B. Mesure de l impédance d entrée d un oscilloscope

Documents pareils
Charges électriques - Courant électrique

Donner les limites de validité de la relation obtenue.

DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES. Épreuve de Physique-Chimie. (toutes filières) Mardi 18 mai 2004 de 08h00 à 12h00

Systèmes de transmission

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

ELEC2753 Electrotechnique examen du 11/06/2012

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

TP Modulation Démodulation BPSK

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Oscillations libres des systèmes à deux degrés de liberté

Caractéristiques des ondes

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Méthodes de Caractérisation des Matériaux. Cours, annales

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

TD1 Signaux, énergie et puissance, signaux aléatoires

1. PRESENTATION DU PROJET

Module : propagation sur les lignes

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Instruments de mesure

Précision d un résultat et calculs d incertitudes

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Lycée SCHWEITZER MULHOUSE PC* 2012/ 2013 TRAVAUX PRATIQUES DE PHYSIQUE LIVRET 2

Chapitre 1 Régime transitoire dans les systèmes physiques

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Circuits RL et RC. Chapitre Inductance

M HAMED EL GADDAB & MONGI SLIM

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

L3-I.S.T. Electronique I303 Travaux pratiques

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

CHAPITRE IX : Les appareils de mesures électriques

A. N(p) B + C p. + D p2

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Multichronomètre SA10 Présentation générale

Introduction. Mathématiques Quantiques Discrètes

Chapitre 2 Les ondes progressives périodiques

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Le transistor bipolaire. Page N 6 Tranlin

TP 7 : oscillateur de torsion

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Activités numériques [13 Points]

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Cours 9. Régimes du transistor MOS

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

Fiche technique CPU 314SC/DPM (314-6CG13)

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

OBJECTIFS. I. A quoi sert un oscilloscope?

Equations différentielles linéaires à coefficients constants

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Guide de correction TD 6

Fonctions de deux variables. Mai 2011

Université Mohammed Khidher Biskra A.U.: 2014/2015

THESE DOCTEUR. Génie Electrique. Maxime MOREAU

PROBLEME(12) Première partie : Peinture des murs et du plafond.

CH IV) Courant alternatif Oscilloscope.

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Champ électromagnétique?

Laboratoires de Physique générale

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

Oscilloscope actif de précision CONCEPT 4000M

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Chapitre 5 Émetteurs et récepteurs sonores

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Chapitre 02. La lumière des étoiles. Exercices :

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

Convertisseurs Statiques & Machines

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Elec II Le courant alternatif et la tension alternative

BD 302 MINI. Etage de puissance pas à pas en mode bipolaire. Manuel 2059-A003 F

ANALYSE SPECTRALE. monochromateur

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

Chapitre 2 Caractéristiques des ondes

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE

Intérêt du découpage en sous-bandes pour l analyse spectrale

TD 9 Problème à deux corps

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. Version 1.0 Juillet 2003 Français

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

ELECTRONIQUE ANALOGIQUE

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

Transcription:

Problème : Mesures d impédances A. Mesure de l impédance de sortie d un générateur basse fréquence (GBF) On modélise un GBF par une source idéale de tension de force électromotrice ( ) ( ωt ) E t = E m cos en série avec une résistance R g. On réalise le protocole expérimental suivant : À l aide d un oscilloscope, on visualise la tension à vide du GBF. On observe une tension sinusoïdale d amplitude E = 8 V. On place ensuite aux bornes du GBF une résistance R variable, et on visualise à l oscilloscope la tension aux bornes du GBF. On ajuste la valeur de R afin d obtenir une tension d amplitude E /. Celle-ci est obtenue pour une valeur R= R c = 5 Ω.. Schématiser les deux montages utilisés.. Déterminer les valeurs de E m et R g. B. Mesure de l impédance d entrée d un oscilloscope On modélise l impédance d entrée d un oscilloscope par une résistance R montée en parallèle avec un condensateur de capacité C. On ne tiendra pas compte dans cette partie de la résistance interne R g du GBF.. Donner un ordre de grandeur de R. /

