plan muni d un repère!! ortonormé O ; i ; j ( ) et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail