J.-F. Donati, P. Petit, F. Paletou
|
|
|
- Sévérine Bergeron
- il y a 10 ans
- Total affichages :
Transcription
1 J.-F. Donati, P. Petit, F. Paletou
2 I: Description de la lumière polarisée II: Propagation de la lumière en milieu anisotrope III: Composants pour optique anisotrope IV: Propagation de la polarisation dans les dispositifs optiques V: Analyse de polarisation de la lumière astronomique
3 Onde plane homogène en milieu matériel anisotrope, on choisit le vecteur induction électrique : D = ε 0 [ε] E pour caractériser le champ électromagnétique décomposition de Fourier du champ D : D(r,t) = ω dω k D(k,ω) exp[-i(ω t-k r)] dk onde plane homogène : fréquence ω, vecteur d onde k = k z (k = nk 0 = nω/c) D(r,t) = D 0 exp[-i(ωt-k r)] D 0 = A x exp(iϕ x ) x + A y exp(iϕ y ) y (x,y,z trièdre ON) equation de Maxwell dans un milieu sans charges électriques : D = 0 D k
4 Etats de polarisation des ondes composantes réelles de D dans le repère cartésien x,y,z : D x (z,t) = A x cos (ωt - kz - ϕ x ) D y (z,t) = A y cos (ωt - kz - ϕ y ) déphasage entre D x et D y : ϕ = ϕ y- ϕ x dans le plan z = 0, les équations se ramènent à : X(t) = A x cos (ωt) Y(t) = A y cos (ωt - ϕ) cas général: polarisation elliptique ϕ entre 0 et π : sens de rotation direct, rotation gauche ϕ entre -π et 0 : sens de rotation rétrograde, rotation droite cas particuliers: polarisation linéaire : ϕ = 0 ou ϕ = π ou A x = 0 (vert) ou A y = 0 (horiz) polarisation circulaire : ϕ = π/2 ou -π/2 ET A x = A y
5
6 Représentation de Jones définition du vecteur de Jones pour une onde totalement polarisée : J = [A x exp(-iϕ/2), A y exp(iϕ/2)] intensité du champ associé : I 0 = J * J = A x 2 + A y 2 polarisation rectiligne : X = [1, 0] Y = [0, 1] J +45 = 1/ 2 [1, 1] J -45 = 1/ 2 [1, -1] J θ = [cos θ, sin θ] polarisation circulaire : G = 1/ 2 [1, i] D = 1/ 2 [1, -i] G * D = D * G = 0 (J,+, ) est un espace vectoriel suivant Ox suivant Oy à 45 de Ox à -45 de Ox angle θ avec Ox circulaire gauche circulaire droite états orthogonaux
7 Représentation de Stokes définition vecteur de Stokes pour une onde totalement polarisée : S = [ I, Q, U, V] S = [A x2 +A y2, A x2 -A y2, 2A x A y cosϕ, 2A x A y sinϕ] S= [ I x +I y, I x -I y, I 45 -I -45, I G -I D ] relation entre les paramètres: I 2 = Q 2 + U 2 + V 2 polarisation rectiligne : X = [1, 1, 0, 0] suivant Ox Y = [1, -1, 0, 0] suivant Oy S +45 = [1, 0, 1, 0] à 45 de Ox S -45 = [1, 0, -1, 0] à -45 de Ox S θ = [1,cos 2θ,sin 2θ,0] angle θ avec Ox polarisation circulaire : G = [1, 0, 0, 1] circulaire gauche D = [1, 0, 0, -1] circulaire droite G D = D G = 0 états orthogonaux (S,+, ) n est PAS un espace vectoriel (eg: X+Y= [1, 0, 1, 0] [2, 0, 0, 0] )
8 Polarisation partielle vecteur de Stokes pour une onde partiellement polarisée : S = [ I x +I y, I x -I y, I 45 -I -45, I G -I D ] relation entre les paramètres: I 2 > Q 2 + U 2 + V 2 degré de polarisation : p = (Q 2 + U 2 + V 2 ) / I décomposition : S = [I, Q, U, V] S = [pi, Q, U, V] + [(1-p)I, 0, 0, 0] S = S P + S NP
9 Equations de Maxwell équations de Maxwell en milieu matériel non magnétique et en l absence de sources : xe = - B/ t D = 0 D = ε 0 [ε] E xh = D/ t B = 0 B = µ 0 H onde plane monochromatique de vecteur d onde k : kxe = ωµ 0 H k D = 0 kxh = -ωd k B = 0 vecteur de Poynting : S = S s = ExH direction de propagation de la lumière : s direction de propagation de la phase : u plan de la polarisation : (D,B) expressions pour D et E : D = 1/µ 0 v ϕ 2 [E - (u E) u] avec v ϕ = ω/k u = c/n u E = µ 0 v r 2 [D - (s D) s] avec v r = v ϕ /cos α s et α=(d,e)=(u,s)
10 Propagation de l ondel résolution du système : D = ε 0 [ε] E D = 1/µ 0 v 2 ϕ [E - (u E) u] [ε] E = n 2 [E - (u E) u] ([ε] - n 2 [I-M]) E = 0 où [M] E = (u E) u on pose ε i = n 2 i et u = [α, β, γ] dans le repère où [ε] est diagonal équation aux valeurs propres Résolution du système linéaire recherche des vecteurs propres et valeurs propres seuls certains états de propagation sont possibles il existe 2 états propres D et D rectilignes et orthogonaux associés à 2 valeurs différentes de n
11 Ellipsoïde des indices densité d énergie : ε 0 E D = D i 2 / n i 2 les 2 états propres D et D sont rectilignes et orthogonaux, donnés par les axes de l ellipse définie par l intersection de l ellipsoide par le plan d onde n et n correspondent à la valeur des demi-axes de l ellipse dans un milieu uniaxe (n x =n y =n o ), un des indices est toujours n o
12 Propagation de l ondel dans un milieu uniaxe (n x =n y =n o ), un des indices est toujours n o
13 Surface des indices on pose ε i = n i 2 et u = [α, β, γ] dans le repère où [ε] est diagonal : [n x2 -n 2 (1-α 2 )]E x + αβ n 2 E y + αγ n 2 E z = 0 αβ n 2 E x + [n y2 -n 2 (1-β 2 )] E y + βγ n 2 E z = 0 αγ n 2 E x + βγ n 2 E y + [n z2 -n 2 (1-γ 2 )] E z = 0 équation de Fresnel sur les indices : 2 solutions pour n 2 pour u et [ε] donnés
14 Surface des indices
15 Surface des vitesses résolution du système : E = 1/ε 0 [ε -1 ] D E = µ 0 v 2 r [D - (s D) s] c 2 [ε -1 ] D = v 2 r [D - (s D) s] (c 2 [ε -1 ] - v 2 r [I-M ]) D = 0 où [M ] D = (s D) s on l appelle parfois surface d onde on considère le point où la surface des vitesses est percée par un rayon donné: pour ce rayon, le plan d onde est confondu au plan tangent à la surface des vitesses
16 Surface des vitesses
17 Réfraction par un dioptre : construction de Huygens en milieu uniaxe axe optique perpendiculaire au plan d incidence : deux faisceaux réfractés (ordinaire et extraordinaire) réfraction suivant la loi de Descartes (n sin i = n e sin r e = n o sin r o ) polarisation tangente a la surface des vitesses radiales : suivant l axe optique pour le rayon extraordinaire dans le plan d incidence pour le rayon ordinaire polarisation perpendiculaire à la direction de propagation de l énergie pour les deux faisceaux (D // E)
18 Réfraction par un dioptre : construction de Huygens en milieu uniaxe axe optique inclus dans le plan d incidence : polarisation tangente a la surface des vitesses radiales : dans le plan d incidence pour le rayon extraordinaire perpendiculaire au plan d incidence pour le rayon ordinaire polarisation perpendiculaire à s pour le rayon ordinaire polarisation non perpendiculaire à s pour le rayon extraordinaire
19 Milieux anisotropes circulaires Milieux absorbants et dichroïques Anisotropies induites/modifiées
20 Séparateurs et polariseurs séparation de deux faisceaux de polarisation linéaire orthogonale polariseurs :
21 Déphaseurs lames cristallines ou cristaux liquides : chromatiques franges d interférence
22 Déphaseurs déphaseurs achromatiques par reflexion totale rhomboèdres de Fresnel
23 Matrices de Mueller chaque dispositif élémentaire (eg polariseur, déphaseur, rotateur) dans une configuration donnée est représenté par une matrice 4x4 M polariseurs rectilignes : déphaseurs : rotateurs : pour combiner les dispositifs, on multiplie les matrices : [M] = [M k ] [M k-1 ] [M 2 ] [M 1 ]
24 Modulateurs polarimétriques principe : au moins un déphaseur variable suivi d un polariseur mesure de la polarisation par modulation temporelle ASP: Advanced Stokes Polarimeter ZIMPOL: Zurich Imaging POLarimeter modulation rapide (ZIMPOL: 50 khz) 50% de perte
25 Polarimètres à double faisceaux principe : au moins un déphaseur variable suivi d un séparateur mesure par réponse différentielle entre faisceaux (et eventuellement aussi par modulation temporelle) THEMIS TCFH & TBL plus complexe mais plus efficace modulation moins rapide
26 Cours d optique d (G. Bruhat) Polarisation de la lumière (S. Huard) Polarized light (W.A. Shurcliff) Astronomical polarimetry (J. Tinbergen) Introduction to spectropolarimetry (J.C del Toro Iniesta) La polarisation de la lumière et l observation astronomique (JL Leroy)
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Champ électromagnétique?
Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?
EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Les interférences lumineuses
Les interférences lumineuses Intérêt de l étude des interférences et de la diffraction : Les interférences sont utiles pour la métrologie, la spectrométrie par transformée de Fourier (largeur de raie),
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE
Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE Année 2006 2007 Table des matières 1 Les grands principes de l optique géométrique 1 1 Principe de Fermat............................... 1 2 Rayons lumineux.
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Lecteurs optiques numériques
ÉCOLE POLYTECHNIQUE FILIÈRE MP Option Physique et Sciences de l Ingénieur CONCOURS D ADMISSION 2010 COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (Durée : 4 heures) L utilisation des calculatrices
Cours d Electromagnétisme
Année Universitaire 2012-2013 Licence de Physique (S4) Cours d Electromagnétisme Chargé du Cours : M. Gagou Yaovi Maître de Conférences, HDR à l Université de Picardie Jules Verne, Amiens [email protected]
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
L Évolution de la théorie d élasticité au XIX e siècle
Kaouthar Messaoudi L Évolution de la théorie d élasticité au XIX e siècle Publibook Retrouvez notre catalogue sur le site des Éditions Publibook : http://www.publibook.com Ce texte publié par les Éditions
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS PR. MUSTAPHA ABARKAN EDITION 014-015 Université Sidi Mohamed Ben Abdallah de Fès - Faculté Polydisciplinaire de Taza Département Mathématiques, Physique et Informatique
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite
L acoustique ultrasonore et ses applications 1 re partie
4 L acoustique ultrasonore et ses applications 1 re partie Le but de cet article est de présenter les principes de base de la propagation des ultrasons dans les milieux solides (différents types d ondes,
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération
2 e B et C 1 Position. Vitesse. Accélération 1 Mécanique : Cinéatique du point La écanique est le doaine de tout ce qui produit ou transet un ouveent, une force, une déforation : achines, oteurs, véhicules,
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
ÉPREUVE COMMUNE DE TIPE - PARTIE D. Mesures sur les fibres optiques
ÉPREUVE COMMUNE DE TIPE - PARTIE D TITRE : Mesures sur les fibres optiques 0 Temps de préparation :... h 5 minutes Temps de présentation devant le jury :.0 minutes Entretien avec le jury :..0 minutes GUIDE
Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes
Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes M. Aubert To cite this version: M. Aubert. Famille continue de courbes terminales du spiral
Interférences et applications
Interférences et applications Exoplanète : 1ère image Image de la naine brune 2M1207, au centre, et de l'objet faible et froid, à gauche, qui pourrait être une planète extrasolaire Interférences Corpuscule
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Fonctions de plusieurs variables
UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,
GELE5222 Chapitre 9 : Antennes microruban
GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)
Travaux dirigés de mécanique du point
Travaux dirigés de mécanique du point Année 011-01 Arnaud LE PADELLEC Magali MOURGUES [email protected] [email protected] Travaux dirigés de mécanique du point 1/40 P r é s e n t a t
TP 03 B : Mesure d une vitesse par effet Doppler
TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Antennes et Propagation radio
Antennes et Propagation radio GEL-4202/GEL-7019 Dominic Grenier Département de génie électrique et de génie informatique Université Laval Québec, Canada G1V 0A6 Hiver 2015 c DG-Antennes, 1996,2002,2006,2007,2009,2012
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites
I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo
PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo I - La transformation de Lorentz Dans tout ce qui suit, R(O, x, y, z, t) et R (O, x, y, z, t ) sont deux référentiels galiléens dont les axes
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Mélanges binaires de granulaires en tambour tournant
Formation Stage 2006 2007 Sciences de la Matière PERGE Christophe École Normale Supérieure de Lyon L3 Université Claude Bernard, Lyon 1 Option Physique Mélanges binaires de granulaires en tambour tournant
De la sphère de Poincaré aux bits quantiques :! le contrôle de la polarisation de la lumière!
De la sphère de Poincaré aux bits quantiques :! le contrôle de la polarisation de la lumière! 1. Description classique de la polarisation de la lumière!! Biréfringence, pouvoir rotatoire et sphère de Poincaré!
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et
5.2 Théorème/Transformée de Fourier a) Théorème
. Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
TD: Cadran solaire. 1 Position du problème
Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire
Exercices et corrigés Mathématique générale Version β
Université libre de Bruxelles Années académiques 2008-2050 Université catholique de Louvain Exercices et corrigés Mathématique générale Version β Laurent Claessens Nicolas Richard Dernière modification
PHYSIQUE. Calculatrices autorisées. Quelques enjeux de la fusion thermonucléaire inertielle laser
PHYSIQUE Calculatrices autorisées Quelques enjeux de la fusion thermonucléaire inertielle laser Les différentes parties sont très largement indépendantes Tout résultat donné par l énoncé peut être utilisé
Mais où est donc passée la relativité générale? Version 3.0
Mais où est donc passée la relativité générale? Version 3.0 Pascal Picard 29 mars 2015 Je suis amateur de Mathématiques et de Physique Théorique, convaincu que ces sciences sont accessibles à tous, à condition
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
Le Global Positionning System
Travail de Maturité 2009 Le Global Positionning System Structure et fonctionnement Roch Jonas Tutrice : Mme Rima Halabi Petter Gymnase cantonal du Bugnon, Lausanne Résumé Pratiquant de la montagne lors
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Mathématiques et physique (MP) Discipline : Physique-chimie Seconde année Programme de physique-chimie de la voie MP
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier 2012 14 h à 16 h
ANNEE UNIVERSITAIRE 2011-2012 DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE Examen du Tronc Commun sous forme de QCM Janvier 2012 14 h à 16 h Les modalités de contrôle se dérouleront cette année sous forme
Calcul des intégrales multiples. Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal
Calcul des intégrales multiples Abdesselam BOUARICH Université Sultan Moulay Slimane Faculté des sciences de Beni Mellal 1 8 6 4 2 2 4 6 8 6 5 4 3 2 1 1 2 3 4 5 6 2 Table des matières 1 Intégrales doubles
Signaux numériques : Multiplexage temporel : TDM
Signaux numériques : Multiplexage temporel : TDM Pour la hiérarchie TDM, il y a deux catégorie : Le multiplexage dans les systèmes informatiques : La transmission TDM dans des lignes haute vitesse à partir
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Audioprothésiste / stage i-prépa intensif - 70 Chapitre 8 : Champ de gravitation - Satellites I. Loi de gravitation universelle : (
cel-00530377, version 1-28 Oct 2010
Mécanique des milieux continus F r a n ç o i s S i d o r o f f p Ce document est sous licence Creative Commons Paternité Pas d Utilisation Commerciale Partage des Conditions Initiales à l Identique 3.0
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Quelleestlavaleurdel intensitéiaupointm?
Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences
Python - introduction à la programmation et calcul scientifique
Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de
CHAPITRE 2 POSITIONNEMENT
35 CHPITRE POSITIONNEMENT 1. INTRODUCTION La détermination d une position précise est le problème fondamental d un Système d Information Géographique (SIG) et l objet principal de la géodésie. La position
Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière
Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique? Temps de préparation :...2 h 15 minutes Temps de présentation devant le jury
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
Exercice 1. Exercice n 1 : Déséquilibre mécanique
Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction
L histoire de la Physique, d Aristote à nos jours: Evolution, Révolutions
L histoire de la Physique, d Aristote à nos jours: Evolution, Révolutions Martial Ducloy Président Société Française de Physique & Laboratoire de Physique des Lasers Institut Galilée & CNRS Université