. À la fréquence f = khz, on branche aux bornes du GBF une résistance variable R en série avec l oscilloscope. On suppose qu à cette fréquence, le condensateur de capacité C peut être assimilé à un interrupteur ouvert Pour R= Ω, le signal observé à l oscilloscope a une amplitude E ; pour R= MΩ, cette amplitude est divisée par deux. Déterminer la valeur de la résistance d entrée R de l oscilloscope. 3. Pour une fréquence plus élevée f = khz, on réalise le même protocole expérimental et on obtient une tension sinusoïdale d amplitude E / quand la valeur de la résistance R est égale à 63 kω. En déduire la valeur de la capacité C. C. Mesure d impédances par la méthode des ponts On cherche à mesurer les caractéristiques électriques (L, C, R ) de différents dipôles. Le pont ci-contre est alimenté par un générateur parfait de pulsation ω. I. Condition d équilibre du pont Le pont est équilibré si le courant circulant dans la branche BD est nul, c est-à-dire si la tension U est nulle. BD Montrer que la condition d équilibre du pont s écrit ZZ3= ZZ4. /

II. Pont de Hay Le dipôle d impédance Z est une bobine de résistance R et d inductance L. Les branches BC et AD contiennent des résistances P et Q. La branche DC contient, montés en série, un condensateur de capacité C et une résistance r.. Écrire les expressions des impédances Z et Z 3.. Déduire R et L des valeurs de P, Q, r, C et ω pour lesquelles l équilibre du pont est réalisé. 3 Calculer R et L si ω=, rad s, P= kω, Q= 3 kω, r=,4 kω et C= 5 nf. III. Pont de Maxwell Le dipôle d impédance Z 3 correspond maintenant à un condensateur de capacité C et une résistance r, montés en parallèle. Les autres branches sont les mêmes que dans la partie précédente.. L équilibre étant obtenu, calculer R et L en fonction de P, Q, r et C.. En déduire les valeurs de r et C. IV. Pont de Wien Les branches BC et DC contiennent des résistances P et Q. Le dipôle d impédance Z correspond à un condensateur C en série avec une résistance R. La branche AD contient un condensateur C en parallèle avec une résistance R.. Établir, à l équilibre du pont, les expressions de R et C. On posera x = RCω. 3/

. Calculer les valeurs de R et C. 3 3 Données : R = 5 Ω, C = µ F, P=, Q et ω=, rad s. Problème : Quartz et électronique Le silicium est, après l oxygène, l élément le plus abondant de la planète. Il représente, en masse, 7 % de la lithosphère. La silice est de l oxyde de silicium SiO. Le quartz, dont les propriétés sont très intéressantes pour réaliser des horloges électroniques, est une forme particulière de cristal de silice. Il présente des propriétés physiques très intéressantes : la piézoélectricité. Quand on comprime un morceau de quartz dans une direction particulière, une tension apparait aux bornes du cristal (c est l effet piézoélectrique). Réciproquement, quand on applique une tension aux bornes d un quartz, ce dernier se déforme proportionnellement à la tension électrique (c est l effet piézoélectrique inverse). Le quartz est très intéressant pour l électronique car on parvient à réaliser des circuits oscillants, à base de résonateur à quartz, très stables dans le temps. Actuellement, le quartz est remplacé par certaines céramiques piézoélectriques. A. Modèle électromécanique du résonateur à quartz Un morceau de quartz est taillé sous forme de cylindre mince, de diamètre d =, cm et d épaisseur e= µ m. Des électrodes en or sont déposées sur les faces circulaires du quartz (on suppose que chaque face est totalement métallisée) (figure ci-contre). On parle d électrodes de connexion. On a ainsi réalisé un condensateur plan. D un point de vue mécanique, lorsque l on soumet le disque piézoélectrique à une tension sinusoïdale V( t) V cos( ωt) =, il va être, dans le cadre d une approximation linéaire, le siège d une vibration mécanique sinusoïdale sous l effet d une force extérieure proportionnelle à cette tension. Modélisation proposée : un élément de masse m du corps piézoélectrique, placé à une distance x de son point de repos, est soumis aux forces suivantes, toutes orientées selon un axe ( Ox ) que l on ne précise pas ici : 4/

