Couples de variables aléatoires discrètes



Documents pareils
Espaces probabilisés

1 TD1 : rappels sur les ensembles et notion de probabilité

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M

Que faire lorsqu on considère plusieurs variables en même temps?

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

NOTIONS DE PROBABILITÉS

Probabilités. C. Charignon. I Cours 3

TSTI 2D CH X : Exemples de lois à densité 1

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Probabilités Loi binomiale Exercices corrigés

Probabilités sur un univers fini

Travaux dirigés d introduction aux Probabilités

Exercices de dénombrement

Simulation de variables aléatoires

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Variables Aléatoires. Chapitre 2

Lois de probabilité. Anita Burgun

Qu est-ce qu une probabilité?

3. Conditionnement P (B)

Les probabilités. Chapitre 18. Tester ses connaissances

Probabilités-énoncés et corrections

MA6.06 : Mesure et Probabilités

Loi d une variable discrète

Calculs de probabilités conditionelles

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercices sur le chapitre «Probabilités»

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Loi binomiale Lois normales

Probabilités. I - Expérience aléatoire. II - Evénements

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Probabilités et Statistique

LE PROBLEME DU PLUS COURT CHEMIN

Date : Tangram en carré page

P1 : Corrigés des exercices

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Programmes des classes préparatoires aux Grandes Ecoles

Calcul élémentaire des probabilités

Introduction au Calcul des Probabilités

Espérance conditionnelle

EI - EXERCICES DE PROBABILITES CORRIGES

I. Cas de l équiprobabilité

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

VI. Tests non paramétriques sur un échantillon

Statistiques du nombre de cycles d'une permutation

Chaînes de Markov au lycée

Moments des variables aléatoires réelles

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Exercices supplémentaires sur l introduction générale à la notion de probabilité

PROBABILITES ET STATISTIQUE I&II

Probabilités sur un univers fini

Probabilités et statistique. Benjamin JOURDAIN

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Probabilités conditionnelles Loi binomiale

chapitre 4 Nombres de Catalan

Triangle de Pascal dans Z/pZ avec p premier

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Probabilités conditionnelles Exercices corrigés

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

NOTATIONS PRÉLIMINAIRES

Axiomatique de N, construction de Z

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Coefficients binomiaux

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Algorithmes d'apprentissage

Chapitre 3. Les distributions à deux variables

4. Exercices et corrigés

Nombre de marches Nombre de facons de les monter

Analyse en Composantes Principales

Probabilités conditionnelles Loi binomiale

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

(VM(t i ),Q(t i+j ),VM(t i+j ))

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

Structures algébriques

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Feuille d exercices 2 : Espaces probabilisés

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

CALCUL DES PROBABILITES

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Exercices - Polynômes : corrigé. Opérations sur les polynômes

La simulation probabiliste avec Excel

Texte Agrégation limitée par diffusion interne

PROBABILITÉS ET STATISTIQUES. 1. Calculs de probabilités B) 0.1 C)

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

Fluctuation d une fréquence selon les échantillons - Probabilités

Carl-Louis-Ferdinand von Lindemann ( )

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

Raisonnement par récurrence Suites numériques

Plan général du cours

CHAPITRE VIII : Les circuits avec résistances ohmiques

Le modèle de Black et Scholes

Théorie et codage de l information

Arbre de probabilité(afrique) Univers - Evénement

Transcription:

Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude simultanée de deux variables aléatoires. Rien de très nouveau au niveau des techniques utilisées, le but est de présenter un peu de vocabulaire et faire quelques calculs sur trois exemples détaillés. Loi d'un couple de variables aléatoires Dénition. Un couple de variables aléatoires (X, Y est la donnée de deux variables aléatoires dénies sur le même espace probabilisé Ω. Une façon plus technique de voir les choses est de dire qu'un couple est une application (X, Y : Ω R. Exemple : On lance simultanément deux dés (ça faisait longtemps, et on note X le plus grand des deux chires obtenus et Y le plus petit (au sens large. Exemple : Une urne contient boules blanches, boules vertes et boules bleues. On tire boules dans l'urne et on note X le nombre de boules blanches obtenues et Y le nombre de boules vertes. Exemple : On eectue une suite de lancers avec une pièce non équilibrée pour laquelle la probabilité do'btenir Pile vaut (et celle d'obtenir face vaut donc. On note X la longueurde la première chaîne obtenue, c'est-à-dire le nombre de tirages initiaux donnant le même résultat que le premier tirage. On note Y la longueur de la deuxième chaîne. Ainsi, si les premiers tirages donnent P P P P F F P (peu importe la suite, on aura X = et Y =. Dénition. La loi d'un couple de variables aléatoires (X, Y est la donnée des probabilités P ((X = i (Y = j, pour i X(Ω et j Y (Ω. Cette loi est aussi appelée loi conjointe du couple (X, Y. Remarque. Certaines des probabilités P ((X = i (Y = j peuvent être nulles, même si P (X = i et P (Y = j sont toutes les deux non nulles. Remarque. Cette loi est souvent présentée sous forme d'un tableau à double entrée, les valeurs prises par X apparaissant par exemple en ligne et celles prises par Y en colonne. Exemple : On a X(Ω = {; ; ; ; ; } ; Y (Ω = {; ; ; ; ; }, et la loi conjointe se calcule sans diculté : P ((X = i (Y = j = si i < j (le plus grand nombre ne peut pas être inférieur au plus petit, P ((X = i (Y = y j = si i = j (le seul tirage favorable sur les possibles est le tirage (i, i, et P ((X = i (Y = y j = si i > j (les deux tirages (i, j et (j, i sont possibles, ce qu'on peut résumer par le tableau suivant (X en ligne, Y en colonne :

Exemple : On a ici X(Ω = {; ; ; } et Y (Ω = {; ; ; }. On ne peut bien sûr avoir ( X +Y > ( i j( i j puisqu'on ne tire que trois boules. Lorsque cela a un sens, on a P ((X = i (Y = j = (, ce qui donne le tableau suivant : Remarque. On note parfois l'évenement (X = i (Y = j sous la forme (X, Y = (i, j. Proposition. Les événements (X = i (Y = j pour i parcourant X(Ω et j parcourant Y (Ω forment un système complet d'événements. On a donc P ((X = i (Y = j =. i X(Ω;j Y (Ω Démonstration. La preuve est la même que dans le cas où on n'a qu'une variable aléatoire. Les événements sont manifestement disjoints, et leur union vaut Ω. Dénition. Si (X, Y est un couple de variables aléatoires, les lois de X et de Y sont appelées lois marginales du couple. Proposition. Si (X, Y est un couple de variables aléatoires discrètes, on peut obtenir les lois marginales à partir de la loi conjointe : i X(Ω, P (X = i = P ((X = i (Y = j (et symétriquement pour la loi de Y. j Y (Ω Démonstration. Cela découle immédiatement du fait que les événements Y = j forment un système complet d'événements. Exemple : Pour connaitre les lois marginales à partir du tableau précédemment établi, c'est très simple, il sut de faire les sommes des lignes du tableau (pour la loi Y ou des colonnes (pour celle X : P (Y = j P (X = i Exemple : De façon tout à fait similaire, on va retrouver des lois hypergéométriques pour X et Y :

P (X = i P (Y = j Remarque. On vient de voir qu'on pouvait déduire les lois marginales de la loi conjointe. Le contraire n'est pas possible en général. Dénition. La loi conditionnelle de X sachant Y = j est la loi de la variable Z dénie par i X(Ω, P (Z = i = P Y =j (X = i. On dénit de même les lois conditionnelle de Y sachant X = i. Exemple : Dans le cas de variables innies, on ne peut naturellement plus écrire la loi sous forme de tableau, et les calculs de lois marginales ou conditionnelles sont un peu plus formels. La loi de X se calcule assez aisément : X(Ω = N et on aura X = k si la suite de lancers commence par k Pile suivi d'une face ou par k face suivis d'un Pile, cas incompatibles qui donnent P (X = k = ( k + ( k = k + k+. Pour déterminer la loi de Y, le plus simple est de passer par la loi de couple : on aura (X, Y = (i, j si on débute par i Pile, puis j Face et à nouveau un Pile, ou bien i Face, j Pile et un Face, soit ( i ( j une probabilité de P ((X = i (Y = j = ( i ( j + = i+ + j. On i+j+ utilise ensuite la formule des probabilités totales pour obtenir la loi de Y, avec le système complet d'évènements (X = i i : P (Y = j = i+ + j i+j+ = j ( i+ + ( i= j + P (X = i P X=i (Y = j = i+ = j ( + i= P ((X = i (Y = j = ( j = + j j+. i= i= i= On constate que la loi de Y n'est pas la même que celle de X (ce qui n'était pas vraiment évident a priori. Si on souhaite voir à quoi ressemblent les lois conditionnelles, on a par exemple comme loi conditionnelle à Y = j xé : P Y =i (X = i = = i+ + j P ((X = i (Y = j P (Y = j i+j+ j+ + j = i+ + j i ( + j. Indépendance de variables aléatoires Dénition. Deux variables aléatoires sont dites indépendantes si tous les couples d'événements X = i, Y = j sont indépendants. Autrement dit, i X(Ω, j Y (Ω, P ((X = i (Y = j = P (X = ip (Y = j. Exemple : Un exemple idiot pour illustrer. Si on tire deux dés simultanément et qu'on note X le résultat du premier dé et Y celui du deuxième dé, X et Y sont des variables aléatoires indépendantes. On a P ((X = i (Y = j = pour tout i et j. Exemple : Par contre, toujours dans le cas de l'inépuisable lancer de deux dés, si on prend pour X la somme des deux dés et pour Y leur produit, les deux variables ne sont pas indépendantes. On a par exemple P (X = = ; P (Y = =, et P ((X = (Y = =. Remarque. Deux variables aléatoires sont indépendantes si et seulement si toutes les lois conditionnelles de X sachant Y = j sont identiques à la loi de X.

Remarque. Dans le cas où X et Y sont des variables aléatoires indépendantes, on peut obtenir la loi conjointe du couple (X, Y à partir des deux lois marginales. Exemples : Dans nos deux premiers exemples, on constate sans diculté et sans surprise que les variables X et Y ne sont pas indépendantes (le fait qu'on ait des dans la tableau de la loi conjointe sut à imposer qu'il n'y ait pas indépendance. Le troisième exemple est moins intuitif. Le calcul des lois conditionnelles, qui sont distinctes de la loi marginale de X, prouve qu'il n'y a pas non plus indépendance. Une autre façon de voir les choses est de trouver un contre-exemple à l'indépendance des évènements X = i et Y = j. On peut ici calculer simplement P (X = = + = ; P (Y = = + = ; et P ((X = (Y = = + =. Les courageux vérieront qu'en eectuant la même expérience avec une piève équilibrée, on obtiendrait deux variables aléatoires indépendantes. Un autre calcul intéressant sur cette expérience (quoique ne faisant pas vraiment intervenir le fait qu'on travaille sur un couple est celui des espérances de X et de Y : on a (sous réserve d'existence E(X = k k + k+ = ( k k + ( ( k k = ( + ( = k= + =. Pour Y, on a E(Y = k= k= k + k k+ = k k= k= ( k + k k= ( k = ( + ( = + =. Encore une fois, les courageux pourront faire le calcul avec une pièce équilibrée et constater que dans ce cas les deux variables ont pour espérance. Proposition. Si X et Y sont deux variables aléatoires indépendantes, on a V (X + Y = V (X + V (Y. Remarque. On peut calculer facilement la variance d'une loi binomiale à partir de la proposition précédente. En eet une loi binomiale de paramètre (n, p est la somme de n variables aléatoires indépendantes de paramètre p, qui ont chacune pour variance p( p. La variance de la binomiale vaut donc np( p. Pour l'hypergéométrique, c'est plus compliqué, puisque la loi pour chaque tirage dépend des résultats des tirages précédents. Opérations et variables aléatoires Protons de ce petit chapitre pour rappeler quelques cas particuliers de fonctions de deux variables aléatoires pour lesquelles on sait calculer facilement la loi. Commençons par le cas de la somme de deux variables : Proposition. Si X et Y sont deux variables aléatoires indépendantes, la loi de leur somme X + Y est donné par P (X + Y = k = P (X = ip (Y = k i (la somme portant sur les valeurs de i pour lesquelles P (X = i et P (Y = k i sont toutes deux non nulles. Démonstration. On a via la formule des probabilités totales P (X+Y = k = P (X = i i X(Ω P X=i (X+ Y = k. Or, P X=i (X + Y = k = P X=i (Y = k i donc P (X + Y = k = P i X(Ω ((X = i (Y = k i. Exemple : Deux variables aléatoires X et Y suivant des lois uniformes respectivement sur {; ;... ; } et sur {; ; ; } (par exemple les résultats d'un lancer de dés à six faces et à quatre faces. La loi de X + Y se calcule aisément : i P (X + Y = i

