Exercices sur les vecteurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercices sur les vecteurs"

Transcription

1 Exercice Exercices sur les vecteurs ABCD est un parallélogramme et ses diagonales se coupent en O () Compléter par un vecteur égal : a) AB = b) BC = c) DO = d) OA = e) CD = () Dire si les affirmations suivantes sont vraies ou fausses et justifier : a) OB = OC e) AB = DC b) [ AB ] = [ DC ] f) O = mil AC c) OA = OC g) mil BD = mil AC d) OA = OC h) AA = BB Exercice En utilisant le quadrillage, dire pour chaque égalité si elle est vraie ou fausse : () AB = EF () CD = AB (3) DA = DB (4) ED = BD (5) AE = BF (6) EF = DC Exercice 3 Soit ABC un triangle quelconque () Construire : le point N tel que AN = BC ; le point P tel que PA = BC ; le point M tel que BM = AC () Montrer que A = mil[ NP], B = mil[ PM ] et C = mil[ M N ] (3) Quel est le rapport des aires des triangles ABC et MNP? Justifier!

2 Exercice 4 Sur la figure ci-contre, formée de parallélogrammes juxtaposés, déterminer : () un représentant de DB () trois représentants de AE (3) un représentant de FG d origine B (4) un représentant de CF d extrémité E (5) un représentant de 0 (6) un représentant de AF Exercice 5 () Reproduire le parallélogramme ABCD ci-dessus dans votre cahier puis construire les points E, F, G, H et I définis par : CE = AC ; BF = AC ; DG = AC ; AH = BC ; IA = AC () Quelle est la nature des quadrilatères BCEF et DGEC (3) Que représente le point A pour le segment [ IC ]? Exercice 6 Calculer les sommes vectorielles indiquées en utilisant la figure ci-contre : () AE + AO () AE + DF (3) BD BA AO (4) OC FC (5) DO + BC + AE (6) AB + AD

3 Exercice résolu 7 Déterminer la somme des vecteurs sur chacune des figures suivantes et expliquer votre démarche () () (3)

4 (4) (5) (6)

5 (7) (8) (9)

6 (0) () ()

7 (3) (4) (5)

8 Exercice 8 () Sur les figures () à (8) de l exercice 7, construire u v () Sur les figures (9) et (0) de l exercice 7, construire u v w (3) Sur les figures () et () de l exercice 7, construire u = a b, v = b c et w = a c Quelle est la relation entre u, v et w? Exercice résolu 9 Sur la figure ci-dessus, formée de parallélogrammes juxtaposés, déterminer un représentant de () AD + CF () GC + AC (3) HE + BC (4) DE DH (5) GJ + BF (6) DI + JI (7) FG AI (8) IF FJ (9) AI + AE + FJ (0) AF + HD + BD () JE + FG ID () GJ DA + BI (3) FD + IA + CG FH (4) ED + AH + CF FH Déterminer le point O sur la figure tel que : AO = CF + FG IA Déterminer le point P sur la figure tel que : EP = AD + GC + AB Exercice 0 Démontrer les propriétés vectorielles suivantes à l aide d une figure () ( a ) = a (5) ( a b) = a b () v u = ( u v) (6) u + v + u = u + v (3) u ( v + w) = u v w (7) 3 ( u) = 6u (4) a ( e r ) = a e + r 5 (8) ( z ) = 0 z 3 3

9 Exercice résolu Sur la figure ci-dessus, construire le point () I tel que EI = AB () J tel que GJ = AB (5) M tel que MA = 3 EF (3) K tel que CK = 5 AB (6) N tel que NH = 3 DC (7) P tel que EP = EF + CD (4) L tel que LC = CD HQ = AB CD (8) Q tel que ( ) Exercice Soit ABCD un parallélogramme Construire les points M, N, P, Q définis par : AM = AB + 3AD ; BN = 3 BD 3AC ; CP = 3 4AD AB + BC ; AB + QD = 3CD BC Exercice 3 A et B étant deux points distincts donnés, construire si possible les points inconnus Q, R, S, T, U, V, W, X, Y et Z en résolvant les équations vectorielles correspondantes : () AQ = AB + QB (4) BT 3AT = AB () AR = RB (5) AU + BU = 0 (3) AS = 5BS (6) AV + VB = 0

