On s intéresse à la modélisation, l étude mathématique et la simulation numérique d un aspect particulier de la circulation sanguine : le pouls.

Documents pareils
ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Chapitre 7: Dynamique des fluides

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

OM 1 Outils mathématiques : fonction de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Fonctions de plusieurs variables

Caractéristiques des ondes

TSTI 2D CH X : Exemples de lois à densité 1

Chapitre 1 Régime transitoire dans les systèmes physiques

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

F411 - Courbes Paramétrées, Polaires

Chapitre 2 Le problème de l unicité des solutions

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

TP 03 B : Mesure d une vitesse par effet Doppler

Modélisation et Simulation

Oscillations libres des systèmes à deux degrés de liberté

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

Quantité de mouvement et moment cinétique

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Mesure de la dépense énergétique

FICHE 1 Fiche à destination des enseignants

Circuits RL et RC. Chapitre Inductance

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Correction du baccalauréat ES/L Métropole 20 juin 2014

PHYSIQUE Discipline fondamentale

Modélisation et simulation du trafic. Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005

3 Approximation de solutions d équations

Commun à tous les candidats

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

Premier principe de la thermodynamique - conservation de l énergie

TD 9 Problème à deux corps

I - Quelques propriétés des étoiles à neutrons

Continuité d une fonction de plusieurs variables

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Exemples de dynamique sur base modale

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Cours 7 : Utilisation de modules sous python

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

ELEC2753 Electrotechnique examen du 11/06/2012

Correction du Baccalauréat S Amérique du Nord mai 2007

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

TP 3 diffusion à travers une membrane

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Conseils en Ingénierie mécanique

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé

Fonctions de deux variables. Mai 2011

PHYSIQUE 2 - Épreuve écrite

FORMULAIRE FORMULAIRE

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Le modèle de Black et Scholes

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Nombre dérivé et tangente

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Qu est-ce qu une probabilité?

Chapitre 5. Le ressort. F ext. F ressort

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

Le produit semi-direct

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Algorithmes pour la planification de mouvements en robotique non-holonome

Mesures de très faibles vitesses instantanées par échographie Doppler

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Approximations variationelles des EDP Notes du Cours de M2

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

Théorème du point fixe - Théorème de l inversion locale

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

La fonction exponentielle

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

III- Raisonnement par récurrence

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

Continuité et dérivabilité d une fonction

Amphi 3: Espaces complets - Applications linéaires continues

Chapitre 1: Facteurs d'échelle

Repérage d un point - Vitesse et

3. Artefacts permettant la mesure indirecte du débit

TP : Suivi d'une réaction par spectrophotométrie

Test : principe fondamental de la dynamique et aspect énergétique

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Transcription:

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option B : calcul scientifique (public 2008) AVOIR LES ONDES DANS LE SANG Résumé : On s intéresse à la modélisation et au calcul numérique du pouls sanguin Thème applicatif, mots clefs : Équations aux dérivées partielles, méthode des différences finies Il est rappelé que le jury n exige pas une compréhension exhaustive du texte Vous êtes laissé(e) libre d organiser votre discussion comme vous l entendez Des suggestions de développement, largement indépendantes les unes des autres, vous sont proposées en fin de texte Vous n êtes pas tenu(e) de les suivre Il vous est conseillé de mettre en lumière vos connaissances à partir du fil conducteur constitué par le texte Le jury appréciera que la discussion soit accompagnée d exemples traités sur ordinateur On s intéresse à la modélisation, l étude mathématique et la simulation numérique d un aspect particulier de la circulation sanguine : le pouls 1 Modélisation Pour aborder rapidement un phénomène d une telle complexité, on va devoir procéder à plusieurs simplifications Pour commencer, on va ne considérer qu une seule artère rectiligne de longueur L, modélisée par un tuyau élastique à section circulaire L aire A(t,x) d une section de l artère dépend du temps t et de sa position x sur l axe [0,L] On suppose qu en première approximation le sang est un fluide non visqueux, c est-à-dire que les seules forces qui s exercent en son sein sont des forces de pression Ceci signifie que les forces qui s exercent sur une surface tracée dans le fluide sont colinéaires à la normale intérieure à cette surface, le facteur de proportionalité étant la pression p qui est une fonction scalaire positive de la position dans le fluide et du temps On suppose aussi que la vitesse du sang selon l axe de l artère w(t,x) ne dépend que du temps et de l abscisse sur cet axe En d autres termes, on fait l hypothèse que le fluide s écoule «par tranches» avec un profil de vitesse uniforme sur chaque section de l artère De façon cohérente avec cette hypothèse, on suppose enfin que p ne dépend que de t et de x Considérons une tranche de fluide située entre x 0 et x 0 + x à l instant t 0 Nous allons suivre l évolution de cette tranche de fluide avec le temps On note x ξ (t) l abscisse au temps t t 0 de la section de fluide qui se trouvait à l abscisse ξ à l instant t 0 Cette abscisse est donc solution du problème de Cauchy x ξ (t) = w(t,x ξ(t)), x ξ (t 0 ) = ξ Le volume de la tranche de fluide est donc devenu V(t) = R x x 0 + x(t) x x0 (t) A(t,ξ)dξ Faisons maintenant l hypothèse que le sang Page 1/6 2008AB1X 28