une force de rappel type élastique kx ( k> ) qui a pour origine la rigidité du matériau ; des frottements supposés proportionnels à la vitesse et de la forme dx h d t ( h> ) ; une force due à l effet piézoélectrique β V( t) ( β> ) ; le poids est négligé.. En appliquant la loi de la quantité de mouvement au petit élément de masse m dans le référentiel du laboratoire supposé galiléen, établir l équation différentielle vérifiée par x( t ) en supposant que le mouvement se fasse selon l axe ( Ox ). D un point de vue électrique, la charge totale q apparaissant sur les électrodes planes a deux origines : les deux faces planes du disque forment un condensateur de capacité q( t ) ; C P, d où une charge l effet piézoélectrique provoque l apparition d une charge q proportionnelle à x : ( ) γ ( ) q t = x t. εε rs. La capacité d un condensateur plan s écrit CP= où S est la surface d une e électrode, e l épaisseur du condensateur, ε la permittivité du vide ( ε = 8,85 F m ) et ε r la permittivité relative du quartz ( ε r =,3). a. Estimer alors la capacité C P appelée capacité de connexion. b. Quelle est la relation entre la charge q, la capacité C P et la tension V( t )? 3. En reprenant l équation différentielle obtenue pour x( t ), écrire l équation différentielle vérifiée par la charge q( t ). 5/

4. Considérons le circuit représenté sur la figure ci-contre. Montrer que la charge q( t ) est équivalente à la charge d un condensateur de capacité C S dans le circuit série R, L, C S dont la tension aux bornes est V( t ). On donnera alors les expressions de R, L et C S en fonction de m, h, β, γ et k. B. Impédance équivalente On considère ici négligeable la résistance R précédente. Le schéma électrique correspondant est indiqué sur la figure ci-contre. Pour les applications numériques, on prendra L= 5 mh, C S=,8 pf, C P= 8, pf. On se placera toujours en régime sinusoïdal forcé (les grandeurs dépendront de la pulsation ω )..a. Déterminer l impédance complexe Z AB du dipôle équivalent entre A et B. Montrer qu on peut l écrire Z j ωr AB= ω. On donnera, en fonction de L, αω ω ω a C P et C S les expressions de α, ω a et ω r. b. Montrer que a r ω > ω.. Donner les valeurs numériques des fréquences f a et f r correspondant respectivement aux pulsations ω a et ω r. 6/

3. Étudier le comportement inductif ou capacitif du quartz en fonction de la fréquence. On rappelle qu un dipôle a un comportement inductif (respectivement capacitif) si la partie imaginaire de son impédance est positive (respectivement négative). 4. Tracer l allure de ZAB= ZAB, module de l impédance complexe du quartz, en fonction de la fréquence. C. Étude expérimentale de la résonance On désire étudier la réponse fréquentielle du quartz. On l insère pour cela dans un circuit comportant un GBF de résistance de sortie R g, une résistance R v variable, et un oscilloscope. Dans cette partie, on néglige toujours la résistance du quartz, sauf dans la question 3.. On réalise alors le montage de la figure ci-contre. VS. Calculer le rapport de la tension de sortie V S à la tension d entrée V E ( H= ) V en fonction de R v et de Z AB. E. On choisit, pour chaque fréquence, la résistance R v de telle façon que H =. Que vaut alors le module de l impédance du quartz en fonction de R v? 3.a. Autour du pic de résonance d intensité situé vers f r = 796 khz, on mesure une bande passante de 5 Hz. Quelle est la valeur numérique du facteur de qualité? Lωr b. En supposant que le facteur de qualité soit donné par la relation Q=, R estimer la valeur de la résistance R du quartz. 7/