Proposition. Soient X et Y deux variables aléatoires indépendantes suivant des lois binomiales B m,p et B n,p alors X + Y suit une loi binomiale de paramètre B m+n,p. Démonstration. D'après la propriété précédente, on a P (X +Y = k = P (X = ip (Y = k i = ( ( n m p i ( p p n i k i ( p m k+i = p k ( p n+m k i k i ( n i ( m k i ( n + m = k p k ( p n+m k en utilisant la formule de Vandermonde. On reconnait bien une loi binomiale de paramètre (n + m, p. Proposition. Soient X et Y deux variables indépendantes suivant des lois de Poisson de paramètres respectifs λ et µ, alors X + Y suit une loi de Poisson de paramètre λ + µ. Démonstration. C'est encore un calcul de somme : P (X + Y = k = P (X = ip (Y = k i = e λ λ i e µ µ k i = e (λ+µ i! (k i! i!(k i! λi µ k i = e (λ+µ ( k λ i µ k i = e (λ+µ (λ + µ k k! i k! via la formule du binôme de Newton. On reconnait bien une loi de Poisson de paramètre λ + µ. Autre exemple où on sait calculer la loi, le cas du minimum (ou du maximum de deux variables aléatoires, où il est plus facile de passer par la fonction de répartition : Proposition. Soient X, Y deux variables aléatoires indépendantes de fonctions de répartitions respectives F X et F Y, alors la fonction de répartition de la variablé aléatoire Z = max(x, Y est donnée par F Z = F X F Y. Démonstration. Par dénition F Z (x = P (Z x. Mais dire que max(x, Y x est équivalent à dire que X x et que Y x, donc F Z (x = P ((X x (Y x = P (X x P (Y x = F X (xf Y (x. Exemple : Reprenons une nouvelle fois le lancer de deux dés. On note X le résultat du premier dé et Y celui du deuxième dé. Les deux fonctions de répartition sont F X et F Y sont les mêmes : sur [ ; [, F X (x = ; sur [; [, F X (x =, sur [; [, F X(x = etc. Soit Z = max(x, Y. La fonction de répartition de Z est donc donnée par : [; [, F Z (x = ; [; [, F Z(x = etc. On peut ainsi retrouver la loi du minimum par une méthode diérente de celle vue un peu plus haut dans ce même chapitre (rappelons au cas où que pour passer de la fonction de répartition à la loi, on utilise la formule P (Z = i = F Z (i F Z (i : i P (Z = i Remarque. Une fois connu le maximum de deux variables aléatoires, on peut en déduire le minimum en utilisant le fait que X +Y = min(x +Y +max(x +Y. On peut aussi utiliser le fait que si on pose G X (x = F X (x = P (X > x (une sorte d'anti-fonction de répartition, alors, si U = min(x, Y, on a G U (x = G X (xg Y (x (ce qui se démontre de façon très similaire à ce qu'on vient de faire.