10 (7) AW = WB (8) XA + XB = AB (9) AY 3BY = AB (0) AZ + BZ = BA Exercice 4 A et B étant deux points distincts donnés, construire les points M et P tels que : AM 3 AB = 0 et PA 5BP = 0 Exercice 5 A, B et C étant trois points non alignés donnés, construire si possible les points inconnus U, V, W, X, Y et Z en résolvant les équations vectorielles correspondantes : () UA + UB + UC = BC () AV VB VC = 0 (3) AW BW CW = AB (4) 3XA + XB + XC = 0 (5) AY BY + 3CY = AB AZ 3ZB = CZ + AZ BC (6) ( ) Exercice résolu 6 En observant la figure ci-dessus, compléter les relations de colinéarité suivantes : () AE = AB et AB = AE (0) MK = KG et GK = MK () GD = JP et JP = GD () DN = HR et HR = ND (3) CL = QN et NQ = CL () LA = RB et RB = AL (4) DH = AF et FA = HD (3) FL = NE et NE = LF (5) GR = IQ et IQ = GR (4) KJ = BP et PB = JK (6) OH = OE et OE = OH (5) AA = AM et BB = IJ (7) BP = LG et PB = LG (6) IO = AR et RA = OI (8) QI = IE et IQ = EI (7) BK = CL et BK = LC (9) JE = JQ et JQ = JE (8) GG = AD et AD = GG

11 Exercice 7 Dans chacun des cas suivants, déterminer une relation de colinéarité entre AC, puis faire une figure : () AB = BC () CB = AB (4) BA = 3CB AC (5) AC = 3 4 BC (3) AC = BC (6) AB = 5CB + AC 3 6 Exercice résolu 8 Soit A et B deux points distants de,5 cm () Construire le point C tel que BC = 5 AB () Construire le point D tel que AD = 4 3 AB (3) Compléter et démontrer la relation de colinéarité : CD = AB (4) En déduire la longueur du vecteur CD en cm Exercice 9 Soit ABC un triangle quelconque et D le point défini par : AD = AB 3AC () Construire le point D () Exprimer AB en fonction de AD et AC (3) Exprimer AC en fonction de AB et AD (4) Exprimer AD en fonction de AC et BC AB et Exercice 0 Soit ABCD quadrilatère quelconque, M le milieu de [AB], N le milieu de [BC], P le milieu de [CD] et Q le milieu de [AD] () Montrer que MN = AC et QP = AC () En déduire la nature du quadrilatère MNPQ Exercice Soit G le centre de gravité d un triangle ABC et A' = mil[ BC ], B' = mil[ CA ], C ' = mil[ AB] Montrer que AA' + BB ' + CC ' = 0 Exercice Soit G le centre de gravité d un triangle ABC Montrer que AG = AB + AC BG = BA + BC CG = CA + CB ( ), ( ) et ( ) 3 3 3

12 Exercice 3 Soit G le centre de gravité d un triangle ABC et A' = mil[ BC ], B' = mil[ CA], C ' = mil[ A B] () Compléter les relations de colinéarité suivantes : GA = GA' ; GB = GB ' ; GC = GC ' () En déduire que G est le centre de gravité du triangle ABC ' ' ' Exercice 4 Soit G le centre de gravité d un triangle ABC et A' = mil[ BC ], B' = mil[ CA], C ' = mil[ A B] () Construire les points P,Q et R tels que : a) GP = GB + GC, b) GQ = GC + GA et c) GR = GA + GB () Montrer que : GP = GA, GQ = GB et GR = GC (3) Quelle est l isométrie qui transforme le triangle ABC en le triangle PQR? Exercice 5 Soit G et G ' les centres de gravité de deux triangles ABC et DEF respectivement () Montrer que : AD + BE + CF = 3 GG ' () En déduire une condition nécessaire et suffisante pour que deux triangles aient le même centre de gravité Exercice 6 Soit G le centre de gravité d un triangle ABC () Montrer qu il existe un point unique D tel que DA + DB + DC = 3AB () Quelle est la nature du quadrilatère ABGD? Exercice 7 Soit ABC un triangle () Construire les points I, J et K tels que : AI = AB + AC BJ = BA + AC CK = CA + CB () Démontrer que les droites AI, BJ et CK sont concourantes en G, centre de gravité du triangle ABC