est incompressible Ceci signifie que le volume en question est indépendant du temps Calculons donc la dérivée de ce volume par rapport au temps Il vient, (1) V (t) = A(t,x x0 + x(t))x x 0 + x (t) A(t,x x 0 (t))x x 0 (t)+ Z xx0 + x(t) x x0 (t) A(t,ξ) t Écrivant que V = 0, puis faisant tendre x vers 0, on en déduit une première équation dite de conservation : A (2) t + (Aw) = 0 Écrivons maintenant la loi de Newton sur cette tranche de fluide à l instant t 0 On néglige l accélération de la pesanteur Si désigne la masse volumique du sang, la quantité de mouvement de la tranche à l instant t est donnée par (3) P(t) = Z xx0 + x(t) x x0 (t) w(t,ξ)a(t,ξ)dξ et la loi de Newton nous dit que dp (4) dt (t 0) = F am + F av où F am est la résultante des forces de pression que le reste du fluide exerce sur la section amont ξ = x, F av la résultante des forces de pression qui s exercent sur la section aval ξ = x+ x (on néglige les forces de pression qui s exercent sur la surface latérale de la tranche en contact avec la paroi de l artère) On obtient F am = p(t 0,x)A(t 0,x) et F av = p(t 0,x+ x)a(t 0,x+ x) La loi de Newton nous conduit donc à une seconde équation de conservation (Aw) (5) + (Aw2 + ρ 1 0 Ap) = 0 t Pour compléter le système, il faudrait maintenant décrire le comportement de l artère On n entrera pas ici dans le détail de cette modélisation et l on admettra qu elle conduit à une loi d état A ˆp(A) telle que p(t,ξ) = ˆp(A(t,ξ)) Cette loi d état fait intervenir les caractéristiques de l artère, mais on ne l explicitera pas ici Introduisant les variables A(t,ξ) et q(t,ξ) = A(t,ξ)w(t,ξ), qui n est autre que le flux sanguin à travers chaque section, on obtient finalement à partir de (2) et (5) le système (6) soit encore (7) U = ( ( A, f(u) = q) A t + q ( ) q q 2 t + A + A ˆp(A) q q 2 A + A ˆp(A) ) et = 0, = 0, U t + ( f(u)) = 0 dξ 2008AB1X 28 Page 2/6

Un système de cette forme est ce que l on appelle un système hyperbolique non linéaire (sous certaines hypothèses sur la loi d état ˆp), et son étude théorique se situe bien au delà du niveau de ces quelques lignes 2 Linéarisation Il est hors de question de s attaquer directement au système (7) On remarque dans un premier temps que tout couple (Ā, q) de constantes en est solution On va s intéresser à des solutions approchées de la forme (A 0 + α,q), où A 0 = πr0 2 est l aire de la section de l artère à l équilibre à vide, ce qui signifie que ˆp(A 0 ) = 0, et α et q sont supposées petites, ainsi que leurs dérivées successives Ceci nous conduit à linéariser les équations en (A 0,0), en ne retenant que les termes linéaires par rapport à (α,q) Cette procédure entièrement formelle et qui restera ici sans justification mathématique conduit au système suivant, α (8) t + q = 0, q t + A 0 ˆp (A 0 ) α = 0, Sous l hypothèse, vérifiée dans la pratique, que ˆp (A 0 ) > 0, on voit donc que α et q (et donc aussi p et w) satisfont l équation des ondes (9) avec la vitesse de propagation (10) c = 1 c 2 2 u t 2 2 u 2 = 0, A 0 ˆp (A 0 ) Cette brève analyse met en évidence la présence d un phénomène de propagation ondulatoire des diverses variables (flux, pression, aire de la section), qui correspond au pouls La vitesse c est donc la vitesse de propagation du pouls le long de l artère En écrivant plus en détail la loi d état ˆp, on obtient la formule ˆp (A 0 ) = Eh 2πr 3 0 que nous admettrons ici, où E est un coefficient décrivant la rigidité de l artère, h est l épaisseur de la paroi artérielle et r 0 son rayon à vide En remplaçant dans la formule (10), on obtient la formule dite de Young (11) c = Eh 2 r 0 Dans le cas de l aorte, des valeurs moyennes expérimentales de E = 10 6 N/m 2, h = 0,1cm, r 0 = 1cm et = 10 3 kg/m 3 donnent une vitesse de propagation de l ordre de 7m/s, ce qui correspond assez bien aux observations Pour une fréquence de battements de cœur de 1Hz, la longueur d onde correspondante est de 7m, ce qui est largement supérieur à la longueur de toute artère En d autres termes, à l échelle d une artère, on ne «voit» pas le pouls se propager Page 3/6 2008AB1X 28

