TABLEAUX STATISTIQUES ET GRAPHIQUES

Dimension: px
Commencer à balayer dès la page:

Download "TABLEAUX STATISTIQUES ET GRAPHIQUES"

Transcription

1 Dans ce cours, on considèrera des échantillons de taille N, c est-à-dire N individus ω 1,, ω N issus d une population Ω On notera en majuscule (généralement X ou Y ) les variables statistiques Les modalités des variables statistiques seront notées avec la minuscule correspondante et indicées, s il y a lieu, par le numéro de la modalité dans le cas discret ou de la classe (ie un ensemble de modalité) dans le cas continue La modalité prise par la variable X pour l individu ω n sera notée X(ω n ) 1 TABLEAUX STATISTIQUES 11 Tableau brut On considère une étude statistique portant sur un échantillon de taille N indivus On mesure plusieurs variables statistiques, qui peuvent être qualitatives ou quantitatives La récolte initiale des données conduit à un tableau brut de la forme Individus variable 1 variable 2 ω 1 X(ω 1 ) Y (ω 1 ) ω 2 X(ω 2 ) Y (ω 2 ) ω N X(ω N ) Y (ω N ) 12 Tableau de contingence Pour les variables qualitatives, on peut construire un tableau de contingence Ce tableau résume comment une caractéristique dépend d une autre Pour des raisons pratiques, on se limite généralement au tableau de contingence de deux variables qualitatives X et Y de modalités respectives (x 1,, x i,, x I ) et (y 1,, y j,, y J ) Ce tableau donne le nombre d individus possédant simultanément la modalité x i de la variable X et la modalité y j de la variable Y Un tel tableau se présente sous la forme suivante, pour un échantillon de taille N : Y y X 1 y j y J x 1 N 11 N 1j N 1J N 1 x i N i1 N ij N ij N i x I N I1 N Ij N IJ N I N 1 N j N J N où N ij désigne le nombre de fois où X à pris la modalité x i et Y la modalité j Autrement dit, N ij représente le nombre d individus qui possède à la fois la caractéristique x i et la caractéritique y j On définit les quantités 1

2 Statistiques descriptives N i = J N ij N j = j=1 qui représentent respectivement le nombre d individus qui possèdent la modalitée x i et le nombre d individus avec la modalitée y j 13 Tableau des fréquences 131 Variable discrète On considère une variable qualitative ou qualitative discrète X à valeurs dans {x 1,, x K } Si X est quantitative ou qualitative ordinale, on suppose ses modalités ordonnées tels que x 1 < < x K On commence par définir les quantités descriptives de bases Définition 1 (Effectif ou fréquence absolue) On appelle effectif ou fréquence absolue de la modalité x le nombre N d individus qui ont pris la modalité x : N = X(ω) ω Ω X(ω)=x Remarque 1 N = N Définition 2 (Fréquence relative) On appelle fréquence relative (ou simplement fréquence) de la modalité x le nombre f définit par : f = N N Définition 3 (Fréquence relative cumulée) On appelle fréquence relative cumulée (ou simplement fréquence cumulée) de la modalité x le nombre F (c) définit par : Remarque 2 F (c) K = K f = 1 =1 F (c) = f i=1 On peut aussi définir les effectifs cumulés : Définition 4 (Effectifs cumulés) On appelle effectif cumulé de la modalité x le nombre E définit par : E = N = NF (c) i=1 La distribution des N observations de X peut être présentée sous la forme d un tableau de fréquence où figurent, pour chaque modalité x, l effectif N, la fréquence relative f et la fréquence cumulée F (c) : modalité effectif fréquence relative fréquence cummulée I i=1 N ij x 1 N 1 f 1 F (c) 1 x N f F (c) x K N K f K 2 F (c) K