13 Exercice 8 Soit G le centre de gravité d un quadrilatère quelconque ABCD, c-à-d G est l unique point vérifiant l égalité : GA + GB + GC + GD = 0 () Construire le point G après avoir démontré que : AG = AB + AC + AD ( ) 4 () Soit M le milieu de [AB] et P le milieu de [CD] Donner une construction plus simple du point G après avoir démontré que GM + GP = 0 (3) Soit N le milieu de [BC] et Q le milieu de [AD] Donner une construction encore plus simple du point G après avoir démontré que GN + GQ = 0 (4) Quelle est la nature du quadrilatère MNPQ? Exercice 9 Soit ABC un triangle quelconque, O le centre du cercle circonscrit C à ABC et A ' le milieu de [ BC ] On définit le point H par la relation vectorielle : OH = OA + OB + OC () a) Démontrer que : AH = OA' b) En déduire que H appartient à la hauteur issue de A dans le triangle ABC () a) Démontrer de même que H appartient aux deux hauteurs issues de B et de C respectivement dans le triangle ABC b) Quel théorème vient-on de démontrer de cette façon? Rappeler comment on appelle le point H dans le triangle ABC (3) Soit G le centre de gravité du triangle ABC En utilisant une caractérisation vectorielle de G, démontrer que : OH = 3OG Que peuton en déduire pour les points O, G et H? Enoncer le théorème démontré ainsi Remarque : La droite passant par les points O, G et H est appelé droite d Euler (4) Montrer que les symétriques de l'orthocentre par rapport aux milieux des côtés du triangle sont situés sur le cercle circonscrit C au triangle 3

14 (5) Montrer que les symétriques de l'orthocentre par rapport aux côtés du triangle sont situés sur le cercle circonscrit C au triangle Exercice 30 La figure ci-contre représente le pentagone régulier ABCDE de centre O, c-à-d O est le centre du cercle circonscrit à ce pentagone () Montrer que OA + OB // OD Indication : OD est un axe de symétrie du pentagone ABCDE () Montrer de même que OE + OC // OD (3) En déduire que OA + OB + OC + OD + OE // OD (4) Montrer qu on a également : OA + OB + OC + OD + OE // OE (5) En déduire que OA + OB + OC + OD + OE = 0 (O est donc le centre de gravité du pentagone ABCDE) (6) Utiliser le résultat précédent pour prouver que : a) AC + BD + CE + DA + EB = 0 et b) AD + BE + CA + DB + EC = 0 Exercice 3 Soit ABC un triangle On définit les points D, F et G par AD = 3 AB, AF = 4 BA et GC = 5GA () Par D on trace la parallèle à BC qui coupe AC en E Donner les relations de colinéarité entre a) les vecteurs CE et AC b) DE et CB Justifier () Démontrer que GF et DE sont parallèles Justifier! Exercice 3 Soit un parallélogramme ABCD de centre O () Construire les points E et F tels que : AE = 4 AC et AF = 3FC () Montrer que AE = EO = OF = FC (3) Montrer que BEFD est un parallélogramme (4) Soit I = mil[ AD ] et J = mil[ BC ] Montrer que IEJF est un parallélogramme (5) La droite BE coupe respectivement AD en G et CD en H Montrer que : AG = AI 3 4

