2009 - Université Paris VI Master 1 : Introduction au calcul stochastique pour la finance (MM054) TD 3 et 4 : Processus à temps discret et Martingales 1. Questions basiques sur les filtrations 1. Une union de tribus est-elle toujours une tribu? 2. Soit (F n ) une filtration (suite croissante de tribus) d un ensemble Ω. n N F n est-elle toujours une tribu? 3. Que dire d une martingale (resp. d une sous-martingale, d une sur-martingale) par rapport à une filtration constante (i.e. telle que F n = F 0 pour tout n)? Que dire d un temps d arrêt par rapport à une filtration constante? Solution : 1. Non, si Ω = {1, 2, 3}, alors F = {, Ω, {1}, {2, 3}}, G = {, Ω, {1, 2}, {3}} sont des tribus, mais pas F G car {2} = {2, 3} {1, 2} / F G. 2. Non, si l on prend Ω = [0, 1[, et pour tout n, F n = σ([(i 1)/2 n, i/2 n [ ; i = 1,, 2 n ), alors n N F n est l ensemble des unions finies d intervalles du type [(i 1)/2 n, i/2 n [, avec n 0, i = 1,, 2 n. Cet ensemble n est pas une tribu, sinon, il serait égal à la tribu qu il engendre, et la tribu qu il engendre est l ensemble des boréliens de Ω, par densité des nombres dyiadiques dans Ω. 3. C est une suite p.s. constante (resp. p.s. croissante, décroissante) d éléments de L 1 mesurables par rapport à cette tribu. Un temps d arrêt par rapport à une filtration constante est une v.a. à valeurs dans N mesurable par rapport à cette tribu. 2. Conditionnement et indépendance 1. Soient X et Y deux variables aléatoires indépendantes de lois de Bernoulli de paramètres p, q ]0, 1[. On pose Z = 1 {X+Y =0} et G = σ(z). Calculer E(X G) et E(Y G). 2. Ces deux variables aléatoires sont-elles indépendantes? 3. Soient Z, T des variables aléatoires définies sur un même espace de probabilité (Ω, A, P ) à valeurs dans des espaces mesurables quelconques (Ω, A ), (Ω, A ) telles que pour toute sous-tribu B de A, pour toutes fonctions numériques mesurables bornées f, g définies respectivement sur (Ω, A ), (Ω, A ), E(f(Z) B) et E(g(T ) B) sont indépendantes. Montrer que Z ou T est p.s. constante. Solution : 1. Les ensembles {Z = 0} et {Z = 1} forment une partition de Ω qui engendre G. Ainsi, E(X G) = E (X Z = 0) 1 {Z=0} + E (X Z = 1) 1 {Z=1}. Sur {Z = 0}, X = 0 p.s et donc E(X Z = 0) = 0. De plus, E (X Z = 1) = = = P (X = 1) P (X + Y 1) P (X = 1) 1 P (X + Y = 0) p 1 (1 p)(1 q) = p p + q pq. 1
Ainsi, E(X G) = Les rôles de X et Y étant symétriques, E(Y G) = p p + q pq 1 {Z 1}. q p + q pq 1 {Z= 1}. 2. Les variables aléatoires E(X G) et E(Y G) sont donc proportionnelles p.s et non constantes, elles ne sont donc pas indépendantes. 3. Supposons que ni Z, ni T ne soient p.s. constantes. Alors il existe les ensembles mesurables A, B des espaces d arrivée respectifs de Z, T tels que X := 1 A (Z), Y := 1 B (T ) soient des v.a. de loi de Bernouilli de paramètres p, q ]0, 1[. X et Y sont indépendantes (par hypothèse en conditionnant avec la tribu A). Par ce qui précède, l hypothèse est mise en défaut. 3. Rappels : Martingales et sur-martingales. On se place sur une espace de probabilité (Ω, F, P) muni de la filtration F = (F n ) n 0. 1. Soit Y L 1. On définit le processus X = (X n ) n 0 par X n = E(Y F n ). Montrer que X est une F-martingale. 2. Soit (X n ) une sous-martingale et une fonction convexe croissante ϕ : R R telle que pour tout n, ϕ(x n ) L 1. Montrer que (ϕ(x n )) n 0 est une sous-martingale pour F. 3. Soit (X n ) une sous-martingale et K R. Montrer que (X n K) n 0 est une sousmartingale pour F. 4. On suppose que Y L 1 est F N mesurable et on définit Z = (Z n ) n N par Z N = Y et Z n = ξ n E [Z n+1 F n ] pour n N 1 où ξ = (ξ n ) n 0 est F adapté et borné. Montrer que Z est une sur-martingale. 5. Soit (X n ) une martingale et H = (H n ) n 0 un processus F-prévisible borné. On définit V = (V n ) n 0 par V n = n k=1 H k(x k X k 1 ) pour n 0. Montrer que V est une martingale pour F. 6. Montrer qu un processus prévisible intégrable est une martingale ssi il est p.s. constant. 7. Soit (X n ) une martingale L 2 et telle que X n+1 X n est indépendant de F n pour tout n 0. Montrer que W = (W n ) n 0 défini par W n = (X n E [X n ]) 2 Var(X n ) pour n 0 est une martingale. Solution : 1. C est simplement une application de la transitivité de l espérance conditionnelle : si B A sont des tribus, alors pour tout X L 1, E(X B) = E(E(X A) B). 2. On a, pour tout n, E(ϕ(X n+1 ) F n ) ϕ(e(x n+1 F n )) ϕ(x n ) car ϕ est convexe et croissante et (X n ) une sous-martingale. 3. C est une application de la question précédente pour ϕ(x) = x K. 4. a) Z n est clairement adapté et on montre par récurrence décroissante que Z n, supremum de deux fonctions intégrables, est intégrable. b) Pour tout n, Z n E [Z n+1 F n ]. 2
5. Tout d abord, comme somme de produit de v.a. F n -mes, V n est F n -mes. Ensuite, V n est clairement L 1 car les H k sont bornés et les X k sont L 1. Enfin, E(V n+1 F n ) = V n + E(H n+1 (X n+1 X n ) F n ) = V n + H n+1 E(X n+1 X n F n ) = V n. 6. Tout processus p.s. constant est une martingale et réciproquement, si H = (H n ) n 0 un processus F-prévisible et une F-martingale, on a pour tout n, p.s. H n = E(H n+1 F n ) = H n+1. 7. Posons Y n = X n E [X n ]. Ce processus satisfait les mêmes hypothèses que X n en étant en plus centré, et l exercice revient à montrer que Z n := Yn 2 E(Yn 2 ) est une martingale. Notons que l on a alors E(Y n+1 Y n ) = E(Yn 2 ) (commencer par conditionner par F n ). Par ailleurs, par indépendance, on a E((Y n+1 Y n ) 2 F n ) = E((Y n+1 Y n ) 2 ). Il en résulte, en écrivant Z n+1 Z n = Y 2 n+1 Y 2 n E(Y 2 n+1)+e(y 2 n ) = (Y n+1 Y n ) 2 +2Y n+1 Y n 2Y 2 n E(Y 2 n+1)+e(y 2 n ), que l on a E(Z n+1 Z n F n ) = 0. 4. Une application du théorème d arrêt. n On considère une suite X n = ξ i, avec (ξ i ) i 1 v.a.i.i.d. de loi 1(δ 2 1+δ 1 ). On introduit i=1 la filtration F n = σ(ξ 1,..., ξ n ). Soit a < 0 < b entiers. On définit T a,b = inf{n 1 ; X n = a ou b}. 1. Que peut-on dire de (X n ) et de T a,b? 2. Montrer que T a,b est presque sûrement fini (on pourra considérer, pour p N, l événement A p = {ξ p(b a)+1 = = ξ p(b a)+(b a) = 1}). 3. Donner la loi de X Ta,b. Solution : 1. Les ξ i étant indépendants et centrés, X n est une martingale par rapport à la filtration F n. T a,b est un temps d arrêt. 2. Les événements A p sont indépendants, de probabilité > 0, donc on est presque sûr que l un d entre eux se produira. Mais pour tout p, sur A p, T a,b p(b a) + (b a). Donc T a,b est presque sûrement fini. 3. Appliquons le théorème d arrêt : on sait que pour tout n N, E(X Ta,b n) = E(X 0 ) = 0. Par convergence dominée, en faisant tendre n vers l infini, par convergence dominée (car pour tout n, a X Ta,b n b), on obtient, comme T a,b est presque sûrement fini : E(X Ta,b ) = 0, soit ap (X Ta,b = a) + bp (X Ta,b = b) = 0, ce qui permet de conclure, avec P (X Ta,b = a) + P (X Ta,b = b) = 1. 5. Martingales exponentielles. On reprend l exercice précédent et on définit le processus Z = (Z n ) n 0 par Z n = e Xn pour n 0. 3
1. Montrer que Z est une sous-martingale pour F. 2. Trouver un processus F-prévisible B = (B n ) n 0 issu de 1 en 0 tel que U = (U n ) n 0 défini par U n = B n Z n pour chaque n 0 soit une martingale. 3. Donner E [Z n ] pour tout n 0. Solution : 1. Il suffit de remarquer que exp est croissante et convexe. 2. On a X n+1 = X n + ɛ n, donc E(Z n+1 F n ) = Z n E(e ɛ n+1 F n ) = Z n cosh(1) par indépendance. Donc B n = cosh(1) n convient. 3. E(U n ) est constante égale à un, donc E(Z n ) = 1/B n. 6. Jeu de pile ou face et temps d arrêts. On considère deux joueurs qui jouent à pile ou face. Le joueur 1 donne (resp. reçoit) 1 euro si face apparaît (resp. si pile apparaît). Le jeu est répété plusieurs fois. On modélise le jeux comme suit. Soit X = (X n ) n 1 une suite de variables aléatoires i.i.d. de loi de Bernouilli B(1/2) définie sur un espace de probabilité (Ω, F, P). L évènement {X n = 1} signifie que pile est apparu au n-eme tirage. On définit la suite Y = (Y n ) n 0 par Y n = n i=1 (2X i 1) pour n 0. Le processus Y correspond à la richesse du joueur 1 après les différents tirages. Après chaque tirage, les joueurs connaissent la valeur obtenue aux tirages précédents, leur information peut donc être modélisée par la filtration F = (F n ) n 0 où F n = σ(x k, k n). 1. Ecrire la dynamique de Y (i.e. la relation entre Y n+1 et Y n ) et montrer que c est une martingale pour F. 2. Le joueur 1 décide d arrêter de jouer si il a déjà gagné 100 euros où si le nombre de tirages atteint N N et le joueur 2 est disposé à continuer à jouer jusqu à ce que le joueur 1 s arrête : le jeux s arrête au temps τ := inf{n 0 : Y n = 100} N. Montrer que τ est un F-temps d arrêt, i.e. que {τ n} F n pour tout n 0. 3. Quelle est, avec cette stratégie, l espérance de gain du joueur 1? 4. Y a-t-il une stratégie qui donne au joueur 1 une espérance un gain strictement positive en un temps borné? Autrement dit, existe-t-il une v.a. σ à valeur dans N, bornée, telle que pour tout n, {σ = n} F n et telle que E(Y σ ) > 0? 5. Soit M N et κ = inf{n 0 Y n = M}. κ est-elle bornée p.s.? Solution : 1. Les v.a. X i := 2X i 1 sont indépendantes et centrées, la tribu engendrée par X 1,..., X n est F n, donc Y n est une F-martingale. 2. Pour tout n, {τ n} = Ω F n si n N et {τ n} = {Y 1 100} {Y n 100} F n. 3. L espérance de gain du joueur 1 si le jeu s arrête en τ est E(Y τ ). Or on sait (théorème d arrêt) que (Z n := Y n τ ) n est une martingale. De plus, τ = τ N. Donc E(Y τ ) = E(Z N ) = E(Z 0 ) = 0. 4. Une telle v.a. σ est un temps d arrêt, donc (H n := Y n σ ) n est une martingale, et si K entier est tel que σ K p.s., alors, Y σ = H K p.s., donc E(Y σ ) = E(H K ) = E(H 0 ) = 0. Donc il n existe pas de telle stratégie. 5. Par la question précédente, la réponse est non. 4
7. Doubling strategies. On considère un jeu répété avec tirages indépendants et même probabilité de succès que d échec à chaque tirage. A chaque coup, on mise un montant x, que l on remporte si on gagne et que l on paye si on perd. Un joueur, partant de fortune initiale nulle, suit la stratégie suivante. Il joue 1 au premier tour et si sa dette est de D au n ème tirage, il mise un montant 2D au tirage suivant (somme qu il finance par emprunt) et s arrête de jouer la première fois qu il gagne. On suppose que les emprunts sont sans intérêt. On pourra faire comme si les tirages continuent après que le joueur aie arrêté de jouer, mais sa fortune n évolue plus. 1. Modéliser le jeu en introduisant un espace de probabilité muni d une filtration adéquate. Donner l espérance de la fortune du joueur après le n-ème tirage. 2. Montrer que le joueur gagne en un nombre de coups fini avec probabilité 1. Ce nombre est-il presque sûrement borné? Solution : 1. Introduisons une suite (X i ) de vaiid valant ±1 avec probas 1/2, 1/2 représentant les tirages successifs (1 = succès, 1 = échec). Soit τ = min{i/x i = 1}. Alors la fortune du joueur au temps n est (Z n τ ), où Z 0 = 0, Z 1 = X 1 et pour tout n 1, { 3Z n si X n+1 = 1, Z n+1 = Z n sinon. Il faut donc calculer E(Z n τ ). Pour ce faire, on va montrer que (Z n ) est une martingale par rapport à la filtration F n := σ(x 1,..., X n ). Le processus est clairement a dapté, Z n 3 n donc on a intégrabilité, et l égalité de martingale peut se monter en écrivant ou n 1, Z n+1 = Z n (1 2X n+1 ) n 1, Z n+1 = h(z n, X n+1 ) avec h(z, x) = 3z si x < 0 et z si x 0. On en déduit, comme τ est un temps d arrêt, que E(Z n τ ) = E(Z 0 ) = 0. 2. La probabilité que le joueur perde aux coups 1, 2,..., n vaut 2 n. Ces événement sont imbriques les uns dans les autres, donc la probabilité que le joueur perde tout le temps est la limite de cette probabilité, soit 0. Ainsi, le joueur gagne en un nombre de coups fini (égal à τ) avec probabilité 1. τ n est pas presque sûrement borné : sinon, on aurait E(Z τ ) = E(Z 0 ) = 0, ce qui est absurde car Z τ > 0. On peut aussi dire que pour tout n, la proba que τ soit supérieur à n est 2 n > 0. 8. Une réciproque du théorème d arrêt. Soit (X n ) n 0 un processus sur un espace de probabilité filtré (Ω, F, (F n ) n 0, P) intégrable et adapté. Montrer que, si l on a E(X τ ) = E(X 0 ) pour tout temps d arrêt borné τ, alors (X n ) n 0 est une martingale. Solution : On remarque que E(X n ) = E(X 0 ) pour tout n 0. De plus, pour n 0, et A un ensemble F n -mesurable, on considère τ = n1 A + (n + 1)1 A c. Pour tout 0 k n 1, {τ k} = ; {τ n} = A ; et pour tout k n+1, {τ k} = Ω. Donc, τ est un temps d arrêt et il est borné. Donc E(X τ ) = E(X n 1 A ) + E(X n+1 1 A c) = E(X n+1 ) 5
ce qui implique que E(X n 1 A ) = E(X n+1 1 A ). Cette égalité étant vérifiée pour tous les ensembles F n -mesurables, on a E(X n+1 F n ) = X n. 6