BREVET BLANC de MATHEMATIQUES Avril durée : 2 heures
|
|
|
- Marie-Louise Laurin
- il y a 9 ans
- Total affichages :
Transcription
1 BREVET BLANC de MATHEMATIQUES Avril durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et les notations mathématiques sont notés sur 4 points. Pour chaque question, si le travail n est pas terminé, laisser tout de même une trace de recherche : elle sera prise en compte dans la notation. Exercice (3 points) Flavien veut répartir la totalité de 760 dragées au chocolat et 045 dragées aux amandes dans des sachets ayant la même répartition de dragées au chocolat et aux amandes.. Peut-il faire 76 sachets? Justifier la réponse. 2. a. Quel nombre maximal de sachets peut-il réaliser? b. Combien de dragées de chaque sorte y aura-t-il dans chaque sachet? Exercice 2 (5 points) Quatre affirmations sont données ci-dessous. Pour chacune des affirmations, indiquer si elle est vraie ou fausse en argumentant la réponse. Affirmation : est un nombre entier. Affirmation 2 : 4 n'admet que deux diviseurs. Affirmation 3 : Pour tous les nombres x, on a : Affirmation 4 : Les droites (AB) et (CD) sont parallèles.
2 Exercice 3 (3 points). Une ville de habitants dépense chaque mois 0 euros par habitant pour faire traiter les poubelles ménagères (collecte des déchets et..). Quel est le budget sur une année de cette ville pour faire traiter les poubelles? Justifier la réponse. 2. En 2009, la France comptait 65 millions d'habitants qui ont produit 30 millions de tonnes de déchets. Est-il vrai que cette année-là, un habitant en France produisait un peu plus de kg de déchet par jour? Justifier la réponse en écrivant tous vos calculs. 3. Une ville qui en 203 a traité 820 tonnes de déchets se donne comme objectif de réduire cette masse de 7% en 207. Quelle masse de déchets est attendue en 207 dans cette ville? Exercice 4 (5 points) Pour attirer davantage de visiteurs dans sa ville, un maire décide de faire construire l'aquarium de l Atlantique. Les architectes prévoient de poser un énorme aquarium à l'entrée, dont la vitre a une forme sphérique. La figure ci-dessous représente la situation. Cette figure n'est pas en vraie grandeur. Les 3 questions sont indépendantes.. a. Montrer que le volume d'une boule de rayon 5 m vaut environ 524 m 3. b. Convertir ce volume en litres. 2. En réalité, l'aquarium est implanté dans le sol. La partie supérieure (visible aux visiteurs) est une «calotte sphérique». La partie inférieure (enfouie) abrite les machines. a. Quelle est la nature géométrique de la section entre le plan horizontal du sol et l'aquarium (la partie grisée sur la figure)? b. Le point O désigne le centre de la sphère qui a pour rayon 5 mètres. Le point H désigne le centre de la section. On donne OH = 3 m. Calculer la mesure de l angle. Donner l'arrondi au degré. 3. Le volume de cet aquarium est litres. Des pompes délivrent à débit constant de l eau de mer pour remplir l aquarium vide. En deux heures 30 minutes les pompes réunies y injectent litres d eau de mer. Au bout de combien de temps les pompes auront-elles rempli l aquarium? 2
3 Exercice 5 (3 points) Dans le tableau suivant, chaque ligne ne propose qu une réponse juste. Dans la copie recopier le numéro de la question et la réponse exacte (sans justifications). 2 3 La solution de l équation est Les solutions de l inéquation sont tous les nombres qui vérifient Le nombre 2 est solution de l inéquation a b c 5 6 Exercice 6 (7 points) On donne ci-dessous les représentations graphiques de deux fonctions. Ces représentations sont nommées C et C 2. (C ) (C 2 ). L une de ces représentations est celle d une fonction linéaire f. Laquelle? Justifier la réponse. 2. a) Lire graphiquement les coordonnées du point A. b) Déterminer le coefficient de la fonction linéaire f. c) Le point B de coordonnées (47 ; 245) appartient-il à la représentation graphique de cette fonction linéaire f? Justifier. 3. On appelle g la deuxième fonction représentée sur ce graphique. a) Déterminer graphiquement l image de 5 par la fonction g. b) Déterminer graphiquement l antécédent de 2 par la fonction g. c) Citer un nombre qui a trois antécédents par la fonction g. 3
4 Exercice 7 (5 points) Rappel : Dans un jeu de 32 cartes, les cartes sont réparties en quatre catégories (trèfle et pique de couleur noire ; carreau et cœur de couleur rouge). Dans chaque catégorie il y a huit cartes : 7, 8, 9, 0, Valet, Dame, Roi et As. On tire une carte au hasard dans ce jeu. Dans la copie recopier le numéro de la question et la réponse exacte (sans justifications).. La probabilité d obtenir un carreau est : 0,75 2. La probabilité d obtenir un as est : 0,25 0,25 3. La probabilité d obtenir un roi noir est : 4. La probabilité d obtenir un roi ou un cœur est : 5. On a plus de chance d obtenir un roi qu un cœur vrai faux on ne peut pas savoir Exercice 8 (5 points) Dans cet exercice, toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation. On considère la figure ci-dessous, qui n'est pas en vraie grandeur : BCDE est un carré de 6 cm de côté. Les points A, B et C sont alignés et AB = 3 cm. F est un point du segment [CD]. La droite (AF) coupe le segment [BE] en M. Déterminer la longueur CF pour que les longueurs BM et FD soient égales. 4
5 CORRECTION ET BAREME Exercice (3 points) ) = 3,75 donc il ne peut pas faire 76 sachets car 76 n est pas un diviseur de 045. (Il resterait des dragées aux amandes) 2) a) Calcul du PGCD de 045 et 760 avec l algorithme d Euclide : PGCD(045 ; 760) = PGCD(760 ; 285) = PGCD(285 ; 90) = PGCD(90 ; 95) = 95 Il peut faire au maximum 95 sachets. b) = 8 dragées au chocolat ; = dragées aux amandes. Exercice 2 (5 points) Affirmation : Vrai. Affirmation 2 : Faux. 4 a trois diviseurs (, 2 et 4) Affirmation 3 : Faux. Affirmation 4 : Faux. (AC) et (BD) sont sécantes en O. A, O et C sont alignés dans le même ordre que B, O et D. donc (AB) et (CD) ne sont pas parallèles. Exercice 3 (3 points) ) La ville dépense 6 millions d euros par an. 2) tonne = 000 kg Un habitant produisait effectivement un peu plus de kg de déchet par jour. 3) Diminuer de 7 % revient à multiplier par 0,93 donc 820 0,93 = 762,6 tonnes sont attendues en 207. Exercice 4 (5 points) ) a) b) 2) a) C est un disque. b) ORH est rectangle en H donc donc (arrondi correct : ) 3) 2h 30 min = 50 min 5
6 Exercice 5 (3 points). b 2. a 3. b Exercice 6 (7 points). C est (C ) car c est une droite passant par l origine du repère. 2. a) b) donc le coefficient vaut c) donc et le point appartient à (C ). 3. a) b) L antécédent de est d environ c) Le nombre 0 par exemple a trois antécédents Exercice 7 (5 points) ) 2) 0,25 3) 4) 5) Faux Exercice 8 (5 points). (BC) et (MF) sont sécantes en A. (BM) et (CF) sont parallèles car ce sont les côtés opposés d un carré. On peut donc utiliser la propriété de Thalès : En appelant la longueur CF on obtient : Pour que BM et FD soient égales, il faut que CF = 4,5 cm Notation : Utilisation d une lettre pour CF ou BM / compréhension de la situation : point Rédaction de Thalès ou équivalent + rapports égaux : + point Equation correcte pour CF ou BM : point Résolution et réponse : point 6
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
1 Savoirs fondamentaux
Révisions sur l oscillogramme, la puissance et l énergie électrique 1 Savoirs fondamentaux Exercice 1 : choix multiples 1. Quelle est l unité de la puissance dans le système international? Volt Watt Ampère
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution
Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005
ÉQUATIONS PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION 3 x + 5 y = 12 6 x + 4 y = 0 Quel système!!!! Dossier n 3 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Statistiques II. Alexandre Caboussat [email protected]. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.
Statistiques II Alexandre Caboussat [email protected] Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1
UN TOURNOI A GAGNER ENSEMBLE
UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
Quad 110 cc - 4 temps - 60 Km/h - QUAD1101 (Lot 10 pcs)
Catalogue Quads et motos - Quads 125 cc Grossiste Chinois Import Votre grossiste en ligne Edition 06/07/2015 Higoods Co. Ltd. Room 1001 Chuangxin Building,Chuangye Garden Minzhi Streets, Longhua District
Brevet 2007 L intégrale d avril 2007 à mars 2008
Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles
Développer, factoriser pour résoudre
Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93
MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :
SMARTPHONE - DUAL-CORE - NOIR 3483072425242 SMARTPHONE - DUAL-CORE - BLEU XXXX SMARTPHONE - DUAL-CORE - BLANC 3483072485246 SMARTPHONE - DUAL-CORE - ROSE 3483073704131 SMARTPHONE - DUAL-CORE - ROUGE XXXX
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Découverte du tableur CellSheet
Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
1 I ) Une première approche de l algorithme en seconde, saison 2010 _ 2011. Antoine ROMBALDI
1 I ) Une première approche de l algorithme en seconde, saison 2010 _ 2011. Antoine ROMBALDI L objectif est de rendre les élèves capables : De décrire certains algorithmes en langage naturel. D en réaliser
Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE
SUJET DE CONCOURS COMMUN AUX CENTRES DE GESTION : CONCOURS D ADJOINT TECHNIQUE DE 1ERE CLASSE SESSION 2014 SPECIALITE «ENVIRONNEMENT, HYGIENE» Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Plan académique de formation. Le socle commun : formation, évaluation, validation
ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Activité 1. Compter les points Écriture binaire des nombres. Résumé. Liens pédagogiques. Compétences. Âge. Matériel
Activité 1 Compter les points Écriture binaire des nombres Résumé Les données de l ordinateur sont stockées et transmises sous la forme d une série de 0 et de 1. Comment peut-on représenter des mots et
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
Formats d images. 1 Introduction
Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation
Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4
Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