15 BE = 4 BH HD = DC Exercice 33 Soit ABCD un rectangle, I = mil[ AB] et J = mil[ DC ] Les droites DI et BC sont sécantes en K et les droites KJ et DB sont sécantes en G () Démontrer que KG = GJ Que représente G pour le triangle DCK? () Démontrer que GC // AJ (3) AJ coupedb en H Démontrer que IGJH est un parallélogramme 5

16 Solution de l exercice 7 () () u + v = AB + CD = AB + BB ' = AB ' (3) u + v = DB + DC = DB + BC ' = DC ' u + v = RS + RT = RS + ST ' = RT ' 6

17 (4) u + v = AB + CD = AB + BB ' = AB ' (5) (6) u + v = AB + CD = AB + BB ' = AB ' u + v = AB + AC = AB + BC ' = AC ' 7

18 (7) u + v = AB + CB = AB + BB ' = AB ' (8) (9) u + v = AB + CD = AB + BB ' = AB ' = A' A'' 8

19 (0) u + v + w = AB + CD + EF = AB + BB' + B' B'' = AB'' u + v + w = u + w + v = IJ + JK + MN = IK + KL = IL ( ) ( ) (On a utilisé la commutativité et l associativité de l addition des vecteurs) () () a + b + c = OA+ OB + OC = OA+ AA' + A' A'' = OA'' 9

20 a + b + c = OA+ OB + OC = OA+ AA' + A' A'' = OA'' (3) a + b + c = OA+ AC + OC = OC + OC = OC + CC = OC = c (4) a + b + c = OA+ AC + CO = OO = 0 (vecteur nul) (5) ( ) ' ' ( ) 0

21 Solution de l exercice 9 () AE a + b + c + d + u + v = ( a + b + u) + ( c + d ) + v = 0 + w + v = CD + DA = CA () EC (3) 0 (4) HE (5) CJ (6) JB (7) FJ (8) DF (9) AH (0) AD () 0 () BD FD + CG + IA FH = FH + IA FH = IA (3) ( ) (4) AF AO = CF + FG IA O = mil[ EF ] EP = AD + GC + AB P = mil[ GC ]

22 Solution de l exercice Solution de l exercice 6 En observant la figure ci-dessus, compléter les relations de colinéarité suivantes : () AE = 4AB et AB = 4 AE () DN = HR et HR = ND () GD = JP et JP = GD () LA = 6 RB et RB = 6 AL (3) CL = 3QN et NQ = 3 CL (4) DH = 4 5 AF (3) FL = 3 NE et NE = 3 LF et FA = 5 4 HD (4) KJ = 4 BP et PB = 4JK (5) GR = 8 IQ et IQ = 8 GR (5) AA = 0AM et BB = 0IJ 7 (6) OH = 0 OE et OE = 0 7 OH (6) IO = 6 7 AR 7 et RA = 6 OI (7) BP = 4 5 LG et PB = 4 5 LG (7) BK = CL et BK = LC (8) QI = IE et IQ = EI (8) GG = 0AD et AD = GG (9) JE = 5 7 JQ et 7 JQ = 5 JE impossible! (0) MK = KG et GK = MK

23 Solution de l exercice 8 () et () : (3) CD = CB + BA + AD = 5 4 AB AB 3AB = 5 4 ( 3) AB = 9 6 AB (4) CD = 9 6 = , 5 = = 7,5 cm 3

INFORMATIONS DIVERSES

INFORMATIONS DIVERSES Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

L AIDE AUX ATELIERS D ARTISTES :

L AIDE AUX ATELIERS D ARTISTES : RAPPORT DAVID LANGLOIS-MALLET SOUS LA COORDINATION DE CORINNE RUFET, CONSEILLERE REGIONALE D ILE DE FRANCE L AIDE AUX ATELIERS D ARTISTES : PROBLÉMATIQUES INDIVIDUELLES, SOLUTIONS COLLECTIVES? DE L ATELIER-LOGEMENT

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés : LM323 Envoi 2 2009-2010 Contenu de cet envoi Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigé du devoir 1. Un exercice de révision sur le chapître 1. Exercices sur l inversion. Corrigés

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa

Plus en détail

Bougez, protégez votre liberté!