3 Étude numérique On se propose d approcher les solutions de (7), complété par des conditions initiales et des conditions aux limites, à l aide d un schéma aux différences finies Pour simplifier, on choisit des unités telles que A 0 = 1, = 1 et on suppose que la loi d état est de la forme ˆp(A) = A 1 On choisit donc un pas de temps t et un pas d espace ) x et l on pose t n = n t et x j = j x, (Ān, pour n et j entiers Soit λ = t/ x On note Ū n, j = j une approximation de U(t q n,x j ), et n, j l on pose ( ) f n, j = q n, j q 2 n, j + Ān, j ˆp(Ā n, j ) Ā n, j Avec ces notations, le schéma proposé, appelé schéma de Lax-Friedrichs, s écrit sous la forme (12) Ū 0, j = U 0 (x j ), Ū n+1, j = 1 2 (Ū n, j+1 +Ū n, j 1 ) λ 2 ( f n, j+1 f n, j 1 ) Comme on travaille ici sur un intervalle d espace fini, [0,L], on est amené à poser x = L M+1 avec M entier Les relations (12) ne sont correctement définies que pour j = 1,,M Or, dans les systèmes hyperboliques, que ce soit au niveau théorique ou au niveau numérique, la question des conditions aux limites à imposer ou pas aux extrémités, c est-à-dire pour j = 0 et j = M+1, est fort délicate Dans notre cas, on va considérer que x = 0 ou j = 0 est l entrée de l artère, et que l aire de la section et le flux de sang y sont imposés par les mouvements du cœur, c est-à-dire U(t,0) = G(t) où G est donnée On posera donc (13) Ū n,0 = G(t n ) On laissera par contre la sortie de l artère x = L ou j = M+1 libre en n imposant aucune condition supplémentaire en ce point Au niveau du schéma, une correction est nécessaire puisque la formule de Lax-Friedrichs n y est pas définie On propose la discrétisation suivante du système hyperbolique : (14) Ū n+1,m+1 = Ū n,m+1 λ( f n,m+1 f n,m ) On trouvera plus bas des résultats de calculs avec le schéma de Lax-Friedrichs (12) corrigé par (13) (14), pour le système non linéaire (7) et pour le système linéaire (8), avec les données initiales et en entrée ( ) ( ) 1 1+0,2sin(10t) U 0 (x) =, G(t) = 0,22 0,2(1,1+sin(10t)) Remarque importante Les courbes qui sont données ci-dessous, le sont uniquement à titre indicatif, afin de donner un idée du type d évolution numérique auquel on doit s attendre dans chaque cas On ne demande pas de les reproduire exactement Calculs effectués avec Scilab Données : L = 2, M = 100 Les graphes montrent le résultat du schéma de Lax-Friedrichs pour A (courbe du haut) et q (courbe du bas) à t = 4,2s 2008AB1X 28 Page 4/6

120 108 096 084 072 060 048 036 024 012 000 00 02 04 06 08 10 12 14 16 18 20 Cas non linéaire : approximation du système (7), t = 0,013 120 108 096 084 072 060 048 036 024 012 000 00 02 04 06 08 10 12 14 16 18 20 Cas linéaire : approximation du système (8), t = 0,02 Suggestions pour le développement Soulignons qu il s agit d un menu à la carte et que vous pouvez choisir d étudier certains points, pas tous, pas nécessairement dans l ordre, et de façon plus ou moins fouillée Vous pouvez aussi vous poser d autres questions que celles indiquées plus bas Il est très vivement souhaité que vos investigations comportent une partie traitée sur ordinateur et, si possible, des représentations graphiques de vos résultats Identifier les points faibles de cette modélisation Écrire le modèle que l on obtient si l on ne néglige plus l action des forces F l sur les parois de l artère Page 5/6 2008AB1X 28

Donner une solution explicite du système linéaire (8) avec la loi d état et les données initiales et en entrée de la partie «Étude numérique» Dans ce même système linéaire, poser z 1 = α + q et z 2 = α q Développer les conséquences que l on peut tirer de ce changement d inconnues par exemple sur la forme des solutions, les données initiales et en entrée Tester la linéarisation du 2 à l aide du schéma numérique en prenant, pour le système non linéaire, des données proches de l équilibre, par exemple U 0 (x) = ( 1 0),G(t) = ( 1+εsin(10t) εsin(10t) avec ε petit Que peut-on voir sur la vitesse de propagation des ondes et l évolution de la forme des graphes? Observer ce qui se passe pour le système non linéaire quand, en gardant le même pas d espace, on augmente le pas de temps à 0,014 Même chose pour le système linéaire pour un pas de temps supérieur à 0,02 Que vaut λ dans ce dernier cas? Interpréter Effectuer des expériences numériques avec d autres données initiales ou en entrée (avec prudence) On pourra éventuellement présenter l évolution en direct sous la forme d une animation et discuter les phénomènes que l on voit apparaître en relation avec le modèle et avec le schéma numérique ) 2008AB1X 28 Page 6/6