3 Statistiques descriptives TABLEAUX STATISTIQUES ET GRAPHIQUES Les fréquences relative et cumulée peuvent être donnée sous forme de pourcentage 132 Variable continue Dans le cas où la variable X est continue, la réalisation d un tableau de fréquence nécessite au préalable une répartition en classes des données On doit définir a priori le nombre de classes K et l amplitude (ou l étendue) de chaque classe Ce choix doit résulte d un compromis entre deux objectifs antagonistes : résumer les données (K ne doit pas être trop grand) sans perdre l information pertinente (K ne doit pas être trop petit) Pour ce faire, un moyen «simple» est de diviser l étendue des données en plusieurs intervalles de même longueur, puis l on regroupe les classes d effectifs trop petit (ie moins de 5 individus) On peut utiliser une des deux règles suivantes pour déterminer le nombre de classes : Règle de Sturge: K = log 10(N) Règle de Yule: K = 25N 1 4 L intervalle entre les classes est alors donné par Longueur de l intervalle = x max x min K où x max (resp x min ) désigne la plus grande (res la plus petite) valeur de prise par les X(ω), ω Ω On note C l ensemble des individus qui appartiennent à la classe K Définition 5 (Amplitude) L amplitude L de la classe est donnée par L = max{x(ω), ω C } min{x(ω), ω C } c est-à-dire la longueur de l intervalle On peut alors définir la densité d une classe : Définition 6 (Densité) La densité d de la classe est donnée par d = N L Ce découpage en classes permet de se ramener au cas discret décrit précédemment pour obtenir le tableau de fréquences, en adaptant directement les définitions vues précédemment, 2 REPRÉSENTATIONS GRAPHIQUES Lorsqu on observe un caractère sur des individus, les tableaux de chiffres définis précédemment sont peu parlant Ils sont cependant très utiles pour construire des graphiques divers, qui permettent d un seul coup d oeil d avoir une idée de la manière dont se répartissent les individus 21 Variables qualitatives On considère une variable statistique qualitative X prenant K modalités x 1,, x,, x K La seule représentation qui nous intéresse est celle des effectifs N ou des fréquences f On utilise le tableau de fréquence pour construire les graphiques définis par la suite 3

4 Statistiques descriptives 211 Diagramme en barre ou tuyaux d orgue Les modalités de la variable sont placées sur une droite horizontale (attention : si la variable est nominale, ne pas orienter cette droite car les modalités n ont pas de relation d ordre) Les effectifs ou les fréquences sont placées sur un axe vertical La hauteur du baton est proportionnelle à l effectif Les tuyaux ont une certaine épaisseur pour qu il n y ait pas de confusion avec les diagrammes en bâtons réservés à la variable quantitative discrète Il doit y avoir un espace entre les tuyaux pour ne pas les confondres avec les histogrammes réservés aux variables quantitatives continues FIG 1 Diagramme en barres 212 Diagramme en secteurs ou «camenbert» L effectif total est représenté par un disque Chaque modalité est représentée par un secteur circulaire dont la surface (pratiquement : l angle au centre) est proportionnelle à l effectif correspondant Si ce type de graphique est couramment utilisé dans les médias, c est une très mauvaise représentation car il présente un risque d interprétation : l oeil distingue moins bien les différences entre secteurs (d un camembert) qu entre hauteurs (d un diagramme en barre) 22 Variables quantitatives Avant toute tentative de représentation, il y a lieu de distinguer entre variable discrète et variable classée (regroupements en classes) Si pour une variable continue le regroupement en classes est nécessaire, lorsque les modalités d une variable discrète sont trop nombreuses il est préférable de regrouper des modalités pour obtenir une variable classée, afin que les graphiques synthétisent l information et restent lisibles On considère une variable statistique quantitatives X prenant ses valeurs parmis K modalités ou classes x 1,, x,, x K On suppose les modalités (ou classes) ordonnées telles que x 1 < x 2 < < x K On utilise le tableau de fréquence pour construire les graphiques définis par la suite Deux types de graphiques sont intéressants à représenter : (1) Les diagrammes différentiels qui mettent en évidence les différences d effectifs (ou de fréquences) entre les différentes modalités ou classes 4