Bougez, protégez votre liberté! > F a Bgz, pégz v bé! www.a-. CAT.ELB.a240215 - Cé ph : Fa Daz à v p aé N az p a v gâh a v! Aj h, p g évq v ; Pa, p 4 aça q, v, éq qaé v. Ca ax é ç, b pa évé ax p âgé a h a p j. E pè v, h pa épagé. Pa

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Diane-Gabrielle Tremblay (Dir.) Maryse Larivière

Diane-Gabrielle Tremblay (Dir.) Maryse Larivière Travailler plus longtemps!? L aménagement des fins de carrière en Belgique et au Québec Note de recherche no 2009-1 De l ARUC (Alliances de recherche universités-communautés) Sur la gestion des âges et

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Livret de liaison Seconde - Première S

Livret de liaison Seconde - Première S Livret de liaison Seconde - Première S I.R.E.M. de Clermont-Ferrand Groupe Aurillac - Lycée Juin 2014 Ont collaboré à cet ouvrage : Emmanuelle BOYER, Lycée Émile Duclaux, Aurillac. Patrick DE GIOVANNI,

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

CULTURE GÉNÉRALE Histoire de l Art (RC) Philosophie (FB)

CULTURE GÉNÉRALE Histoire de l Art (RC) Philosophie (FB) RE ANNÉE SEMESTRE PRATIQUE ET INITIATION Dessin d observation et projet (FL [cd] + PC [a] + JMH [b]) Couleur / peinture (PC [cd] + AO [ab]) Espace / Volume (CLT [cd] + AT [ab]) Design (FC [ab] GG [cd])

Plus en détail

La circulation méconnue de l épargne règlementée en France!

La circulation méconnue de l épargne règlementée en France! La circulation méconnue de l épargne règlementée en France! P. Bouché, E. Decoster et L. Halbert (Université Paris Est, LATTS)! Institut du Monde Arabe, Paris, Rencontres du Fonds d Épargne 31 Mars 2015

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Documentation SecurBdF

Documentation SecurBdF Documentation SecurBdF SECURBDF V2 Protocole de sécurité de la Banque de France SecurBdF V2 DIRECTION DE L'INFORMATIQUE ET DES TÉLÉCOMMUNICATIONS Sommaire I 1 Contexte... 1 2 Références... 1 3 Cadre...

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr i & V : SA E b i i 1 3 2 0 1 Ai 0800 9 h P i iè P i i i i S j C i Si E ) i Ti (i ib i Q,. bq i, FA V k, Pi b h iè i Si b, D Z, P E q Si-i SAV ET RÉPARATION S hiq : E q SSII VAR, i hiq Jh i h 0800 910 231.

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES !"#!$# #"%&&&&' 1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES DEMANDES... 5 1.5.1. Du lundi au vendredi

Plus en détail

Endroit Texte existant Proposition Observations Index des 30 occurrences

Endroit Texte existant Proposition Observations Index des 30 occurrences Annex 05, page 1 Proposition FR pour éliminer le mot "divers(e, es)" de la version française de la CIB Mai 2003 dans la colonne "Observations" indique que nous sommes d'accord avec la solution proposée

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI Jean-Pierre Dedieu To cite this version: Jean-Pierre Dedieu. Les intermédiaires privés dans les finances royales

Plus en détail

SPECIFICATION DES ECHANGES DE DONNEES INFORMATISES (E.D.I.)

SPECIFICATION DES ECHANGES DE DONNEES INFORMATISES (E.D.I.) SPECIFICATION DES ECHANGES DE DONNEES INFORMATISES (E.D.I.) Dernière mise à jour : octobre 2013 Ce document a pour objectif de décrire ce que l OPCA (OPCA 3+) attend du fichier à transmettre par l adhérent.

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

)*+,+(-,(-.//0,+( Introduction )-"""( 1!"!2( !"#$%&$'()*+,-.//01)2&)345)3-67.0) 89:(#&2;2'&)<=$'>?#;(&$@42) A(54B&9)<2%)%5$2'52%) ) ) )

)*+,+(-,(-.//0,+( Introduction )-( 1!!2( !#$%&$'()*+,-.//01)2&)345)3-67.0) 89:(#&2;2'&)<=$'>?#;(&$@42) A(54B&9)<2%)%5$2'52%) ) ) ) )*+,+(-,(-.//0,+( Introduction )-"""( 1!"!2(!"#$%"&%#'(!"#$%&$'()*+,-.//01)2&)345)3-67.0) 89:(#&2;2'&)

Plus en détail

!" #" $ %& '# $ %& !!""!!#" $ % &

! # $ %& '# $ %& !!!!# $ % & !" #" $ % '# $ %!!""!!#" $ %!#!(!$ '()*+),-.$/*(*',0*1)2, 2 1)2(%,2 ()2+''+34!5"6,7 8+9(+, 1(*:+*)1, - 11/21%, 7 10/'# 8;%(/',7 $18)*+, 9(+, $ ;%1*', 24 1*%?19*1,

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

+, -. / 0 1! " #! $ % % %! &' ( &))*

+, -. / 0 1!  #! $ % % %! &' ( &))* !"#!$%% +,-. /01 %!&'(&))* 23%#!! " # " " " "$! 4 5-6 4! 1! " # - 5! " # 6 3! " # 7! " # " 8! 9 : ; 5 7 4! 1! # 42 5! 5 < 44 3! # " 7! 41 5 8 '9 4! " $ = " > 4!4 *% 43 4!1? 48 4 4!5 $ 9 4!3 4@ 4!7 $ #

Plus en détail

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Port de Saint Laurent du Var - Barème des redevances Année 2013 1/10

Port de Saint Laurent du Var - Barème des redevances Année 2013 1/10 Port de Saint Laurent du Var - Barème des redevances Année 2013 1/10 ANNEXE AU CAHIER DES CHARGES DE LA CONCESSION OCTROYEE AU YACHT CLUB INTERNATIONAL DE SAINT LAURENT DU VAR POUR L ETABLISSEMENT ET L

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

10 juin 2010 Polytech Lille. Organisé par le Certia Interface, AQUIMER et le RMT (Réseau Mixte Technologique) Gestion durable des fluides.

10 juin 2010 Polytech Lille. Organisé par le Certia Interface, AQUIMER et le RMT (Réseau Mixte Technologique) Gestion durable des fluides. 10 juin 2010 Polytech Lille Organisé par le Certia Interface, AQUIMER et le RMT (Réseau Mixte Technologique) Gestion durable des fluides Synthèse ! " ##!! " $% &#'() (* + +!,(-) *. +*/ # $ 0*1*2 '(#3 4

Plus en détail

#"$&'$+*" (" ),'-"."'($ %($

#$&'$+* ( ),'-.'($ %($ "#$%&' #(%)*"" (#%*!"!#$"! -!"!#$"!! -!"!#$"!./% -!"!#$"! #"$&'$+*" (" ),'-"."'($ %($ % & % '!#(! "! $#) #!* +,!(")"",#./ & 0!,$#!1!"!#1 $#!* ** +" + 1! 0! $!,#!,! $,! 2! $3! 1! $ 1+4!"$"#)1,##" 56./78#!

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Peut-on perdre sa dignité?

Peut-on perdre sa dignité? Peut-on perdre sa dignité? Eric Delassus To cite this version: Eric Delassus. Peut-on perdre sa dignité?. 2013. HAL Id: hal-00796705 https://hal.archives-ouvertes.fr/hal-00796705 Submitted

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

.,,),-,,,/ 6++ 7+86 (9267)7-0 - 2 2 2 8, -, /, / :, 2-2! ), 5 / / 0 -,,,2,, - /

.,,),-,,,/ 6++ 7+86 (9267)7-0 - 2 2 2 8, -, /, / :, 2-2! ), 5 / / 0 -,,,2,, - / !"#$%!&&' ( )*+!*,,(+-,.-( *,,(+-(++ 0*,,(+- 1*,,(+2-- '*, *- -)4 -!4-4 -04!"#$%%&'('##) * -14+, -'4- -4,, -"4,, -54, (.,,),-,,, 0 1','2&, &##### '#4 52 6++ 7+86 (9267)7-0 - 2 2 2 2 8, -, 92522-,2 9-,

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Jeux de caracte res et encodage (par Michel Michaud 2014)

Jeux de caracte res et encodage (par Michel Michaud 2014) Jeux de caracte res et encodage (par Michel Michaud 2014) Les ordinateurs ne traitent que des données numériques. En fait, les codages électriques qu'ils conservent en mémoire centrale ne représentent

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,

Plus en détail

CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS

CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE Les engagements : CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS Une réponse du banquier dans un délai de 15 jours Une motivation

Plus en détail

Le Préfet de Seine et Marne, Officier de la Légion d'honneur, Officier de l'ordre National du Mérite,

Le Préfet de Seine et Marne, Officier de la Légion d'honneur, Officier de l'ordre National du Mérite, IRECTION ES ACTIONS INTERMINISTERIELLES --------------------------------- Bureau des Installations Classées Mines - Carrières ------------------- Arrêté préfectoral n 04 AI 2 IC 271 autorisant la société

Plus en détail

(51) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L 1/053 (2006.01)

(51) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L 1/053 (2006.01) (19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 1 886 760 A1 (43) Date de publication: 13.02.2008 Bulletin 2008/07 (21) Numéro de dépôt: 0711197.6 (1) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Constructions au compas seul, complément

Constructions au compas seul, complément Constructions au compas seul, complément Jean-Pierre Escofier et Jean-Michel Le Laouénan Nous ajoutons une ramification au chapitre V du livre Théorie de Galois, Jean-Pierre Escofier, Dunod, 2004 : quelques

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes VMware ESX : Installation VMware ESX : Installation Créer la Licence ESX 3.0.1 Installation ESX 3.0.1 Outil de management Virtual Infrastructure client 2.0.1 Installation Fonctionnalités Installation Virtual

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

Incorporé au 3 e régiment d infanterie coloniale

Incorporé au 3 e régiment d infanterie coloniale Ax 59 : ch u u c u C B L ch u u c u C B 1 N A Fç Adu Eugè Gg [979?] Au C Afd A Luc Lu Augu M Aub Luc Muc Auc Augu E Auc Lu Auy Ru Auz Rhë Mu D u d c Pf Su N 15 cb 1886 à P N 8 b 1879 à P N 13 û 1885 à

Plus en détail

# $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* /!01+'$*2333

# $!%$!&$'(!(!()! $(! *)#%!$'!+!%(!**&%',&-#.*!* /!01+'$*2333 !" # $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* #$-*!%-!!*!%!#!+!%#'$ /!1+'$*2333 $!)! $(!*!" /4 5 $." 6 $-*(!% 6 '##$! $ 6 '##$! $ 6,'+%'! $ 6,'+%'! $ +!,'+%'! $ 65 %7- !""!# $ %! & '%! "!# (

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444.

M2 20.00% 6.09 UN 20.00% 13.40 M 20.00% 10.11 M 20.00% 31.69 M 20.00% 21.79 M2 20.00% 95.51 UN 20.00% 222.62 UN 20.00% 292.91 UN 20.00% 444. ou n identification fiscal pays hors CEE Aménagement de stand l Décoration DS01 Fourniture et pose de moquette type tapis aiguilleté (norme M3) M2 20.00% 6.09 DS02 Pose de tenture murale norme M1 M2 20.00%

Plus en détail

4G2. Triangles et parallèles

4G2. Triangles et parallèles 4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail