Chapitre 1. Risque et assurance. Arthur Charpentier. 1.1 Prise en compte de la dynamique en assurance

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1. Risque et assurance. Arthur Charpentier. 1.1 Prise en compte de la dynamique en assurance"

Transcription

1 Chapitre 1 Risque et assurance Arthur Charpentier Dans ce chapitre, nous allons présenter quelques modèles utilisés par les assureurs afin de quantifier les risques pris. Nous insisterons sur deux risques (parmi beaucoup d autres). Le premier sera la modélisation des provisions pour sinistres à payer, et plus particulièrement, la présentation de méthodes permettant de quantifier la marge d erreur associée à ce calcul de provisions. Le second sera le risque démographique présent dans les contrats d assurance en cas de décès, ou surtout en cas de vie. 1.1 Prise en compte de la dynamique en assurance La problématique du provisionnment en assurance Comme le définit (26), les provisions techniques sont les provisions destinées à permettre le règlement intégral des engagements pris envers les assurés et bénéficiaires de contrats. Elles sont liées à la technique même de l assurance, et imposées par la règlementation. D un point de vue plus formel, à la date t, la compagnie d assurance est tenue de constituer une provision pour les sinistres survenus avant la date t qu elle sera tenu d indemniser. Elle doit donc estimer le coût des sinistres survenus, et retrancher les montants déjà versés. Il s agit donc fondamentalement d un problème de prévision. En effet, contrairement à l hypothèse faite dans la plupart des modèles actuariels, les coûts de sinistres ne sont pas connus le jour de la survenance du sinistre. Il y a tout d abord un délai avant que le sinistre ne soit déclaré à la compagnie d assurance par l assuré, puis un temps (plus ou moins long) de gestion du sinistre, d expertises, de paiements, avant de le clôturer plusieurs

2 2 Chapitre 1 mois, ou plusieurs années plus tard. La Figure 1.1 illustre la problématique du provisionnement, avec un diagramme de Lexis de la vie des sinistres. Années de développement Temps calendaire Figure 1.1 Évolution de la vie des sinistres, sur un diagramme de Lexis, avec en abscisse le temps calendaire, et en ordonnée l âge des sinistres. Les sinistres surviennent à la date, sont déclarrés à l assureur à la date + et clôturés à la date. L exercice de provisionnement consiste à estimer à une date donnée (ici fin 2010, correspondant au trait plein vertica), le montant des paiements restant à faire pour l ensemble des sinistres survenus (déclarés ou pas). En pratique, le jour de la déclaration du sinistre à l assureur (+), le gestion de sinistre est tenu d estimer un montant pour le sinistre (à l aide de facture à sa disposition, ou de coûts moyens de sinistres similaires). Le montant réel du sinistre ne sera connu que le jour de la clôture ( ). Entre ces deux dates, le gestionnaire de sinistre peut réviser ses estimations de coûts, mais aussi effectuer des paiements. Toutefois, au lieu de travailler sur des données individuelles, les données sont ici aggrégées par années (comme indiquée sur la Figure 1.1) : on s intéresse à l année de survenance du sinistre (notée i) et l année du paiement (par rapport à l année de la survenance, notée j). Parmi les méthodes reconnues par les autorités de contrôles, les plus classiques sont basées sur les cadences de paiements. On raisonne pour cela par année de survenance de sinistre, et on suppose une certaine régularité dans la cadence de paiement. Le déroulement dépend fortement du type de risque considéré. Ainsi, le tableau suivant donne une idée des cadences de règlement pour différentes

3 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 3 Réglements en n n + 1 n + 2 n + 3 n + 4 Multirisque habitation 55% 90% 94% 95% 96% Automobile 55% 79% 84% 99% 90% dont corporel 13% 38% 50% 65% 72% Responsabilité civile 10% 25% 35% 40% 45% Table 1.1 Cadences de paiements, pour quelques branches d activité (source (9)). branches : On constate donc que pour les branches RC, automobile (partie corporelle) et générale, moins de 15% des sinistres sont réglés après 1 an et il faut attendre 2 à 5 ans pour que la moitié des sinistres soient réglés. Pendant tout ce temps, le bilan doit refléter le coût probable de ces sinistres Quelques définitions et notations, aspects règlementaires et comptables La plupart des méthodes présentées ici sont détaillées dans (9), ou (28). Classiquement, on notera i (en ligne) l année de survenance, i = 1,, n, j (en colonne) l année de développement, j = 0,, n 1, Y i,j les incréments de paiments, pour l année de développement j, pour les sinistres survenus l année i, tableau 1.2 C i,j les paiments cumulés, au sens où C i,j = Y i,0 + Y i,1 + + Y i,j, pour l année de survenance j, tableau 1.3 P i la prime acquise pour l année i, tableau 1.4 N i,j le nombre cumulé de sinistres pour l année de survenance i vu au bout de j années, tableau Table 1.2 Triangle des incréments de paiements, Y = (Y i,j ).

4 4 Chapitre Table 1.3 Triangle des paiements cumulés, C = (C i,j ). Year i P i Table 1.4 Vecteur des primes acquises, P = (P i ) Formalisation du problème du provisionnement Le provisionnement est un problème de prédiction, conditionelle à l information dont on dispose à la date n. On notera H n l information disponible à la date n, soit formellement H n = {(Y i,j ), i + j n} = {(C i,j ), i + j n} On cherche à étudier, par année de survenance, la loi conditionnelle de C i, sachant H n, ou plutôt, si l on suppose les sinistres clos au bout de n années la loi de C i, (voire C i,n si l on souhaite se laisser la possibilté d incorporer un tail factor) sachant H n. Si l on se focalise sur une année de survenance particulière, osn pourra noter F i,n i = {(Y i,j ), j = 0,, n i)} = {(C i,j ), j = 0,, n i)} Cette notation permet de prendre en compte que l information disponible change d une ligne à l autre (cf Figure 1.2). H n F i,n i Figure 1.2 Les informations disponibles pour faire de la prédiction.

5 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE Table 1.5 Triangle des nombres de sinistres, cumulés, en milliers, N = (N i,j ). On cherchera par la suite à prédire le montant des sinistres à payer pour l année i, i.e. Ĉ (n i) i,n = E[C i,n F i,n i ] et la différence entre ce montant et le montant déjà payé constituera la provision pour sinistres à payer, R i = Ĉ(n i) i,n C i,n i On essayera ensuite de quantifier l incertitude associée à cette prédiction. Comme on le verra les méthodes usuelles visaient à calculer mse[c i,n F i,n i ] ou mse[ĉ(n i) i,n ] ce que l on appelera incertitude à horizon ultime. Mais ce n est pas ce que propose Solvabilité II, demandant plutôt de mesurer une incertitude dite à un an. Pour cela, on va s intéresser à la prédiction qui sera faite dans un an, Ĉ (n i+1) i,n = E[C i,n F i,n i+1 ] et plus particulièrement le changement dans l estimation de la charge ultime n i = Ĉ(n i+1) i,n Ĉ(n i) i,n. Si cette différence est positive, on parle de mali (il faudra gonfler la provision afin de pouvoir payer les sinistres), et si elle est négative, on parle de boni. On peut montrer que E[ n i F i,n i ] = 0, autrement dit, on ne peut espérer faire ni boni, ni mali, en moyenne. Les contraintes règlementaires imposéeés par Solvabilité II demandent de calculer mse[ n i F i,n i ]. La Figure 1.3 montre les estimations de montant de provisions deux années consécutives.