D. Principe d une montre à quartz Une horloge comprend un oscillateur et un système permettant de compter les oscillations. Le quartz utilisé possède une fréquence de résonance f = 3768 Hz. Cela signifie que 3768 fois par seconde une impulsion électrique est émise par le circuit oscillant. Un dispositif électrique doit compter les impulsions. Ces compteurs fonctionnent dans la technologie binaire (suite de et de ). Une impulsion électrique correspond à la valeur. La valeur correspond à aucun signal électrique.. Compteur modulo Un compteur modulo fournit en sortie une impulsion chaque fois qu il reçoit impulsions en entrée. Le signal de fréquence f fourni par le circuit à quartz est envoyé à l entrée de ce compteur. Quelle est alors la fréquence du signal de sortie?. Cascade de compteurs modulo a. Écrire le nombre 3768 sous la forme k où k est un entier naturel. b. Quel est le nombre de compteurs modulo qu il est nécessaire d utiliser afin de commander le chiffre des secondes? Problème 3 : Impédance d une bobine On étudie une bobine d inductance L et de résistance r. On associe en série avec cette bobine, un résistor de résistance R= 4Ω et un condensateur de capacité C= µ F. Le GBF (générateur basses fréquences) est réglé pour délivrer une tension sinusoïdale de pulsation ω. Deux tensions sont visualisées sur un oscilloscope numérique. 8/

On étudie le filtre pour lequel la tension d entrée est u e et la tension de sortie u R.. Représenter les schémas équivalents à basse puis à haute fréquence. En déduire la nature du filtre.. Exprimer la fonction de transfert H en fonction de r, RLC,,, ω. Hmax 3. Mettre H sous la forme H=. On exprimera littéralement ω ω + jq ω ω H max, le paramètre ω ainsi que le facteur de qualité Q de ce circuit en fonction de r, R, LC,. La figure 5 représente la réponse en gain de ce filtre. 9/

4. Déterminer, à partir du graphe et des données initiales, les valeurs de r et L. Problème 4 : Action d'un filtre sur un signal périodique Un filtre a pour fonction de transfert H = + j ω ω a) Quelle est la nature du filtre? Quelle est la fréquence de coupure? On donne ω =,. 5 rad.s -. Trouver v S en régime forcé et commenter éventuellement le résultat sachant que v e vaut successivement (v et v sont des constantes) : b) v e (t) = v cos(ω t) ; c) v e (t) = v cos(ωt); d) v e (t) = v cos(ω t) + v ; e) v e (t) = v cos(ω t) + v cos(ω t); f) v e (t) est le créneau représenté ci-dessous, de période T = - s ; /

g) v e (t) est le créneau représenté ci-dessous, de période T = -5 s. Problème 5 : Filtre linéaire ou non? On envoie sur différents filtres le signal e(t) dont le spectre est donné ci-dessous. Les spectres des signaux de sortie des filtres numéro, et 3 sont donnés ci-dessous. a) Conclure quant à la linéarité des différents filtres. b) Pour les filtres linéaires, donner leur nature. On proposera des ordres de grandeur pour leurs caractéristiques. Problème 6 : Exemple de filtrage On considère le filtre représenté en figure ci-dessous. On donne les valeurs : R = 8 Ω, L = mh et C = μf, et on pose ω LC =. /

a) Par un raisonnement qualitatif, donner la nature du filtre. vs b) Déterminer la fonction de transfert H(jω) = v c) Tracer la courbe H(jω). En déduire l'ordre de grandeur de la pulsation de coupure. Le filtre est alimenté par une fonction périodique v e (t) de fréquence f = = Hz, représentée ci- T dessous. On appelle n= e. T f α = le rapport cyclique. On décompose e(t) sous la forme : T + π e( t) = c + cn cos( nωt + Φn ) avec ω =, c = αv et T V cn = sin( nπα ). nπ d) On se propose de déterminer le signal de sortie s(t). Expliquer pourquoi la tension de sortie s(t) est sensiblement constante dans le temps. Déterminer la valeur s m de cette constante en fonction de V et a. e) Vérifier que, pour obtenir un ordre de grandeur convenable de l'ondulation résiduelle de la tension de sortie s, il suffit de ne considérer dans le calcul que le fondamental dans la série de Fourier. On calculera son rapport avec l'harmonique n = pour 3 α =. 4 f) Déterminer alors l'ondulation Δs = s max - s min de la tension de sortie. En déduire le taux s d'ondulation. Calculer sa valeur numérique. s m /