5 Statistiques descriptives TABLEAUX STATISTIQUES ET GRAPHIQUES FIG 2 Diagramme en secteurs (2) les diagrammes cumulatifs qui permettent de répondre aux questions du style «combien d individus ont pris une valeur inférieure (ou supérieure) à tant?» 221 diagrammes différentiels Variables discrètes Pour les caractères quantitatifs discrets, la représentation graphique différentielle est le diagramme en bâtons où la hauteur des bâtons correspond à l effectif N (ou la fréquence relative f ) associé à chaque modalité du caractère x Les valeurs discrètes prises par les modalités sont placées sur l axe des abscisses, ordonnées comme il se doit Les effectifs ou fréquences sont placées sur l axe des ordonnées Les axes sont fléchés La hauteur du baton est proportionnelle à l effectif ou la fréquence Attention : bien faire des batons et non des tuyaux ou des histogrammes FIG 3 Diagramme en batons Variables continues Lorsque les caractères quantitatifs sont continus, on utilise l histogramme Un histogramme est ensemble de rectangles contigus où chaque rectangle associé à chaque classe a une surface proportionnelle à l effectif (fréquence) 5

6 Statistiques descriptives de cette classe Si les classes sont d amplitudes égales, alors la hauteur des rectangles est proportionnelle à l effectif de la classes Avant toute construction d histogramme, il faut donc regarder si les classes sont d amplitudes égales ou non Les modalités (continues) sont représentés en abscisses Le cas des classes d amplitudes égales ne pose aucune difficulté car il suffit de reporter en ordonnée l effectif (la fréquence) Si les classes sont d amplitudes différentes, on reporte en ordonnée la densité d = N L FIG 4 Histrograme 222 diagrammes cummulatifs Les diagrammes cummulatifs permettent de visualiser l évolution des fréquences cummulées ou des effectifs cummulés On utilise en général la fonction de répartition empirique dont la courbe correspond à l évolution des fréquences cummulées Elle se définie de la même manière pour les variables quantitatives continues ou discrètes Définition 7 (Fonction de répartition empirique) Soit X une variable statistiques quantitative observée sur un échantillon ω 1,, ω N de taille N issue d une population Ω On appelle fonction de répartition empirique la fonction ˆF : R [0, 1] x 1 N #{i : X(ω i) < x}1 [X(ωi),+ [(x) Pour tout réel x, ˆF (x) est donc la proportion d observations inférieurs ou égales à x La fonction ˆF est une fonction en escalier Le calcul pratique de ˆF s effectue en ordonnant les N observations X(ω 1 ),, X(ω N ) par ordre croissant On note x 1,, x I les I valeurs distinctes obtenues et N i l effectif de x i On a 0 x < x 1 ˆF (x) = F (c) i = 1 i N j=1 N j x i x < x i+1 1 x x I On utilise la fonction de répartition empirique pour répondre aux questions du style : Quel est le nombre (ou le pourcentage) d individus dont la valeur du caractère est inférieure ou égale à x? 6

7 Statistiques descriptives TABLEAUX STATISTIQUES ET GRAPHIQUES FIG 5 Fonction de répartition empirique 7

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Introduction à la statistique descriptive

Introduction à la statistique descriptive Chapitre chapitre 1 Introduction à la statistique descriptive Les méthodes de la statistique descriptive (statistique déductive) permettent de mener des études à partir de données exhaustives, c est-à-dire

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Formation tableur niveau 1 (Excel 2013)

Formation tableur niveau 1 (Excel 2013) Formation tableur niveau 1 (Excel 2013) L objectif général de cette formation est de repérer les différents éléments de la fenêtre Excel, de réaliser et de mettre en forme un tableau simple en utilisant