6 6 Chapitre 1 Montant (paiements et réserves) Figure 1.3 Estimation de la charge ultime Ĉi,n deux années consécutives ( et n), avec en gris le montant total de paiements déjà effectués, C i,n i et en noir le montant de provisions R i Lecture transversale et longitudiligne des tables de mortalité Classiquement en démographie et en assurance-vie, la probabilité qu une personne en vie à l âge x soit en vie à l âge x + h est calculé par P(T > x + h T > x) = L x+h L x où L j désigne le nombre de survivants d âge j, dans une table de mortalité. Formellement, il faudrait toutefois prendre en compte la date à laquelle le calcul de la probabilité se fait. Si on se place l année t, la probabilité précédante devrait s écrire P t (T > x + h T > x) = P t (T > x + 1 T > x) P t+1 (T > x + 2 T > x + 1) P t+h 1 (T > x + h T > x + h 1) soit, si L t,j désigne le nombre de survivants d âge j, observés l année t, P t (T > x + h T > x) = L t,x+1 L t,x Lt+1,x+2 L t+h 1,x+h. L t+1,x+1 L t+h 1,x+h 1 Il convient alors de pouvoir extrapoler ces données, car les L t,i pour des dates futures sont aujourd hui inconnnus. Et pourtant, ils interviennent dans les cal-

7 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 7 culs des pensions, des retraites, des assurances en cas de décès, etc, comme le montre la Figure 1.4, correspondant au diagramme de Lexis Un des modèles les plus utilisés pour modéliser la mortalité d un point de vue dynamique est celui introduit par (17), appelé communément modèle de Lee & Carter. On suppose pour cela que le taux de décès, à la date t pour une personne d âge x dépend de trois facteurs, µ x,t = exp[α x + β x κ t ], où α = (α x ) désigne l évolution moyenne de la mortalité en fonction de l âge, et où κ = (κ t ) permet de modéliser l évolution de la mortalité dans le temps (traduisant une globale amélioration des conditions de vie). Toutefois, en multipliant par β = (β x ), on peut prendre en compte le fait que les gains ne sont pas identiques pour tous les âges. En fait, la modélisation des durée de vie n est pas très éloignée de la modélisation de la dynamique de la gestion des sinistres. Pour garder les mêmes notations, soit L i,j le nombre de survivants d âge j qui sont nés l année i. L i,j pourrait être vu comme l analogue de C i,j, même si C était croissant (en j) alors qu ici L sera décroissant en j. Dans le premier cas, on parlait de cadence de paiement, ici on parlera de loi de survie. L analogue de Y i,j, les incréments de paiements, seront ici D i,j, le nombre de décès âge à l âge j pour les personnes nées l année i Plan du chapitre La section 1.2 posera les bases de la méthode la plus populaire, à savoir la méthode dite Chain Ladder. L idée est que l on passe d une année de développement à une autre un multipliant par une constante (reflétant la cadence de paiements), soit formellement C i,j+1 = λ j C i,j. Cette approche a été formalisée d un point de vue stochastique par (19). On supposera alors que E(C i,j+1 F i,j ) = λ j C i,j, soit Ĉi,j+1 = λ j C i,j. En rajoutant quelques hypothèses, il sera possible de calculer E(C i,n H n ), ainsi que mse(c i,n H n ). (21) ont poursuivit les calculs sous ces hypothèses afin d étudier non plus l incertitude à ultime (comme le faisait Mack), mais l incertitude à un an. Ils ont ainsi obtenu une formule fermée pour un estimateur de mse[ n i F i,n i]. La section 1.4 présentera une alternative à la modélisation proposée par (19) ou (21), basée sur des approches par facteurs, utilisées dans les années 70, et remise au goût du jour à l aide des modèles GLM. En particulier, dans la régression log-poisson, on supposera que Y i,j P(A i B j ), c est à dire que le montant de paiements effectuée l année i + j pour les sinistres survenus l année i suivent une loi de Poisson, avec un impact multiplicatif des facteurs, Ŷi,j = Âi B j. Nous verrons comment les méthodes de simulation permettent d estimer mse(c i,n H n ). Enfin, la section 1.5 se penchera sur la modélisation dynamique de la mortalité. En particulier, nous insisterons sur les parrallèles naturels qui existent entre les modèles log-poisson basés sur l approche de Lee & Carter, et la régression

8 8 Chapitre 1 log-poisson appliquée à la problématique du calcul des provisions pour sinistres à payer. 1.2 Les cadences de paiements et la méthode Chain Ladder L utilisation des cadences de paiements pour estimer la charge future date des années 30. On suppose qu il existe une relation de récurrence de la forme C i,j+1 = λ j C i,j pour tout i, j = 1,, n. Un estimateur naturel pour λ j, basé sur l expérience passée est alors λ j = n j i=1 C i,j+1 n j i=1 C i,j pour tout j = 1,, n 1. Il s agit tout simplement du ratio moyen entre les années de développement j et j + 1. De telle sorte que l on peut alors prédire la charge pour la partie non-observée dans le triangle, ] Ĉ i,j = [ λn i... λ j 1 C i,n+1 i Des réécritudes du modèle Notons qu au lieu de calculer les facteurs de développement, on peut aussi des taux de développement, cumulés ou non. Autrement dit, au lieu d écrire C i,j+1 = λ j C i,j pour tout i, j = 1,, n, on suppose que On notera que γ j = C i,j = γ j C i,n ou Y i,j = ϕ j C i,n. n k=j+1 { 1 γ1 si j = 1 et ϕ j = λ k γ j γ j 1 si j > 1 Ces valeurs ont été calculées dans le Tableau 1.6. Enfin, un peu de réecriture montre qu il est possible de voir l estimateur Chain-Ladder comme une moyenne pondérée des facteurs de transition individuels, i.e. n j C i,j λ j = ω i,j λ i,j où ω i,j = n j i=1 C i,j i=1 et λ i,j = C i,j+1 C i,j.

9 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE λ j 1, , , , , ,0000 γ j 70,819% 97,796% 98,914% 99,344% 99,529% 100,000% ϕ j 70,819% 26,977% 1,118% 0,430% 0,185% 0,000% Table 1.6 Facteurs de développement, λ = ( λ i ), exprimés en cadence de paiements par rapport à la charge utlime, en cumulé (i.e. γ), puis en incréments (i.e. ϕ). Aussi, on peut obtenir ces coefficients à l aide de régressions linéaires pondérées sans constantes, en régressant les C,j+1 sur les C,j, ou encore λ j = argmin λ R λ j = argmin λ R { n j i=1 { n j i=1 [ C i,j λ C ] } 2 i,j+1, C i,j } 1 [λc i,j C i,j+1 ] 2. C i,j A partir du calcul des facteurs de transition λ = ( λ i ), on complète alors le triangle, en remontant d année de survenance en année de survenance, en commençant par j = 1, puis j = 2, etc (d échelon en échelon, d où le nom de cette méthode). Le triangle complété est présenté dans le Tableau Table 1.7 Triangle des paiements cumulés, C = (C i,j ) i+j n avec leur projection future Ĉ = (Ĉi,j) i+j>n Une approche par sommes marginales Au delà de l approche Markovienne du problème de provisionnement que l on vient de voir (et qui sera reprise dans la section 1.3), il existe une caractérisation particulièment intéressante, que l on retrouvera dans la section 1.4.

10 10 Chapitre 1 En fait, si l on cherche des vecteurs A = (A 0,, A n ) et B = (B 0,, B n ), avec B B n = 1, tels que n j n j A i B j = Y i,j pour tout j, et i=1 i=1 n i n i A i B j = Y i,j pour tout i, j=0 j=0 (on ne somme que sur la partie observée du triangle) les montants prédits dans la partie inférieure du triangles, i.e. (A i B j ) i+j>n, coïncident avec les quantités prédites par la méthode Chain Ladder ((24)). Proposition 1.1 S il existe A = (A 0,, A n ) et B = (B 0,, B n ), avec B B n = 1, tels que n j n j A i B j = Y i,j pour tout j, et i=1 i=1 n i n i A i B j = Y i,j pour tout i, j=0 j=0 alors où B k = j=k Ĉ i,n = A i = C i,n i 1 λ j j=k 1 k=n i λ k 1 1, avec B 0 =. λ j λ j j=k Autrement dit, le montant de provision coïncide avec l estimateur obtenu par la méthode Chain Ladder. Preuve 1.1 La démonstration se fait de manière récursive. Commençons par réécrire les conditions, n j n j n j Y i,j = A i B j = B j A i, et i=1 i=1 i=1 n i n i n i Y i,j = A i B j =, A i B j. j=0 j=0 j=0 Pour i = 1 dans la dernière somme, on en déduit que A 0 = j=0 Y i,j j=0 B j = Y i,j = C 0,n. Supposon que la relation sur les A i soit vérifiée pour 0, 1, 2,, n k 1, et que i j=0 B j = j=i λ 1 j aux étapes n, n 1,, k. Alors à l étape n k, n k A i = i=1 n k 1 i=1 A i + A n k = n k 1 i=1 j=0 C i,k k=n i λ k + k j=0 Y n k,j k j=0 B j

11 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 11 qui peut se réécrire soit encore n k 1 i=1 C i,k De plus, en réécrire n k 1 k=n i i=1 C i,k k=n i λ k + C n k,k k k+1 B j = B j B k+1 = j=0 j=0 Pour le terme de droite, en notant que n k 1 j=0 on obtient que Y j,k = k j=0 n k 1 j=0 λ k + k=n i j=k [S j,k+1 S j,k ] = B j = ( λ 1 ) n k C n k,k k j=0 B j n k λ k = λ 1 j j=n k+1 n k 1 j=0 i=1 C i,k k=n i n k 1 j=0 Y j,k n k 1 j=0 A j n k 1 S j,k+1 λ 1 j = j=n k j=0 λ 1 j. En soustrayant à chacune des étapes, on obtient le résultat annoncé. Nous reviendrons sur ce modèle dans la sectionn 1.4, car la régression de Poisson (dont les paramètres sont estimés par maximum de vraisemblance) coïncide avec la méthode des marges ((2)). Remarque 1.1 L idée de cette méthode remonte aux années 30. Comme le note (1), décrivant la méthode Chain-Ladder, son apparente rigueur mathématique et sa simplicité semblent résoudre sans effort toutes les difficultés. Il n en est malheureusement rien. [...] La cadence de règlements ne peut être constante que si l assureur prend en charge un nombre de sinistres suffisant pour que la loi des grands nombres puisse jouer. Les changements de jurisprudence qui aggravent la responsabilité des assurés et les dépréciations monétaires aboutissement à une augmentation des indemnités allouées, et ralentissent la cadence des règlements des exercices antérieurs dont les sinistres non encore réglés se trouvent majorés. Et plus précisément, (13) remarquait que la méthode de la cadence numérique appliquée aux éléments statistiques que nous possédons nous paraît donc devoir donner des résultats empreints d une assez grande incertitude. λ k. S j,k

12 12 Chapitre De Mack à Merz & Wüthrich La méthode dite Chain Ladder, que nous venons de voir, est une méthode dite déterministe, au sens où l on ne construit pas de modèle probabiliste permettant de mesurer l incertitude associée à la prédiction du montant des réserves. Différents modèles ont été proposés à partir des années 90, à partir du modèles de Mack, jusqu à l approche proposée par Merz & Wüthrich qui introduira la notion d incertitude à un an Quantifier l incertitude dans une prédiction Nous avons obtenu, par la méthode Chain Ladder un estimateur du montant de provision, R. Classiquement, pour quantifier l erreur associée à un estimateur θ d un paramètre θ, on calcul la mean squared error - mse - associée, E([ θ θ] 2 ). Or on cherche ici à quantifier l incertitude de l estimateur R associé à une variable aléatoire R. Le mse s écrit alors en comparant θ à E(R), msep( R) = E([ R E(R)] 2 ) = E([biais( R, R)] 2 ). Si l on souhaite comparer à R (qui est ici une variable aléatoire) on ne parle pas de mse, mais de mse de prédiction, notée msep (on ne prédit pas sur les données passées, mais on utilisera les donnéees pour calibrer un modèle qui servira ensuite à faire de la prédiction pour les années futures). Aussi msep( R) = E([ R R] 2 ). Ce terme peut se décomposer en deux (en faisant une approximation au premier ordre), au sens où E([ R R] 2 ) E([ R E(R)] 2 ) + E([R E(R)] 2 ) } {{ } } {{ } Var(R) mse( R) où le terme de gauche est l erreur d estimation, compte tenu du fait que nous avons dû estimer le montant de provisions à partir de la partie supérieure du triangle, et le terme de droite est l erreur classique de modèle (tout modèle comportant une partie résiduelle orthogonale aux observations, et donc imprévisible). En fait, en toute rigueur (et nous en aurons besoin par la suite), on cherche plutôt à calculer un msep conditionnel à l information dont on dispose au bout de n années, msep n ( R) = E([ R R] 2 H n ) Le formalisme de Mack (19) a proposé un cadre probabiliste afin de justifier l utilisation de la méthode Chain-Ladder. Pour cela, on suppose que (C i,j ) j 0 est un processus

13 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 13 Markovien, et qu il existe λ = (λ j ) et σ = (σj 2 ) tels que { E(Ci,j+1 H i+j ) = E(C i,j+1 C i,j ) = λ j C i,j Var(C i,j+1 H i+j ) = Var(C i,j+1 C i,j ) = σ 2 j C i,j On note que sous ces hypothèses, E(C i,j+k H i+j ) = E(C i,j+k C i,j ) = λ j λ j+1 λ j+k 1 C i,j (19) rajoute une hypothèse supplémentaire d indépendance entre les années de survenance, autrement dit (C i,j ) j=1,...,n et (C i,j) j=1,...,n sont indépendant pour tout i i. Une réécriture du modèle est alors de supposer que C i,j+1 = λ j C i,j + σ j Ci,j ε i,j où les résidus (ε i,j ) sont i.i.d., centrés et de variance unitaire. A partir de cette écriture, il peut paraître légitime d utiliser les méthodes des moindres carrés pondérés pour estimer ces coefficients, en notant que les poids doivent être inversement proportionnels à la variance, autrement dit aux C i,j, i.e. à j donné, on cherche à résoudre min { n j i=1 } 1 (C i,j+1 λ j C i,j ) 2 C i,j Pour tester ces deux premières hypothèses, on commence par représenter les C,j+1 en fonction des C,j à j donné. Si la première hypothèse est vérifiée, les points doivent être alignés suivant une droite passant par l origine. La Figure 1.5 montre ainsi les nuages de points pour j = 1 et j = 2. Pour la seconde hypothèse, on peut étudier les résidus standardisés ((19) parle de weighted residuals), ɛ i,j = C i,j+1 λ j C i,j Ci,j. L utilisation des résidus standardisés nous donnent d ailleurs une idée simple pour estimer le paramètre de volatilité. ( n j 1 σ j 2 1 C i,j+1 = λ ) 2 j C i,j n j 1 Ci,j ce qui peut aussi s écrire σ 2 j = 1 n j 1 i=1 n j 1 i=1 ( Ci,j+1 C i,j λ j ) 2 C i,j (ce qui est à rapprocher de l écriture du facteur de transition λ comme moyenne pondérée des facteurs de transitions observés). Cette méthode permet d estimer les différents paramètres intervenants dans le modèle de Mack.

