1 Entre 15 et 20 cours de 1h30 ; 2 Listes d exercices pour chaque chapitre (environ) ; 3 Le reste pour résolutions et discussions d exercices.

Documents pareils
Chapitre 2. Eléments pour comprendre un énoncé

Logique. Plan du chapitre

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application

Sites web éducatifs et ressources en mathématiques

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Relation entre deux variables : estimation de la corrélation linéaire

Fonctions de plusieurs variables

Maple: premiers calculs et premières applications

Comparaison de fonctions Développements limités. Chapitre 10

Compréhension de lecture

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

Unité 1. Au jour le jour

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Les nombres entiers. Durée suggérée: 3 semaines

Plus petit, plus grand, ranger et comparer

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU

Bases de données documentaires et distribuées Cours NFE04

O, i, ) ln x. (ln x)2

Raisonnement par récurrence Suites numériques

Continuité et dérivabilité d une fonction

Fonctions de deux variables. Mai 2011

Chapitre 6. Fonction réelle d une variable réelle

Limites finies en un point

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Complément d information concernant la fiche de concordance

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Résolution d équations non linéaires

Fluctuation d une fréquence selon les échantillons - Probabilités

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Jean Dubuffet AUTOPORTRAIT II

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Table des matières. I Mise à niveau 11. Préface

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Probabilités sur un univers fini

Feuille d exercices 2 : Espaces probabilisés

Thèmes et situations : Agenda et Emploi du temps. Fiche pédagogique

Introduction à MATLAB R

NOTICE DOUBLE DIPLÔME

F1C1/ Analyse. El Hadji Malick DIA

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Probabilités sur un univers fini

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

I. Cas de l équiprobabilité

Dérivées et différentielles des fonctions de plusieurs variables

FONCTION EXPONENTIELLE ( ) 2 = 0.

Cours Fonctions de deux variables

Rappels sur les suites - Algorithme

Quelques tests de primalité

Chapitre 1 : Évolution COURS

Algèbre binaire et Circuits logiques ( )

SEMAINE DES MATHEMATIQUES

COMMENT REDIGER UN RAPPORT TECHNIQUE?

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Je découvre le diagramme de Venn

Organigramme / Algorigramme Dossier élève 1 SI

Image d un intervalle par une fonction continue

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Commun à tous les candidats

Algorithmique et Programmation, IMA

Chapitre VI - Méthodes de factorisation

Dérivation : Résumé de cours et méthodes

L E C O U T E P r i n c i p e s, t e c h n i q u e s e t a t t i t u d e s

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

L'instruction if permet d'exécuter des instructions différentes selon qu'une condition est vraie ou fausse. Sa forme de base est la suivante:

Peut-on imiter le hasard?

6. Les différents types de démonstrations

Unité 6. Qu est ce que tu prends au petit au petit déjeuner?

Correction du Baccalauréat S Amérique du Nord mai 2007

Plan du cours Cours théoriques. 29 septembre 2014

Rappel sur les bases de données

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Travaux dirigés d introduction aux Probabilités

Le chiffre est le signe, le nombre est la valeur.

CREATION D UNE EVALUATION AVEC JADE par Patrick RUER (

Compression Compression par dictionnaires

Développements limités. Notion de développement limité

Compter à Babylone. L écriture des nombres

Programme de calcul et résolution d équation

Plan du cours : électricité 1

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Indications pour une progression au CM1 et au CM2

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Intégration et probabilités TD1 Espaces mesurés

Représentation des Nombres

3. Conditionnement P (B)

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Continuité d une fonction de plusieurs variables

Suites numériques 3. 1 Convergence et limite d une suite

MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN

Loi binomiale Lois normales

Réalisation de cartes vectorielles avec Word

Problème 1 : applications du plan affine

Transcription:

Logique et ensembles Pierre Mathonet Présentation provisoire Département de Mathématique Faculté des Sciences Liège, le 9 Février 2015 2 Objectifs et règles du jeu ontexte : Pourquoi sommes-nous là? Et le deal. Personnel : P. Mathonet,. Dozot ; Ressources : cours écrit, présentations ; Déroulement : 1 Entre 15 et 20 cours de 1h30 ; 2 Listes d exercices pour chaque chapitre (environ) ; 3 Le reste pour résolutions et discussions d exercices. ontenu : les points les plus utiles du programme du secondaire (et un peu plus), en vue d une utilisation dans le cadre des études de médecine. Examen : sur la matière enseignée, QM, avec aussi des questions de théorie. Page web : www.geodiff.ulg.ac.be Mail : P.Mathonet@ulg.ac.be Je communique par mail. Vérifiez-le souvent. Le test du mercredi 11/2 ut : dispenser les étudiants à qui la remédiation n est pas utile. Matière : celle de la remédiation (que je vais donner) Modalités : 1 Date : jeudi 11 février de 13h à 15h (se présenter à 12h45) 2 Lieu : amphitéatre 500 3 Prendre sa carte d étudiant et de son matériel : bics noirs, crayons, lattes, correcteur 4 La machine à calculer ne sera pas admise. 5 Les 25 questions seront formulées sous forme de QM. 6 Quatre possibilités de réponses pour chaque question, dont exactement une correcte (pas de solution implicite donc) 7 Pas de coefficients de certitude. 8 +1 pour chaque bonne réponse, 0 pour chaque abstention, et -1/3 pour chaque mauvaise réponse. note supérieure ou égale à 10 : remédiation en mathématique supprimée du cursus de remédiation (sauf demande contraire). note inférieure à 10 : on continue ensemble. Les différents contenus Les contenus principaux, dans le désordre. 1 Logique et ensembles 2 Nombres et algèbre 3 Equations du premier et second degré, problèmes 4 Systèmes linéaires et problèmes 5 Géométrie vectorielle et analytique (plane) 6 Trigonométrie (élémentaire) 7 Géométrie métrique (produit scalire, norme,...) 8 Fonctions de référence élémentaires 9 Limites (défnitions et théorèmes de calcul), continuité 10 Dérivées et variations 11 Primitives et calcul intégral 12 Fonctions exponentielles et logarithmes 3 4

5 ssertions logiques Une assertion ou proposition logique est une phrase que l on énonce sous forme affirmative ou négative. Les assertions sont compréhensibles sans ambiguïté et on peut décider si elles sont vraies (V ou 1) ou fausses (F ou 0). 1 ujourd hui, je porte un pull rouge ; 2 3 est un nombre premier ; 3 3 n est pas divisible par 2 ; 4 Il pleut à 8h du matin ; 5 J emporte un parapluie ; 6 Si erlin est en Suisse, alors je viens de Mars. ontre-exemples : 1 Quelle heure est-il? 2 Paris est-elle la capitale de la France? 3 ette phrase est fausse. 4 Je corniflute gauche bien. 6 onnecteurs logiques ut : former de nouvelles assertions à partir d anciennes, Moyen : utiliser les connecteurs logiques. Nous utiliserons les connecteurs suivants. 1 négation (non) ; 2 conjonction (et) ; 3 disjonction (ou) ; 4 implication (si...alors) ; 5 bi-implication (si, et seulement si). Les règles de construction qui donnent la valeur de vérité (0 ou 1) des assertions composées sont données à l aide de tables de vérité. (Négation) La négation Si P est une assertion, alors la négation de P est une assertion, on la note P ou nonp. ette assertion est vraie si P est faux et elle est fausse si P est vrai. La table de vérité du connecteur ( non ) est Exemples P P 0 1 1 0 ou encore P P F V V F 1 P : ujourd hui, je porte un pull rouge ; P : ujourd hui, je ne porte pas un pull rouge ; 2 P : 3 est un nombre premier ; P : 3 n est pas un nombre premier ; 3 Q : 3 n est pas divisible par 2 ; Q : 3 est divisible par 2 ; 4 R : J emporte un parapluie ; R : Je n emporte pas de parapluie. Equivalence logique de propositions Une observation : quel que soit P, les propositions P et ( P) veulent dire la même chose, mais ne sont pas écrites de la même façon. Deux propositions logiques P et Q sont logiquement équivalentes si elles ont les mêmes tables de vérité. On note alors P Q. vec les tables de vérité P P ( P) 0 1 0 1 0 1 On a donc P ( P), quel que soit P. Exemple : dire il n est pas vrai que je n emporte pas de parapluie ou dire j emporte un parapluie, c est dire la même chose. On peut toujours remplacer (dans une expression logique) une assertion par une assertion logiquement équivalente. 7 8

La conjonction (et) La disjonction (ou) Si P et Q sont deux assertions, alors la conjonction de P et Q est une assertion, notée P Q ou P et Q. Elle est vraie quand P est vrai et Q est vrai (simultanément) et fausse sinon. La table de vérité du connecteur ( et ) est P Q P et Q 0 0 0 0 1 0 1 0 0 Si P et Q sont deux assertions, alors la disjonction de P et Q est une assertion, notée P Q ou P ou Q. Elle est vraie quand au moins l une des deux assertions P et Q est vraie et fausse sinon. La table de vérité du connecteur ( ou ) est donc P Q P ou Q 0 0 0 0 1 1 1 0 1 9 1 Il pleut et je porte un pull rouge ; 2 J emporte un parapluie et 3 est un nombre premier. 10 On remarque que P Q est vraie dans tous les cas, sauf si P et Q sont faux simultanément. ttention : le ou n est pas exclusif. 1 Il pleut ou je porte un pull rouge ; 2 J emporte un parapluie ou 3 est un nombre premier. Négations, et et ou Implications Proposition 11 On a les équivalences logiques suivantes 1 (P Q) ( P) ( Q) ; 2 (P Q) ( P) ( Q) ; La négation de Il pleut ou je porte un pull rouge est il ne pleut pas et je ne porte pas de pull rouge. La négation de Il pleut et on est mardi est il ne pleut pas ou on n est pas mardi. Preuve de la première équivalence : P Q P Q (P Q) P Q ( P) ( Q) 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 12 Si P et Q sont deux assertions, alors P implique Q est une assertion. On la note P Q. Elle est vraie si Q est vrai chaque fois que P est vrai. La table de vérité du connecteur est donc P Q P Q 0 0 1 0 1 1 1 0 0 L implication P Q est vraie dans tous les cas sauf si P est vrai et Q est faux. Donc, quand P est faux, alors P Q est vrai. 1 Si il pleut à 8h, alors j emporte un parapluie. 2 Si on est jeudi, je porte un pull rouge. ou Tous les vendredis, je porte un pull rouge. 3 Si le prof mesure 3m, alors il est milliardaire.

13 i-implications ou équivalences Si P et Q sont deux assertions alors P bi-implique Q, ou P est équivalent à Q est une assertion. On la note P Q. Elle est vraie quand P implique Q et Q implique P sont vrais. La table de vérité est P Q P Q 0 0 1 0 1 0 1 0 0 1 J ai un parapluie si et seulement si il pleut ; 2 Je porte un pull rouge si et seulement si on est vendredi. La deuxième est vraie soit si je n ai pas de pull rouge et on n est pas vendredi, soit si j ai un pull rouge et on est vendredi. 14 Le signe se lit pour tout ; Le signe se lit il existe. Exemple : Quantificateurs x : P, y : Q veut dire pour tout x tel que P (soit vrai), il existe un y tel que Q (soit vrai). ttention, la négation du quantificateur s écrit avec le quantificateur et vice-versa. Exemple : Nier Tous les moutons d Irlande sont noirs ; Nier Il existe un cheval de course bon marché L ordre des quantificateurs a de l importance : comparez Pour tout garçon dans la salle, il existe une fille dans la salle telle que... Il existe une fille dans la salle telle que pour tout garçon dans la salle... Les parenthèses On peut composer les connecteurs pour créer des assertions compliquées. Il faut alors mettre des parenthèses : Par exemple P Q R n a pas de sens, car (P Q) R et P (Q R) ne sont pas équivalentes. P Q R P Q (P Q) R Q R P (Q R) 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 Tautologies Soient P et Q deux assertions. On peut calculer la table de vérité de L assertion ((P Q) et P) Q. P Q P Q (P Q) et P ((P Q) et P) Q 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 ((P Q) et P) Q. est donc toujours vraie, dans tous les cas de figure pour P et Q. est une tautologie. Dans le langage commun, cette tautologie donne lieu au raisonnement suivant : si chaque vendredi, j ai un pull rouge, et si on est vendredi, on peut logiquement conclure que j ai un pull rouge. 15 16

Théorie (naïve) des ensembles Un ensemble est une collection d objets possédant une ou plusieurs propriétés communes. es objets sont les éléments de l ensemble. Les éléments peuvent par exemple être donnés 1 de manière explicite, par des symboles tels que 1, 2, 3, a, b... ; 2 par un symbole générique affecté d un ou plusieurs indices, x i (i I) où I est un autre ensemble. Un ensemble peut être donné 1 de manière explicite, en donnant tous ses éléments, (définition en extension) comme = {1, 2, 3, 4} ou = {a, b, c, d, e} ; 2 de manière explicite, mais sans donner tous ses éléments, comme = {1, 2,..., 100}, ou encore D = {a, b, c,..., z}. 3 en décrivant la (ou les) propriété(s) caractérisant ses éléments, (définition en compréhension) comme dans {n : n est entier, pair et compris entre 1 et 99}. Propriétés des ensembles 1 Ensemble vide : Il existe un ensemble qui ne contient pas d éléments, l ensemble vide, noté. 2 ppartenance : on écrit x (x appartient à ) pour signifier que x est un élément de l ensemble. 3 Inclusion : on écrit ( est inclus dans, ou est un sous-ensemble de ) quand tout élément de est aussi un élément de. Exemple : = {2, 4, 6, 8}, = {n : n est pair}. 4 Egalité : on écrit = ( et sont égaux) quand les ensembles et ont les mêmes éléments. ela se traduit aussi par et. 17 18 Union, intersection, différence Soient et deux ensembles. 1 Union : l ensemble est formé par les éléments qui appartiennent à ou à. On a donc, d un point de vue logique, quel que soit l objet x, (x ) ((x ) ou (x )). 2 Intersection : l ensemble est formé par les éléments qui appartiennent à et. On a donc, d un point de vue logique, quel que soit l objet x, Diagrammes de Venn 1 On représente l ensemble par une courbe fermée, cercle ou une ellipse (appelées parfois patates). Si on veut marquer qu un objet est un élément de l ensemble, on le place dans la région correspondante. On représente plusieurs ensembles (généralement 2, 3 ou 4) par plusieurs courbes fermées. Soit : l ensemble des nombres entiers pairs et strictement positifs. 19 (x ) ((x ) et (x )). 3 Différence : l ensemble \ est formé par les éléments qui appartiennent à et pas à. On a donc, d un point de vue logique, quel que soit l objet x, (x \ ) ((x ) et (x )). 20 gauche, on marque que 2 et 4 sont des éléments. 1. John Venn (1834-1923) les formalisa en 1880. 2 4

Deux ensembles Deux ensembles? Deux patates. Soit l ensemble des nombres pairs strictement positifs ; Soit l ensemble des nombres premiers. pplications des diagrammes de Venn On colorie les zones qui nous intéressent. gauche, on a représenté la situation générale, au milieu, on a colorié la zone représentant, à droite la zone représentant. 4 3 7 2 6 3613 9 On peut colorier la zone représentant ( ) : gauche, la situation générale, à droite, on a marqué quelques points. On peut constater ( ) = ( ) ( ). 21 22 Un exemple Utiliser les diagrammes de Venn pour se convaincre que si, alors, quels que soient les ensembles, et. La situation où on a se représente à l aide de diagrammes de Venn de la manière suivante. On représente alors l ensemble de la manière la plus générale comme dans la figure de gauche. u milieu, on peut colorier et à droite. 23 On constate alors l inclusion sur le diagramme de Venn.