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

UNE REPRESENTATION GRAPHIQUE DE LA LIAISON STATISTIQUE ENTRE DEUX VARIABLES ORDONNEES. Éric TÉROUANNE 1

UNE REPRESENTATION GRAPHIQUE DE LA LIAISON STATISTIQUE ENTRE DEUX VARIABLES ORDONNEES. Éric TÉROUANNE 1 33 Math. Inf. Sci. hum., (33 e année, n 130, 1995, pp.33-42) UNE REPRESENTATION GRAPHIQUE DE LA LIAISON STATISTIQUE ENTRE DEUX VARIABLES ORDONNEES Éric TÉROUANNE 1 RÉSUMÉ Le stéréogramme de liaison est

Plus en détail

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines Principales fonctionnalités de l outil Le coeur du service suivre les variations de position d un mot-clé associé à une URL sur un moteur de recherche (Google - Bing - Yahoo) dans une locale (association

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

CHAPITRE 1 : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ

CHAPITRE 1 : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ CHAPITRE : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ..Introduction.2. Le point de départ de l analyse micro-économique du consommateur.3. La fonction de demande individuelle.4. Effets

Plus en détail

Documentation Technique du programme HYDRONDE_LN

Documentation Technique du programme HYDRONDE_LN Documentation Technique du programme HYDRONDE_LN Réalisation du programme H.GUYARD Réalisation du matériel électronique C.COULAUD & B.MERCIER Le programme HYDRONDE_LN est un programme qui permet de visualiser

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

CHAPITRE 2. Les variables

CHAPITRE 2. Les variables CHAPITRE 2 Les variables 1. La nature des variables Définition 2.1 (Variable). Une variable est une caractéristique étudiée pour une population donnée. Le sexe, la couleur préférée, le nombre de téléviseurs

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, [email protected] 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R².

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R². Statistiques - Cours Page 1 L I C E N C E S c i e n t i f i q u e Cours Henri IMMEDIATO S t a t i s t i q u e s 1 Gén éralités Statistique descriptive univari ée 1 Repr é s e n t a t i o n g r a p h i

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

SPHINX Logiciel de dépouillement d enquêtes

SPHINX Logiciel de dépouillement d enquêtes SPHINX Logiciel de dépouillement d enquêtes sphinx50frversion4.doc 1 Les trois stades du SPHINX sont ceux que comporte habituellement toute enquête d opinion: Elaboration du questionnaire (fiche outil

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES STATISTIQUES DESCRIPTIVES ORGANISATION DES DONNÉES Etude de population 53 784 56 28 4 13 674 8375 9974 60 Consommation annuelle du lait Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Observatoire Economique et Statistique d Afrique Subsaharienne

Observatoire Economique et Statistique d Afrique Subsaharienne Observatoire Economique et Statistique d Afrique Subsaharienne Termes de référence pour le recrutement de quatre (4) consultants dans le cadre du Projet «Modules d initiation à la statistique à l attention

Plus en détail

Lire ; Compter ; Tester... avec R

Lire ; Compter ; Tester... avec R Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

Débuter avec Excel. Excel 2007-2010

Débuter avec Excel. Excel 2007-2010 Débuter avec Excel Excel 2007-2010 Fabienne ROUX Conseils & Formation 10/04/2010 TABLE DES MATIÈRES LE RUBAN 4 LE CLASSEUR 4 RENOMMER LES FEUILLES DU CLASSEUR 4 SUPPRIMER DES FEUILLES D UN CLASSEUR 4 AJOUTER

Plus en détail

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015.

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème

Plus en détail

Logistique. My Post Business Mode d emploi

Logistique. My Post Business Mode d emploi Logistique My Post Business Mode d emploi Août 2012 Bienvenue chez My Post Business En quoi consiste My Post Business? En vous connectant à la plate-forme www.poste.ch/mypostbusiness dédiée aux clients

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1

Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1 Designer d escalier GUIDE DE L UTILISATEUR Stair Designer-1 Stair Designer-2 Designer d escalier Le Designer d escalier rend facile la réalisation et la mise en place d escaliers sur mesure dans votre

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

TABLE DES MATIERES MENTIONS LEGALES INTRODUCTION CHAPITRE 1 : INSTALLATION DE L ALGORITHME CHAPITRE 2 : EXECUTION & OPTIMISATION DU BACKTEST

TABLE DES MATIERES MENTIONS LEGALES INTRODUCTION CHAPITRE 1 : INSTALLATION DE L ALGORITHME CHAPITRE 2 : EXECUTION & OPTIMISATION DU BACKTEST TABLE DES MATIERES MENTIONS LEGALES INTRODUCTION CHAPITRE 1 : INSTALLATION DE L ALGORITHME CHAPITRE 2 : EXECUTION & OPTIMISATION DU BACKTEST CHAPITRE 3 : UTILISATION DE L ALGORITHME CONCLUSION MENTIONS

Plus en détail

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

Collecter des informations statistiques

Collecter des informations statistiques Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Olivier GARNIER. Conférence de l Observatoire de l Epargne Européenne 19 janvier 2010

Olivier GARNIER. Conférence de l Observatoire de l Epargne Européenne 19 janvier 2010 Olivier GARNIER Conférence de l Observatoire de l Epargne Européenne 19 janvier 2010 20.0% Etats-Unis: rentabilités réelles annuelles moyennes en 2008 selon l'année d'investissement 15.0% 10.0% 5.0% 0.0%

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

OBLIGATION D INSTALLATION D UN GARDE-CORPS

OBLIGATION D INSTALLATION D UN GARDE-CORPS 2 CHAPITRE OBLIGATION D INSTALLATION D UN GARDE-CORPS 2.1. CAS GÉNÉRAL L installation d un garde-corps est obligatoire lorsque la hauteur de chute comptée à partir de la zone de stationnement normal (ZSN)

Plus en détail

LES MODALITES DE CALCUL DE LA PENSION CIVILE

LES MODALITES DE CALCUL DE LA PENSION CIVILE Fiche n 6 LES MODALITES DE CALCUL DE LA PENSION CIVILE Le montant d une pension dépend : - du nombre de trimestres liquidables, - de la durée de services et bonifications nécessaire pour obtenir une pension

Plus en détail

Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1)

Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) 1 Que signifient AON et AOA? Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) Sommaire 1. Concepts... 2 2. Méthode PCM appliquée

Plus en détail

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note

Plus en détail

VOCABULAIRE LIÉ AUX ORDINATEURS ET À INTERNET

VOCABULAIRE LIÉ AUX ORDINATEURS ET À INTERNET VOCABULAIRE LIÉ AUX ORDINATEURS ET À INTERNET Brancher / débrancher l ordinateur de la prise Allumer / éteindre l ordinateur : pour allumer ou éteindre l ordinateur vous devez appuyer sur le bouton On/off

Plus en détail

Infrastructure - Capacity planning. Document FAQ. Infrastructure - Capacity planning. Page: 1 / 7 Dernière mise à jour: 16/04/14 16:09

Infrastructure - Capacity planning. Document FAQ. Infrastructure - Capacity planning. Page: 1 / 7 Dernière mise à jour: 16/04/14 16:09 Document FAQ Infrastructure - Capacity planning EXP Page: 1 / 7 Table des matières Détails de la fonctionnalité... 3 I.Généralités... 3 II.Configuration... 3 III.Vue globale des capacités...3 IV.Vue par

Plus en détail

Initiation à linfographie

Initiation à linfographie Ce support de cours de l Agence universitaire de la Francophonie est distribué sous licence GNU FDL. Permission vous est donnée de copier, distribuer et/ou modifier ce document selon les termes de la Licence

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Infolettre #18 : Les graphiques avec Excel 2010

Infolettre #18 : Les graphiques avec Excel 2010 Infolettre #18 : Les graphiques avec Excel 2010 Table des matières Introduction... 1 Hourra! Le retour du double-clic... 1 Modifier le graphique... 4 Onglet Création... 4 L onglet Disposition... 7 Onglet

Plus en détail

DE LA CAMÉRA SOMMAIRE

DE LA CAMÉRA SOMMAIRE PARAMÉTRAGE DE LA CAMÉRA HIKVISION ISION DS-2CD2732F-IS SOMMAIRE 1 : CONFIGURATION POUR DE L ENREGISTREMENT PERMANENT... 2 1.1Configuration de la caméra... 2 1.1.1 Paramétrage de l adresse IP de la caméra...

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Soulever et porter correctement une charge

Soulever et porter correctement une charge Soulever et porter correctement une charge Sommaire Cette brochure explique comment éviter de se surmener ou d avoir un accident en soulevant et en portant une charge. Le port et le levage d une charge

Plus en détail

LE PETIT RELATION CLIENT. Les pratiques clés en 15 fiches. Nathalie Houver

LE PETIT RELATION CLIENT. Les pratiques clés en 15 fiches. Nathalie Houver LE PETIT 2014 RELATION CLIENT Les pratiques clés en 15 fiches Nathalie Houver Dunod, Paris, 2014 ISBN 978-2-10-070826-0 Table des matières LA PRÉPARATION DE LA RELATION COMMERCIALE FICHE 1 Acquérir la

Plus en détail

Optimiser les e-mails marketing Les points essentiels

Optimiser les e-mails marketing Les points essentiels Optimiser les e-mails marketing Les points essentiels Sommaire Une des clés de succès d un email marketing est la façon dont il est créé puis intégré en HTML, de telle sorte qu il puisse être routé correctement

Plus en détail

FONCTION DE DEMANDE : REVENU ET PRIX

FONCTION DE DEMANDE : REVENU ET PRIX FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie

Plus en détail

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1 INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution

Plus en détail

Table des matières. 7 Gérer des ordres 5 Formater des paramètres OptionStation Pro 9

Table des matières. 7 Gérer des ordres 5 Formater des paramètres OptionStation Pro 9 Leçon n 9 Table des matières OptionStation Pro 1 Gérer des positions réelles 5 Créer des positions d options théoriques 3 SpreadMaster 6 Placer une transaction 4 Représenter graphiquement des positions

Plus en détail

Elec II Le courant alternatif et la tension alternative

Elec II Le courant alternatif et la tension alternative Elec II Le courant alternatif et la tension alternative 1-Deux types de courant -Schéma de l expérience : G -Observations : Avec une pile pour G (courant continu noté ): seule la DEL dans le sens passant

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est: Travaux Pratiques 3. IFT 1002/IFT 1005. Structure Interne des Ordinateurs. Département d'informatique et de génie logiciel. Université Laval. Hiver 2012. Prof : Bui Minh Duc. Tous les exercices sont indépendants.

Plus en détail

Résumé non technique. Tableaux d estimation

Résumé non technique. Tableaux d estimation Résumé non technique Tableaux d estimation 4 Chapitre 1 Introduction 5 E n application de la directive européenne 2002/49/CE, et de ses retranscriptions en droit français (décret 2006-361 du 24 mars 2006

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Le suivi de la qualité. Méthode MSP : généralités

Le suivi de la qualité. Méthode MSP : généralités Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois

Plus en détail

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. La CFAO réunit dans une même démarche informatique les actions de conception et de fabrication d un objet. La technique utilisée permet à

Plus en détail

ECOLE NATIONALE SUPERIEURE DE COGNITIQUE. Paul Bui- Quang & Joachim Yerusalmi 03/01/2011

ECOLE NATIONALE SUPERIEURE DE COGNITIQUE. Paul Bui- Quang & Joachim Yerusalmi 03/01/2011 ECOLE NATIONALE SUPERIEURE DE COGNITIQUE Projet ARLIU Paul Bui- Quang & Joachim Yerusalmi 03/01/2011 urs. Ce rapport contient ainsi la menées sur des utilisateurs afin de corréler les indicateurs que propose

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Aide-mémoire de statistique appliquée à la biologie

Aide-mémoire de statistique appliquée à la biologie Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

Initiation à Excel. Frédéric Gava (MCF) [email protected]

Initiation à Excel. Frédéric Gava (MCF) gava@univ-paris12.fr Initiation à Excel Frédéric Gava (MCF) [email protected] LACL, bâtiment P2 du CMC, bureau 221 Université de Paris XII Val-de-Marne 61 avenue du Général de Gaulle 94010 Créteil cedex Plan de cette année

Plus en détail

GUIDE Excel (version débutante) Version 2013

GUIDE Excel (version débutante) Version 2013 Table des matières GUIDE Excel (version débutante) Version 2013 1. Créer un nouveau document Excel... 3 2. Modifier un document Excel... 3 3. La fenêtre Excel... 4 4. Les rubans... 4 5. Saisir du texte

Plus en détail

5-9. L enveloppe. Objectif Ecrire une adresse sur une enveloppe. L enveloppe 5-9. Le dispositif de techniques de recherche d emploi 1

5-9. L enveloppe. Objectif Ecrire une adresse sur une enveloppe. L enveloppe 5-9. Le dispositif de techniques de recherche d emploi 1 Objectif Ecrire une adresse sur une enveloppe. Le dispositif de techniques de recherche d emploi 1 Sommaire Dispositif Toute diffusion est dûment conseillée conception et réalisation par sylvain Lesage

Plus en détail

La Clé informatique. Formation Excel XP Aide-mémoire

La Clé informatique. Formation Excel XP Aide-mémoire La Clé informatique Formation Excel XP Aide-mémoire Septembre 2005 Table des matières Qu est-ce que le logiciel Microsoft Excel?... 3 Classeur... 4 Cellule... 5 Barre d outil dans Excel...6 Fonctions habituelles

Plus en détail

Optimiser ses graphiques avec R

Optimiser ses graphiques avec R Optimiser ses graphiques avec R Jérôme Sueur MNHN Systématique et Evolution UMR CNRS 7205 OSEB [email protected] 28 Avril 2011 1 Typologie 2 Base 3 ggplot2 4 Références Outline 1 Typologie 2 Base 3 ggplot2

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

Loi du 11 février 2005. L accessibilité des ERP de 5ème catégorie. Ministère de l'écologie, du Développement durable et de l Énergie

Loi du 11 février 2005. L accessibilité des ERP de 5ème catégorie. Ministère de l'écologie, du Développement durable et de l Énergie Loi du 11 février 2005 L accessibilité des ERP de 5ème catégorie Ministère de l'écologie, du Développement durable et de l Énergie WWW.developpement-durable.gouv.fr SOMMAIRE Préambule I. Règles générales

Plus en détail

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2 Varset Direct Batteries fixes de condensateurs basse tension Coffrets et armoires Notice d utilisation Coffret C1 Coffret C2 Armoire A2 Réception DB110591 Présentation Varset Direct est une batterie fixe

Plus en détail

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ Infos Série M 200.U.003.05 encastrables pour installation à courants forts Série M W/P/ LSP pour montage sur rail normé BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW SY Compteurs horaires Voltmètres partiels

Plus en détail

Accompagner l action vers les Petites Entreprises de la Construction dans le cadre du PPN-BTP (P3C3) et de l action PAR-PECo.

Accompagner l action vers les Petites Entreprises de la Construction dans le cadre du PPN-BTP (P3C3) et de l action PAR-PECo. PROGRAMME DE PREVENTION «BTP» Dispositif d Aide Financière Simplifiée Régional AFS régionale BTP P.E.Co. Conditions générales d attribution de l aide Objet Développer/promouvoir la prévention des risques

Plus en détail

Les mesures à l'inclinomètre

Les mesures à l'inclinomètre NOTES TECHNIQUES Les mesures à l'inclinomètre Gérard BIGOT Secrétaire de la commission de Normalisation sols : reconnaissance et essais (CNSRE) Laboratoire régional des Ponts et Chaussées de l'est parisien

Plus en détail