14 14 Chapitre La notion de tail factor Classiquement on suppose que la première ligne de notre triangle est close : il n y a plus de sinistres ouverts, et donc le montant de provision pour cette année de survenance est nul. Cette ligne servira de base pour tous les développements ultérieurs. Cette hypothèse peut être un peu trop forte pour les branches à déroulement long. (20) a posé les bases des premiers modèles toujours utilisés. On supposera qu il existe alors un λ > 1 tel que C i, = C i,n λ. Une méthode qui a souvent été utilisée a reposé sur l idée que l on pouvait projeter les λ i par une extrapolation exponentielle (ou une extrapolation linéaire des log(λ k 1)), puis on pose λ = k n λ k Mais mieux vaut faire attention, en particulier s il y a des valeurs aberrantes. Exemple 1.1 Sur notre triangle, cette méthode prévoit de rajouter 0.07% de charge par rapport à la prédiction faite par les méthodes classiques (en supposant la première année close), comme le montre la Figure De l incertitude sur R i et R L incertitude est ici quantifiée à l aide du mean squared error, mse( R i ) = mse(ĉi,n C i,n i ) = mse(ĉi,n) = E ( [Ĉi,n C i,n ] 2 Hn ) En utilisant l approximation évoquée auparavant, on peut réécrire le mse sous la forme [ ] 2 mse(ĉi,n) = Var(Ĉi,n H n ) + E(Ĉi,n H n ) Ĉi,n où l on a un terme d erreur de modèle, et un terme d erreur d estimation. soit Pour le premier terme, Var(Ĉi,n H n ) = E(Var(Ĉi,n F i,n i )) + Var(E(Ĉi,n F i,n i )) Var(Ĉi,n H n ) = E(Ĉi, F i,n i ) σ 2 + Var(Ĉi, F i,n i ) λ 2 d où, en itérant sur le dernier terme, [ ] Var(Ĉi,n H n ) = E(Ĉi, F i,n i ) σ+ 2 E(Ĉi,n 2 F i,n i ) σn Z 2 + Var(Ĉi,n 2 F i,n i ) λ 2 n 2 λ 2

15 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 15 etc. On arrive, en itérant jusqu à n i (car C i,n i est observé), à la relation Var(Ĉi,n H n ) = k=n i en utilisant le fait que pour n i < k < n De l autre côté, [λ n i λ k 1 C i,n i ] σ 2 kλ 2 k+1 λ 2 C i,k = λ n i λ k 1 C i,n i. E(C i,n H n ) = E (E (C i,n F i,n i )) = E (λ C i, F i,n i ) = λ E (C i, F i,n i ) ce qui donne, par itérations successives, E(C i,n H n ) = λ n i λ n i+1 λ C i,n i. Aussi, [ ] 2 E(Ĉi,n H n ) Ĉi,n = C 2 i,n i [λ n i λ λ n i λ ] 2 σ 2 k Pour estimer le premier terme, on remplace simplement λ k par λ k et σk 2 par, de telle sorte que Var(Ĉi,n H n ) = k=n i [ λn i λ k 1 C i,n i ] σ 2 k λ 2 k+1 λ 2 ce qui se réécrit encore, en se basant sur l estimation de la charge ultime (et plus sur la dernière valeur observée) Var(Ĉi,n H n ) = Ĉ2 i,n k=n i σ 2 k / λ 2 k Ĉ i,k. Pour le second terme, ça se complique un peu, car on ne peut pas simplement remplacer λ k par son estimateur. On va alors réécrire [λ n i λ λ n i λ ] sous la forme d une somme, où [λ n i λ λ n i λ ] = k=n i S k = λ n i λ k 1 [λ k λ k ]λ k+1 λ, ce qui permet d écrire le carré de la somme k=n i S 2 k + 2 j<k S j S k. S k

16 16 Chapitre 1 En notant que on en déduit que E([λ k λ k ] 2 H k ) = Var( λ k H k ) = E(S 2 k H k ) = λ n i λ k 1 σ 2 k σk 2 n k j=1 C, j,k n k j=1 C λ k+1 λ. j,k Et en revanche, pour j < k, E(S j S k H k ) = 0. Aussi, un estimateur pour le second terme peut être λ n i λ k=n i k=n i σ k 2/ λ 2 k n k j=1 C. j,k Proposition 1.2 Le mean squared error du montant de provision mse( R i ), pour une année de survenance i, peut être estimé par ( ) mse( R σ 2 i ) = Ĉ2 k 1 1 i,n + λ 2 k Ĉ n k i,k j=1 C. j,k Toutefois, une compagnie doit au minimum provisionner pour la branche d activité, et par par année. Il faut ensuite calculer le mse pour R = R R n. En fait, on notera que [ n ] 2 mse( R) n = E R i R i H n i=2 i=2 i.e. ( n ) [ ( mse( R) n ) ] 2 n = Var C i,n H n + E C i,n H n Ĉ i,n i=2 i=2 i=2 Comme on suppose que les années de survenance sont indépendantes, le premier terme se simplifie, ( n ) n Var C i,n H n = Var (C i,n H n ) i=2 (dont les terms sous le signe sommee ont été calculés auparavant). Pour le second terme, il peut être réécrit [ n ] 2 E (C i,n H n ) Ĉi,n i=2 i=2

17 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 17 soit n [E (C i,n H n ) Ĉi,n] [E (C j,n H n ) Ĉj,n]. i,j=2 En utilisant les notations précédantes, notons que [E (C i,n H n ) Ĉi,n] [E (C j,n H n ) Ĉj,n] = [C i,n i F i ] [C j,n j F j ] ce qui permet de réécrire le mean squared error pour R. En réutilise alors l astuce de tout à l heure pour estimer F i F j. Proposition 1.3 Le mean squared error du montant de provision mse( R), pour l ensemble des années de survenance, peut être estimé par mse( R) = n mse( R i ) + 2 i=2 2 i<j n Ĉ i,n Ĉ j,n k=n i σ k 2/ λ 2 k n k l=1 C. l,k Cette vision est parfois appelée vision à l ultime de l incertitude relative au montant de provision. Exemple 1.2 Sur le triangle 1.2 mse( R) = 79.30, alors que mse( R n ) = 68.45, mse( R ) = 31.3 ou mse( R n 2 ) = L incertitude à un an de Merz & Wüthrich Pour comprendre la notion d incertitude à un an, plaçons nous un an en arrière. A la fin de l année n 1, nous disposions du triangle sans la dernière diagonale, que l on avait alors complété par la méthode Chain Ladder (Tableau 1.3.5). Si l on ne s intéresse qu aux années antérieures, i = 1,, n 1, à la fin de l année n, nous avions obtenu un triangle avec une diagonale supplémentaire que l on avait alors complété par la méthode Chain Ladder (Tableau 1.3.5) Table 1.8 Triangle des paiements cumulés sur les années antérieures, C = (C i,j ) i+j,i avec les projection future Ĉ = (Ĉi,j) i+j>. A la fin de l année, le montant de provisions constitué était de 2114, 61, pour ces n 1 premières années. Au final, on pensait payer 27513, 61 (toutes

18 18 Chapitre Table 1.9 Triangle des paiements cumulés sur les années antérieures, C = (C i,j ) i+j n,i avec les projection future Ĉ = (Ĉi,j) i+j>n. années confondues). A la fin de l année n, la charge totale était revue à la hausse, passant à 27697, 33. Cette augmentation de 183, 72 est appelée mali. C est l incertitude associée à cet quantité qui est aujourd hui demandé dans Solvabilité II. Formellement, il convient d introduire dans les notations la date à laquelle est faite l estimation. Par exemple, on distinguera n i 1 n i λ n i=1 C i,j+1 n+1 i=1 j = n i 1 et λ j = C i,j+1 n i i=1 C i,j i=1 C i,j La section précédante permet de monter que E( λ n j H n ) = λ j et E( λ n+1 j H n+1 ) = λ j. Sauf qu ici, on se place toujours à la date n. Il convient alors de calculer E( λ n+1 j H n ) Notons que si l on pose S n j = C 1,j + C 2,j +, C Cn i, n i λ n+1 i=1 j = C i,j+1 n i i=1 C = i,j soit simplement λ n+1 j n i i=1 C i,j+1 S n+1 = j = Sn j λ n j S n+1 j i i=1 C i,j+1 S n+1 j + C n j,j+1 S n+1. j Lemme 1.1 Sous les hypothèses du modèles de Mack, E( λ n+1 j H n ) = Sn j S n+1 j On en déduit en particulier que E(Ĉn+1 i,j H n ) = C i,n i λ n i λ n j + λ j Cn j,n S n+1. j j 1 k=n i+1 ( λn+1 ) E k H n. + C n j,j+1 S n+1 j

19 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 19 En reprenant les notations de (21), on peut étudier la variation du boni/mali d une année sur l autre, c est à dire du changement dans la prédiction de la charge totale, entre deux années. Pour cela, on introduit le concept suivant Définition 1.1 Le claims development result CDR i (n + 1), pour l année de survenance i, entre les dates n et n+1, aussi appelé boni ou mali (suivant qu il est positif ou négatif), est CDR i (n + 1) = E(R n i H n ) [ Y i,n i+1 + E(R n+1 i H n+1 ) ], où Y i,n i+1 correspond à l incrément de paiements, Y i,n i+1 = C i,n i+1 C i,n i. On notera que CDR i (n+1) est une martingale H n+1 -mesurable, et que l on peut réécrire De plus, E (CDR i (n + 1) H n ) = C i,n i CDR i (n + 1) = E(C i,n H n ) E(C i,n H n+1 ). j=n i On peut réécrire cette dernière expression E (CDR i (n + 1) H n ) = C i,n i 1 λ n i λ n n i λ n j λ n i j=n i+1 j=n i+1 [ ( S n j S n+1 j 1 + (λ j λ n j ) λ n j + λ j Cn j,j S n+1 j ] C n j,j λ n j. Sn+1 j A l aide de ces relations, on peut calculer, puis estimer, le mse de prédiction conditionel du boni-mali, par année de survenance i pour commencer, puis en aggrégeant toutes les années. Pour l erreur de modélisation, on peut noter que Var(CDR i (n + 1) H n ) = E(C i,n H n ) 2 σ2 n i /λ2 n i C i,n i. Cette dernière grandeur est parfois appelée erreur de prédiction prospective Pour l estimation de ce terme, on considère naturellement Var(CDR i (n + 1) H n ) = (Ĉn i,n) 2 [ σn n i ]2 /[ λ n n i ]2 C i,n i, ). où [ σ n i] n 2 = 1 n j ( ) 2 Ci,j C i,j 1 n j C λ n j 1 i,j 1 i=1

20 20 Chapitre 1 En revanche pour le second terme, c est un peu plus compliqué. On peut toutefois écrire ( ) Ci,n ie 2 S n λ n j j λ n i S n+1 λ n j + λ j 2 Cn j,j j S n+1 H n. j j=n i j=n i+1 Un peu de calcul permet alors d obtenir l écriture suivante [ ] [ ] σ 2 λ 2 j /λ 2 j j Sj n αj 2 σj 2/λ2 j Sj n j=n i j=n i j=n i+1 j=n i+1 [ α j σ 2 j /λ2 j S n j + 1] où α j = Sn j S n+1 j. On arrive finalement à la propriété suivante Lemme 1.2 Sous les hypothèses du modèle de Mack, un estimateur de E(ĈDR i (n+ 1) 2 H n ) mse(ĉdr i (n + 1) H n ) = Ĉ2 i,n ( Γi,n + ) i,n où et Γ i,n = i,n = σ 2 n i+1 λ 2 n i+1 Sn+1 n i+1 + j=n i+2 ( ) σ 2 n i λ 2 n i+1 C i,n i+1 j=n i+2 ( ( 1 + C n j+1,j S n+1 j σ 2 j ) 2 σ 2 j λ 2 j Sn j λ 2 j [Sn+1 j ] C 2 n j+1,j ) 1 Remarque 1.2 On peut noter que Ĉ2 i,n i,n est un estimateur de ) E ([E(ĈDR i (n + 1) H n )] 2 H n. En revanche Ĉ2 i,n Γ i,n est un estimateur de Var(ĈDR i (n + 1) H n ). (21) ont alors approché ce dernier terme terme par σ 2 n i+1 Γ i,n λ 2 n i+1 C + i,n i+1 j=n i+2 ( C n j+1,j S n+1 j ) 2 σ 2 j λ 2 j C n j+1,j

21 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 21 en faisant tout simplement un développement de la forme (1+u i ) 1+ u i, mais qui n est valide que si u i est petit, soit ici σ j 2 λ 2 j << C n j+1,j. Pour l erreur d estimation, on parle également d erreur de prédiction rétrospective, il convient de calculer, puis d estimer ) E ([CDR i (n + 1) ĈDR i (n + 1)] 2 H n, et pas seulement E(ĈDR i (n + 1) 2 H n ) comme nous venons de le faire. Mais comme nous le rappelerons par la suite, la règlementation ne tient pas compte de ce terme, car il est illégal de supposer ĈDR i (n + 1) 0. Toutefois, pour ce terme, il est possible de montrer la propriété suivante Lemme 1.3 Sous les hypothèses du modèle de Mack, un estimateur de E([ĈDR i (n+ 1) CDR i (n + 1)] 2 H n ) est mse(cdr i (n + 1) H n ) = Ĉ2 i,n ( Φi,n + ) i,n où ( ) σ n i+1 Φ 2 i,n = 1 + λ 2 n i+1 C i,n i+1 j=n i+2 ( 1 + (21) ont alors approché ce dernier terme terme par Φ i,n j=n i+2 [ σ n j ]2 [ λ n j ]2 C n j+1,j ( σ 2 j λ 2 j [Sn+1 j ] C 2 n j+1,j C n j+1,j S n+1 j ) 2, ) 1. en faisant là encore un développement de la forme (1 + u i ) 1 + u i, mais qui n est valide que si u i est petit, soit ici σ j 2 λ 2 j << C n j+1,j. En considérant ces approximations, et en supposant qu il est légalement impossible de prédire autre chose que ĈDR i (n + 1) = 0, on peut finallement réécrire

22 22 Chapitre 1 Proposition 1.4 Sous les hypothèses du modèle de Mack, mse n (ĈDR i (n+1)) [Ĉn i,n] 2 [ σn n i+1 ]2 [ λ n n i+1 ]2 ( 1 Ĉ i,n i Ŝ n n i+1 ) + [ σ n j ]2 j=n i+2 [ λ n j ]2 1 Ŝ n j (Ĉn j+1,j Ŝ n+1 j ) 2 Pour rappel, la formule de Mack proposait mse n ( R i ) = [Ĉn i,n] 2 [ σn n i+1 ]2 [ λ n n i+1 ]2 ( 1 Ĉ i,n i Ŝ n n i+1 ) + [ σ n j ]2 j=n i+2 [ λ n j ]2 ( 1 Ĉ i,j + 1 Ŝ n j Autrement dit, dans le mse du CDR, seulement le première terme de l erreur de modèle de la formule de Mack est considérée, et pour l erreur d estimation, on ne considère que la première diagonale i + j = n + 1 (les termes suivants étant écrasés par le facteur Ĉn j+1,j/ŝn+1 j ). Enfin, si l on regarde finalement ce qui se passe toutes années de survenance confondues, on a une formule qui peut encore se rapprocher de celle proposée par Mack, à savoir ). mse n (CDR(n + 1)) n mse n (CDR i (n + 1)) i=1 + 2 i<l Ĉ n i,nĉn l,n [ σn n i ]2 /[ λ n n i ]2 i 1 k=0 C k,n i + j=n i+1 C n j,j [ σ j n ]2 /[ λ n j n j k=0 C ]2 n j 1. k,j k=0 C k,j Cette approximation n est toutefois valide que si C n j+1,j S n+1 j. Et dans ce cas, on peut s attendre à ce que l incertitude à un an soit inférieure à l incertitude à ultime. Exemple 1.3 Sur le triangle 1.2 mse n (CDR(n+1)) = 72.57, alors que mse n (CDR n (n+ 1)) = 60.83, mse n (CDR (n+1)) = ou encore mse n (CDR n 2 (n+1)) = La formule approchée donne des résultats semblables. 1.4 Régression Poissonnienne et approches économétriques Dans cette section, nous nous éloignerons des modèles récursifs inspirés de la méthode Chain Ladder, et nous reviendrons sur des classes de modèles très utilisés dans les années 70, appelés modèles à facteurs, remis au goût du jour en proposant une lecture économétrique de ces modèles, permettant ainsi d obtenir des intervalles de confiance des différentes grandeurs.

23 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE Les modèles à facteurs, un introduction historique Avant de présenter l utilisation des modèles de régression, on peut commencer par évoquer des modèles plus anciens. Par exemple (27) supposait que Y i,j = r j µ i+j, pour tout i, j i.e. le paiement effectué l année i + j pour les sinistres survenus l année i est function d un effet colonne (de cadence de paiement) et un effet diagonal, que Taylor interprète comme un facteur d inflation. Ce modèle peut se réécrire, dès lors qu il n y a pas d incrément positif, qui prend alors une forme linéaire. log Y i,j = α i + γ i+j Comme nous l avons noté à la fin de la section 1.2 un modèle de la forme Y i,j = a i b j pourra se rapprocher du modèle Chain Ladder. (29) avait également proposé d utiliser une courbe d Hoerl, c est à dire log Y i,j = α i + β i log(j) + γ i j. Remarque 1.3 Dans cette section, nous travaillerons davantage sur les incréments de paiements Y i,j que sur les montants cumulés C i,j. En effet, conditionnellement aux facteurs (ligne, colonne ou diagonale), il semble plus vraisemblable de supposer les Y i,j comme étant des variables indépendantes, alors que les C i,j ne le seront probablement pas Les modèles Gaussiens de de Vylder et de Christophides (8) a été un des premiers modèles économétrique de provisionnement. Pour cela, on suppose que Y i,j N (α i β j, σ 2 ), pour tout i, j On peut estimer les coefficients par moindres carrés, ( α, β) = argmin [Y i,j α i β j ] 2. Les équations normales s écrivent ici j α i = Y β i,j j β et β i j = Y i,j α i, j j 2 i α2 i i,j

24 24 Chapitre 1 ce qui ne résoud pas explicitement. Pour le résoudre, (5) a suggéré de le réécrire comme un modèle log-linéaire, i.e. log Y i,j N (a i + b j, σ 2 ), pour tout i, j La régression poissonnienne de Hachemeister & Stanard (12), (15) et enfin (18) ont montré que dans une régression log-poisson sur les incréments, la somme des prédictions des paiments à venir correspond à l estimateur Chain Ladder. On retrouve ici un résultat pouvant être relié à la méthode des marges présentée à la fin de la section 1.2. On suppose ici que E(Y i,j ) = µ i,j = exp[r i + c j ] = a i b j. Il y a ici un 2n paramètres à estimer, a = (a 0,, a n ) et b = (b 0,, b n ), avec une contrainte de la forme b b n = 1 (car il nous reste un degré de liberté). Compte tenu du choix des facteurs (ici un facteur ligne r (ou a) et un facteur colonne c (ou b)), une fois estimés ces paramètres, il est possible de prédire la partie inférieure du triangle très simplement, i.e. Ŷ i,j = µ i,j = exp[ r i + ĉ j ] = â i b j. Remarque 1.4 Si les seuls facteurs qui interviennent dans la modélisation sont un facteur ligne et un facteur colonne, on peut aisément prédire toutes les valeurs telles que 0 i, j leqn. On a alors Ŷi,j = â i b j, pour i + j > n. En revanche, si l on intègre un effet calendaire (d inflation comme dans (27)), il sera alors nécessaire de prévoir les valeurs futures du facteur diagonal, Ŷi,j = b j γ i+j, pour i + j > n, où γ i+j désigne une prédiction de l effet diagonale (prédit à partir des γ 0, γ 1,, γ n ). La valeur de référence est la valeur dans le coin supérieur gauche. Compte tenu de la forme logarithmique du modèle, on a une interprétation simple de toutes les valeurs, relativement à cette première valeur E(Y i,j H n ) = E(Y 0,0 H n ) exp[r i + c j ]. Exemple 1.4 Sur le triangle 1.2, on obtient la sortie de régression suivante, en régressant sur un facteur ligne, et un facteur colonne. Call: glm(formula = Y ~ lig + col, family = poisson("log"), data = base) Deviance Residuals: Min 1Q Median 3Q Max e e e e e+00

25 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 25 Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** lig ** lig < 2e-16 *** lig < 2e-16 *** lig < 2e-16 *** lig < 2e-16 *** col < 2e-16 *** col < 2e-16 *** col < 2e-16 *** col < 2e-16 *** col < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for poisson family taken to be 1) Null deviance: on 20 degrees of freedom Residual deviance: on 10 degrees of freedom (15 observations deleted due to missingness) AIC: Number of Fisher Scoring iterations: 4 Les prédictions Ŷi,j sont indiquées dans le tableau Table 1.10 Triangle des prédictions d incréments de paiements, Ŷ = (Ŷi,j) 0 i,j n par une régression log-poisson Incertitude dans un modèle de régression Nous avions noté auparavant qu obtenir une estimation du montant de sinistres restant à payer ne suffisait pas, et qu il fallait avoir un intervalle de

26 26 Chapitre 1 confiance, ou - au moins - une mesure de la dispersion du vrai montant autour de cette valeur prédite. Les formules économétriques fermées Les modèles de régressions pourraient paraître très intéressants car il existe des formules fermés pour toutes sortes de prédictions. Par exemple, dans une régression GLM avec un lien logarithmique, rappelons que ou encore E(Y i,j H n ) = µ i,j = exp[η i,j ] Ŷ i,j = µ i,j = exp[ η i,j ]. La delta method nous permet d écrire que Var(Ŷi,j) 2 µ i,j η i,j Var( η i,j ), ce qui se simplifie dans le cas où le lien est logarithmique, i.e. µ i,j η i,j = µ i,j Aussi, pour une loi de Poisson surdispersée (comme dans (22)), ( E [Y i,j Ŷi,j] 2) φ µ i,j + µ 2 i,j Var( η i,j ) pour la partie inférieure du triangle. De plus, car il sera nécessaire de sommer tous les termes de la partie inférieure du triangle pour déterminer le montant total de provisions, Cov(Ŷi,j, Ŷk,l) µ i,j µ k,l Ĉov( η i,j, η k,l ). Le montant de provision que l on cherche à estimer étant la somme des prédictions de paiements à venir, R = i+j>n Ŷi,j, alors ( E [R R] 2) i+j>n φ µ i,j + µ Var( η) µ Remarque 1.5 Cette formule est malheureusement asymptotique, ce qui est rarement le cas en provisionnement où l on dispose de très peu de données. Exemple 1.5 Sur notre triangle, on obtient un mean squared error de l ordre de

27 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 27 Les méthodes de simulations Les méthodes de simulation sont une bonne alternative si on dispose de trop peu de données pour invoquer des théorèmes asymptotiques. Rappelons, comme le notait (19) qu il existe 2 sources d incertitude, l erreur de modèle (on parle de process error) l erreur d estimation (on parle de variance error) Il sera alors nécessaire d utiliser deux algorithmes pour quantifier ces deux erreurs. Afin de quantifier l erreur d estimation, il est naturel de simuler des faux triangles (supérieurs), puis de regarder la distribution des estimateurs de montant de provisions obtenus pour chaque triangles. A l étape b, on génère un pseudo triangle à l aide des résidus de Pearson. Rappelons que pour une régression de Poisson, ε i,j = Y i,j µ i,j µi,j. Les erreurs de Peqrson obtenues peuvent être visualisées dans le Tableau Table 1.11 Le triangle des résidus de Pearson, ε où ε i,j = µ 1/2 i,j [Y i,j µ i,j ]. On considère les erreurs de Pearson (et non pas les erreurs brutes Y i,j µ i,j ) car les données sont hétérescédastiques. Les erreurs de Pearson ont été définies de manière à normaliser les résidus (que l on pourra alors supposer i.i.d). Remarque 1.6 Les résidus de Pearson ne sont générallement pas Gaussien, ils sont simplement centrés et réduits. La Figure 1.7 montre en particulier que les supposer Gaussien nous ferait probablement sous-estimer la Value-at-Risk pour un niveau élevé. En simulant des erreurs (qui sont supposées indépendantes et identiquement distribuée), ε b = ( ε b i,j ), on pose alors Y b i,j = µ i,j + µ i,j ε b i,j. Pour générer des erreurs, la méthode la plus usuelle est d utiliser une simulation nonparamétrique, c est à dire que l on va bootstrapper les résidus parmi

28 28 Chapitre 1 les pseudorésidus obtenus. Sinon il est aussi possible d utiliser un modèle paramétrique (par exemple supposer une loi normale, même si rien - théoriquement - ne justifie cette méthode). Le Tableau présente un triangle simulé Y b = (Y b i,j ) Table 1.12 Triangle de paiements bootstrapé, Y b = (Y b i,j ) Table 1.13 Triangle de résidus simulé par bootstrap, ε b = (ε b i,j ). Une fois simulé un pseudo triangle d incréments de paiments, on prédit un montant de provision R b (par exemple via une méthode Chain Ladder, ou en refaisant une modélisation log-poisson si les incréments de paiements sont tous positifs). La variance des R b correspond à l erreur d estimation. Le Tableau 1.14 présente la modélisation du triangle simulé par un modèle log-poisson Ŷ b = (Ŷ i,j b ). La somme des termes dans la partie inférieure donne une valeur possible pour l estimation du montant de provision R b = Afin de prendre en compte l erreur de modèle, plusieurs méthodes peuvent être utilisées. La première, et la plus simple, consiste à noter qu à partir du pseudo triangle Yi,j b b, peut obtenir des prédictions pour la partie inférieure, Ŷi,j. Compte tenu du modèle Poissonnien, on peut alors simuler une trajectoire possible d incréments de paiements en simulant les Yi,j b à l aide de loi de Poisson de paramètre Ŷ i,j b. Le Tableau une simulation de paiements futurs à partir du triangle simulé Y b P(Ŷ b ). La somme des termes dans la partie inférieure dans

29 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE Table 1.14 Triangle des prédictions Ŷ b = (Ŷ i,j b ) obtenues sur le triangle simulé, Y b = (Yi,j b ). une valeur possible pour les paiements restant à faire R b Table 1.15 Triangle de paiements simulés, Y b P(Ŷ b ). La seconde méthode est d utiliser une relecture du modèle de (19), proposée par (10). A partir du pseudo triangle, on va utiliser les facteurs de développement λ j et les variances associés σ j 2 obtenus sur le triangle initial. On prolonge alors le triangle dans la partie inférience via le modèle dynamique Ĉ b i,j+1 (Ĉb i,j,, Ĉb i,0) N ( λ j Ĉ b i,j, σ 2 j Ĉb i,j). Exemple 1.6 Sur le triangle 1.2 la variance empirique de R nous permet d avoir un bon estimateur de mse( R). Ici, à l aide de simulations, on obtient la distribution pour R donnée sur la Figure 1.8. Sur cet exemple, on obtient un écart-type (empirique) pour les simulations de R b de l ordre de (ce qui se rapproche davantage des 79.3 de la méthode de Mack, que des obtenus par développements asymptotiques) Quel modèle de régression? Nous avions justifié l utilisation de la loi de Poisson, car le montant de provisions prédit coïncidait avec l estimateur Chain Ladder. Mais rien ne permet de justifier statistiquement l adéquation de la loi de Poisson a nos données.

30 30 Chapitre 1 Prise en compte d une éventuelle surdispersion En fait, la régression quasi Poisson peut éventuellement être plus adaptée (comme cela est mentionné par exemple dans (25)). Exemple 1.7 Sur le triangle 1.2 une modélisation par une loi quasipoisson donne la sortie suivante Call: glm(formula = Y ~ lig + col, family = quasipoisson("log"), data = base) Deviance Residuals: Min 1Q Median 3Q Max e e e e e+00 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** lig lig *** lig e-06 *** lig e-07 *** lig e-08 *** col e-12 *** col e-12 *** col e-10 *** col e-08 *** col e-07 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for quasipoisson family taken to be ) Null deviance: on 20 degrees of freedom Residual deviance: on 10 degrees of freedom (15 observations deleted due to missingness) AIC: NA Number of Fisher Scoring iterations: 4 Le paramètre de surdispersion φ vaut ici 3.18 (qui est significativement supérieur à 1). Dans l exemple considéré, on obtient φ =, où Var(Y i,j ) = φ E(Y i i, j). L estimation donne les mêmes résulats que la régression de Poisson, toutefois, il faut alors pour simuler une loi quasi Poisson.

31 MODÉLES STATISTIQUES DU RISQUE EN ASSURANCE 31 La simulatin de cette quasi loi, se fait généralement suivant une des deux méthodes suivantes. La première idée est d utiliser une approximation par une loi binomiale négative BN(r, p). Rappelons que pour cette loi E(N) = r 1 p p = λ et Var(N) = r 1 p p 2 = φλ, de telle sorte que, si on cherche à simuler une loi quasipoisson de paramètres λ et φ, p = E(N) Var(N) = 1 φ et r = λφ φ 1. La seconde idée est d utiliser une approximation par une loi Gamma (dont on pourra prendre la partie entière) E(N) = αβ = λ et Var(N) = αβ = φλ, soit α = λ/φ et β = φ. La Figure 1.9 permet de comparer la simulation de ces lois. Entre un modèle Poisson et un modèle Gamma Si les modèles GLM sont générallement présentés comme des modèles où une hypothèse de loi est faite (la loi de la variable dépendante Y devant appartenir à la famille exponentielle), rappelons les modèles GLM peuvent être caractérisés par une modélisation des deux premiers moments, E(Y X) = h(xβ) et Var(Y X) = V (E(Y X)) = g((xβ)), où la fonction lien, h, qui lie la prédiction aux facteurs, ici Ŷi,j = E(Y i,j H n ) = exp[ γ + α i + β j ], la loi ou la fonction variance, V, qui donne la forme de la dispersion, ici Var(Y i,j H n ) = φ E(Y i,j H n ). L unique motivation du modèle précédent (loi de Poisson, i.e. fonction variance identité, et lien logarithmique) est qu il permet d obtenir exactement le même montant que la méthode Chain Ladder. Mais aucun critère statistique n a été évoqué, pour l instant, afin de légitimer ce modèle. Les modèles Tweedie sont une famille de sur-modèle, incluant le modèle Poissonnien. On suppose que la fonction lien, est une fonction puissance, ou plutôt une tranformée de Box-Cox, Ŷi,j = g 1 λ [ γ + α i + β j ] où g λ (x) = λ 1 [x λ 1] si λ > 0 avec le cas limite g 0 (x) = log(x). la fonction variance, qui donne la forme de l intervalle de confiance, ici Var(Y i,j H n ) = φ E(Y i,j H n ) κ où les paramètres λ et κ sont inconnus.

Chapitre 10. Risque et assurance. Arthur Charpentier. 10.1 La problématique du provisionnment en assurance

Chapitre 10. Risque et assurance. Arthur Charpentier. 10.1 La problématique du provisionnment en assurance Chapitre 10 Risque et assurance Arthur Charpentier Dans ce chapitre, nous allons présenter quelques modèles utilisés par les assureurs afin de quantifier les risques pris. Dans les premiers chapitres,

Plus en détail

Risque et assurance. Arthur Charpentier. Université Rennes 1. arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.

Risque et assurance. Arthur Charpentier. Université Rennes 1. arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free. Risque et assurance Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Journées d Études Statistique, Luminy, Novembre 2010. 1 1 Prise en compte

Plus en détail

Estimation de l erreur de prédiction dans le cas de l utilisation d une combinaison de méthodes pour le calcul de provisions en assurance IARD

Estimation de l erreur de prédiction dans le cas de l utilisation d une combinaison de méthodes pour le calcul de provisions en assurance IARD EURIA - Euro Institute of Actuarial Studies Bureau d études Sous la direction de Aude Goichon (KPMG) Franck Vermet (UBO) Françoise Pène (UBO) Estimation de l erreur de prédiction dans le cas de l utilisation

Plus en détail

Le métier d actuaire IARD

Le métier d actuaire IARD JJ Mois Année Le métier d actuaire IARD Journées Actuarielles de Strasbourg 6-7 octobre 2010 PLAN Présentation de l assurance non vie Le rôle de l actuaire IARD La tarification des contrats L évaluation

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains. Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Production des Services d Assurance non-vie selon le SCN 2008

Production des Services d Assurance non-vie selon le SCN 2008 REPUBLIQUE DU CAMEROUN Paix - Travail Patrie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Fatherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Un exemple de régression logistique sous

Un exemple de régression logistique sous Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé Plan de l intervention 1 2 3 Généralités sur le fonctionnement de l assurance

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Introduction à l'actuariat

Introduction à l'actuariat Introduction à l'actuariat 3A MMEFI M2 AMSE M2 IMSA Renaud Bourlès Introduction (1) Spécicité de l'assurance : cycle de production inversé Contrat d'assurance = promesse Importance de la prévision Importance

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Compte rendu de l examen par le BSIF des coefficients du risque d assurance

Compte rendu de l examen par le BSIF des coefficients du risque d assurance Compte rendu de l examen par le BSIF des coefficients du risque d assurance Le présent document précise encore davantage les données et la méthodologie utilisées par le BSIF pour calculer les marges pour

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

FONCTION DE DEMANDE : REVENU ET PRIX

FONCTION DE DEMANDE : REVENU ET PRIX FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie

Plus en détail

Le modèle de régression linéaire

Le modèle de régression linéaire Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Statistique de l assurance

Statistique de l assurance Statistique de l assurance Arthur Charpentier To cite this version: Arthur Charpentier. Statistique de l assurance. 3ème cycle. Université de Rennes 1 et Université de Montréal, 2010, pp.133.

Plus en détail

Table des matières: Guidelines Fonds de Pensions

Table des matières: Guidelines Fonds de Pensions Table des matières: Guidelines Fonds de Pensions TABLE DES MATIERES... 1 INTRODUCTION... 2 1 FINANCEMENT ET FINANCEMENT MINIMUM... 3 1.1 FINANCEMENT... 3 1.2 FINANCEMENT DE PLAN... 3 1.3 FINANCEMENT MÉTHODE

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Simulation d application des règles CNAV AGIRC ARRCO sur des carrières type de fonctionnaires d Etat

Simulation d application des règles CNAV AGIRC ARRCO sur des carrières type de fonctionnaires d Etat CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 10 avril 2014 à 9 h 30 «Carrières salariales et retraites dans les secteurs et public» Document N 9 Document de travail, n engage pas le Conseil Simulation

Plus en détail

Une introduction. Lionel RIOU FRANÇA. Septembre 2008

Une introduction. Lionel RIOU FRANÇA. Septembre 2008 Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Norme comptable relative aux provisions techniques dans les entreprises d assurance et/ou de réassurance NC 29

Norme comptable relative aux provisions techniques dans les entreprises d assurance et/ou de réassurance NC 29 Norme comptable relative aux provisions techniques dans les entreprises d assurance et/ou de réassurance NC 29 Objectif de la norme 01 L activité d assurance et/ou de réassurance se caractérise par : une

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

rv de septembre - 09/09/2008 - XC

rv de septembre - 09/09/2008 - XC rv de septembre - 09/09/2008 - XC Rendez-vous de septembre 9 septembre 2008 - Monte Carlo LE TRANSFERT DE RISQUES DANS SOLVABILITÉ II Xavier Cognat Fédération Française des Sociétés d Assurances rv de

Plus en détail

Comment évaluer une banque?

Comment évaluer une banque? Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

Mesure et gestion des risques d assurance

Mesure et gestion des risques d assurance Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND ptherond@winter-associes.fr

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail