Université Paris-Est Val-de-Marne Créteil. Fiche 2 Résolution d équations



Documents pareils
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Programme de calcul et résolution d équation

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Du Premier au Second Degré

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

PROBLEME(12) Première partie : Peinture des murs et du plafond.

DOCM Solutions officielles = n 2 10.

EQUATIONS ET INEQUATIONS Exercices 1/8

C f tracée ci- contre est la représentation graphique d une

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire LIVRET DE L'ÉLÈVE MATHÉMATIQUES

Représentation géométrique d un nombre complexe

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Lecture graphique. Table des matières

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = x = 4 Mais qui sont ces inconnues?

V- Manipulations de nombres en binaire

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

Chapitre 1 : Évolution COURS

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

Complément d information concernant la fiche de concordance

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

Trois personnes mangent dans un restaurant. Le serveur

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Les problèmes de la finale du 21éme RMT

Baccalauréat ES Amérique du Nord 4 juin 2008

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

LE PRODUIT SCALAIRE ( En première S )

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Correction du bac blanc CFE Mercatique

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

Activités numériques [13 Points]

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Programmation linéaire

Séquence 3. Expressions algébriques Équations et inéquations. Sommaire

Diviser un nombre décimal par 10 ; 100 ; 1 000

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Fonctions de deux variables. Mai 2011

BACCALAUREAT GENERAL MATHÉMATIQUES

Brevet 2007 L intégrale d avril 2007 à mars 2008

Cours de Probabilités et de Statistique

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Probabilités sur un univers fini

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Le seul ami de Batman

Problèmes de dénombrement.

Proposition de programmes de calculs en mise en train

Chapitre N2 : Calcul littéral et équations

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Priorités de calcul :

IV- Equations, inéquations dans R, Systèmes d équations

Pour l épreuve d algèbre, les calculatrices sont interdites.

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

UN TOURNOI A GAGNER ENSEMBLE

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Mathématiques financières

TSTI 2D CH X : Exemples de lois à densité 1

Angles orientés et trigonométrie

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

Questions et réponses concernant les assurances

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Cours d Analyse. Fonctions de plusieurs variables

Thème 17: Optimisation

Corrigé du baccalauréat S Asie 21 juin 2010

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

DEFI MATHS EXPRESS n 2. DEFI MATHS EXPRESS n 1. Le compte est bon : Suite de nombres : ?

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Optimisation des fonctions de plusieurs variables

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP

Le théorème de Thalès et sa réciproque

EVALUATIONS MI-PARCOURS CM2

Sommaire de la séquence 8

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Les nombres entiers. Durée suggérée: 3 semaines

Développer, factoriser pour résoudre

Exercices sur les équations du premier degré

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Correction du baccalauréat ES/L Métropole 20 juin 2014

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

THEME : CLES DE CONTROLE. Division euclidienne

Représentation des Nombres

Logiciel de Base. I. Représentation des nombres

Résolution de systèmes linéaires par des méthodes directes

La persistance des nombres

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

Exercices Corrigés Premières notions sur les espaces vectoriels

Probabilités conditionnelles Loi binomiale

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Annexe 3. Le concept : exemple d une situation d apprentissage.

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Transcription:

Université Paris-Est Val-de-Marne Créteil DAEU-B Fiche 2 Résolution d équations 1 Une équation est une question Une équation correspond à une formulation mathématique de certaines questions. Elle se présente sous la forme d une relation d égalité entre des nombres, dans laquelle une ou plusieurs inconnues sont à déterminer afin que l égalité soit vérifiée. Par exemple l équation (où l inconnue est notée x) s interprète comme : 2x+1 = 7 Trouver tous les nombres x tels que multipliés par 2 et augmentés de 1 donnent 7. Trouver x tel que : 2 x + 1 = 7 Le nombre 3 est une solution de l équation, car en remplaçant l inconnue x par 3, on obtient une VRAIE égalité : 2 3+1 = 7. Par contre 1 n est pas une solution de l équation, car en remplaçant l inconnue x par 1, l égalité obtenue est clairement FAUSSE : 2 1 + 1 = 7. On peut facilement montrer qu une telle équation n admet qu une seule réponse : x = 3. Ce que l on note S = 3}. En effet, pour s en convaincre, on fait les opérations à l envers (on épluche l équation afin d isoler x sous la forme x =...) : on part de l equation initiale 2x + 1 = 7 1 on a retiré 1 2x = 6 2 on a divisé par 2 x = 3 on obtient le résultat final S = 3} 2 La stratégie de résolution Un des objectifs de cette fiche est de savoir résoudre les équations de la forme : ax+b = cx+d. a,b,c,d sont des nombres fixés, par exemple a = 1,b = 2,c = 3,d = 4 nous donne l équation x+2 = 3x+4 x est l inconnue, résoudre l équation consiste à trouver pour quelles valeurs de x l égalité est vraie. La résolution de l équation consiste à éplucher l équation afin d obtenir : x =... Plus précisément, résoudre une équation dans R consiste à déterminer l ensemble des nombres réels qui vérifient l égalité proposée. 2.1 La méthode générale Afin de pouvoir mener à bien cet épluchage de l équation, on peut se représenter l équation comme une balance à l équilibre : 1

ax+b E T A T cx+d Il faut toujours que la balance reste à l équilibre On peut faire toutes les opérations que l on veut, mais on doit les faire des deux cotés : K.O. O.K. K.O. Additionner ou soustraire Multiplier ou diviser (pas par 0!) Une stratégie gagnante : Tourne de ce coté si on charge plus à gauche Tourne de ce coté si on charge plus à droite Etape 1. On met tous les x à gauche et tous les nombres à droites Etape 2. Ensuite on divise pour avoirx =... Pour résumer on garde en tête les règles suivantes : on ne change pas une égalité en additionnant (on en soustrayant) un même nombre aux deux membres de l égalité. on ne change pas une égalité en multipliant (on en divisant) par un même nombre non nul les deux membres de l égalité. Chacune des étapes de la stratégie correspond à une reformulation de l équation initiale! Exemple : 8x+7 = 11x+4 on soustrait 11x des deux cotés 3x+7 = 4 on soustrait 7 des deux cotés 3x = 3 on divise par 3 des deux cotés x = 1 Ainsi x = 1 est l unique solution de l équation et donc S = 1}. Exercice 1 Résoudre les équations suivantes : 1. x+3 = 6 x 2. x 4 = 2x+4 3. 5x+7 = 45+3x 4. 1 4x = 3x 5. 11x = 55+4x 6. 2x+1 = x 7. 3x+5 = 14x 5 8. πx 1 = 8x+ 2 9. πx 6π = 3 2.2 Tout marche bien, mais il faut être attentif... Il est possible qu une équation de la forme ax+b = cx+d admette plusieurs solutions ou au contraire n en admette pas du tout. Cela se passe lorsqu il y a autant de x à gauche qu à droite (a = c). Dans ce cas, en appliquant la stratégie (de la balance), on tombe sur 0 = d b. Il faut alors dire si l égalité que l on a sous les yeux est VRAIE ou au contraire FAUSSE. On se retrouve avec les deux cas de figure suivants : Si d b = 0 est vraie (d = b), alors pour n importe quelle valeurs de x l équation est satisfaite : S = R. 2

Sinon d b = 0 est fausse (d b) et donc il n y a pas de solution à l équation : S =. Exemple: x+5+x 8 = 2x 3 0 = 0 VRAI toutes les valeurs possibles de x sont solutions S = R 2x+5 = 2x 3 0 = 8 FAUX aucune valeur de x n est solution S = Exercice 2 Résoudre les équations suivantes : 1. 2x+5 = 2x 1 2. 2(x 5) 5x = 3x 10 3. x 2 4x+7 = (x 2) 2 4. 3(2x 5) (4x+7) = 5(2x 1) 3x 3 Des exercices 3.1 Des équations Exercice 3 Résoudre les équations suivantes : (a) 3x+3 = 9x+7 (b) 6x+27 = 7x+2 (c) 2x 22 = 4x+3 (d) 10x+5 = 7x 7 (e) 4x+6 = 6x+6 (f) 13x+8 = 10x+5 (g) 7x+11 = 3x+6 (h) 3x+1 = 10x+1 (i) 8x+8 = 5x+8 (j) 3x+12 = 7x 9 (k) 7x 10 = 9x+4 (l) 5x 19 = 4x+9 (m) 9x+16 = 8x 2 (n) 2x 25 = 2x+5 Exercice 4 Résoudre les équations suivantes. Pour chacune d elles, les quantités désignées par les lettres a,b,c et d sont des paramètres et l inconnue est x. 1. ax = a+1 x 2. ax+b 2 = a 2 bx 3. ax+b = cx+d 3.2 Des problèmes Exercice 5 Justine a 5 ans et sa grand-mère a 50 ans. Dans combien d années, l âge de sa grand-mère sera-t-il le quadruple de l âge de Justine? Exercice 6 Le périmètre d un rectangle est de 168 m. La largeur représente les 3/4 de la longueur. Quelles sont les dimensions du rectangle? Exercice 7 3

Dans un grand carré de côté 8, on découpe chacun des côtés comme indiqué ci-contre avec un segment de longueur x. Pour quelle valeur dexl aire du carré blanc est-elle la moitié de celle du grand carré? 8 x x x 8 x 4 Les équations produits Si on souhaite résoudre l équation (3x 8)(7x + 1) = 0, on est bien embêté pour appliquer la méthode proposée auparavant (mettre tout les x à gauche et tout les nombres à droite)! On utilise le résultat suivant : Soit A et B deux expressions littérales, alors A B = 0 si et seulement si A = 0 ou B = 0 C est à dire résoudre l équation A B = 0 revient à résoudre A = 0 et B = 0 : Les solutions de A B = 0 seront alors les solutions de A = 0 ou celles de B = 0. Pour revenir à l équation (3x 8)(7x+1) = 0, on a donc (3x 8)(7x+1) = 0 3x 8 = 0 ou 7x+1 = 0 x = 8 3 ou x = 1 7 ainsi S = 1 7, 8 3 } Ce résultat peut facilement être étendu à une équation produit avec plus que deux facteurs. ATTENTION. Cette méthode ne s applique que pour un produit égale à 0. Par exemple ON NE PEUT PAS l utiliser pour une l équation (2x+1)(x 18) = 1! Exercice 8 Résoudre les équations suivantes : 1. (2x+1)(x 4) = 0 2. (2x+7)( 5x+2) = 0 3. x(2x 3)( x+4) = 0 4. (3 x)(2x+7)(5+x) = 0 5. (x π)(5x 2) = 0 6. x 28 (2x 5) 17 = 0 Exercice 9 Résoudre les équations suivantes : 1. 64x 2 81 = 0 2. 121x 2 22x+1 = 0 3. x 3 x = 0 4. (x 5) 17 (x 3) 4 = 0 5. x 4 2x 2 +1 = 0 6. x 10 6x 5 +9 = 0 7. x 3 9x 2 = 0 8. 4x 2 = 36 9. 25 4 x2 5x+1 = 0 4

5 Les systèmes d équations Il est possible de rencontrer des équations présentant plusieurs inconnues, par exemple : 2x+y = 35. Cette équation peut par exemple correspondre au problème suivant : À la boulangerie je prends x pain(s) au chocolat et y croissant(s), un pain au chocolat coûte 2 euros et un croissant coûte 1 euro. Je paye 35 euros. Combien de pain(s) au chocolat et combien de croissant(s) ai-je pris? Ici x et y sont les deux inconnues de l équation. Une telle équation admet béacoup de solutions, par exemple on peut prendre x = 0 et y = 35 ou bien x = 1 et y = 33... Il est clair que je peux soit prendre 0 pain au chocolat et 35 croissants ou bien 1 pain au chocolat et 33 croissants... Afin de pouvoir déterminer de manière unique x et y il faut rajouter une deuxième condition, par exemple :. Cette deuxième équation peut être interprétée de la manière suivante : Au total j ai 20 viennoiseries. En se fixant une deuxième condition, on peut alors résoudre le problème. Le fait de considérer le deux équations en même temps s exprime mathématiquement par la notion de système d équations : 2x+y = 35. Un tel système peut se résoudre de deux manières différentes : La technique de substitution et la technique de combinaison. Le but de chacune de ces deux techniques est le même : supprimer une inconnue afin d avoir une équation en une inconnue (c est à dire de la forme traitée en début de fiche) que l on peut alors résoudre de manière standard. On va donc chercher à éliminer une inconnue dans une des équations en s aidant de l autre équation afin d obtenir un système dont l une des lignes est une équation du premier degré à une inconnue. 5.1 La technique de substitution Par définition, la substitution est l action de remplacer, de mettre l un à la place de l autre. Le but de la substitution est d exprimer, à l aide d une des deux équations une inconnue en fonction de l autre, ensuite on remplacera cette inconnue par son expression dans la deuxième équation. Par exemple : 5

2x+y = 35 y y = 35 2x x+35 2x = 20 y = 35 2x y = 35 2 15 y = 5 S = (15,5)} = 35 2x On écrit le système et on regarde laquelle des deux inconnues je vais exprimer en fonction de l autre et à l aide de quelle ligne... J ai choisi d exprimer y en fonction de x à l aide de la première ligne Je remplace y par 35 2x dans la deuxième ligne, la deuxième ligne devient alors un simple équation à une inconnue Je résous l équation de la deuxième ligne Je remplace à présent la valeur trouvée pour x dans la première ligne il suffit alors de calculer dans la première ligne afin de trouver la valeur de y J écris alors la solution sous la forme d un couple où je place x avant y Remarque. Dans l exemple ci-dessus on a choisi d exprimer y en fonction de x mais on aurait bien pu exprimer x en fonction de y... ATTENTION. L ordre de l écriture de la solution est très important. Le fait d écrire la solution sous la forme d un couple (15, 5), signifie que le primer nombre, 15, correspond à la valeur de x et que le deuxième, 5, à la valeur de y. 5.2 La technique de combinaison La combinaison est l action de grouper, d unir plusieurs objets pour en former un nouveau. Le but de la combinaison est de supprimer une inconnue en remplaçant une équation par une combinaison linéaire des deux équations : 2x+y = 35 2x+y (x+y) = 35 20 15+y = 20 y = 5 S = (15,5)} On écrit le système et on regarde comment on pourra supprimer une variable... J ai choisi de soustraire la première ligne à la deuxième et d écrire la ligne obtenue à la place de la première ligne Il me suffit à présent de résoudre la première ligne qui n est rien d autre qu une équation à une inconnue Je remplace dans la deuxième ligne la valeur de x trouvée précédemment Je résous l équation de la deuxième ligne J écris alors la solution sous la forme d un couple où je place x avant y 6

Exercice 10 Le couple (1; 2) est-il solution des systèmes proposés? De même pour le couple (2;1). 1. x+4y = 9 2x+3y = 4 2. 2x+y = 4 4x+9y = 17 3. 4x+y = 9 6x 3y = 9 Exercice 11 Résoudre les systèmes suivants : 4x+3y = 5 5x+2y = 1 3x+y = 10 6x+y = 19 5x+3y = 3 6x+7y = 7 4u+t = 7 3u+2t = 9 Exercice 12 Pour conditionner du pâté, on utilise des bocaux, les uns contiennent 500 g et les autres contiennent 250 g. On note x le nombre de bocaux de 500 g et y le nombre de bocaux de 250 g. 1. Sachant que 14 bocaux ont été préparés au total, écrire une relation liant x et y. 2. Sachant que 4,5 kg de pâté ont été conditionnés, écrire une seconde relation liant x et y. 3. Résoudre le système : x+y = 14 10x+5y = 90 En déduire le nombre de bocaux de chaque sorte qui ont été utilisés. Exercice 13 Fred et Sarah sont les aînés d une même et grande famille. Fred a deux fois moins de frères que de sœurs, tandis que Sarah a autant de sœurs que de frères. Combien d enfants y a-t-il dans cette famille? 6 Encore des exercices Exercice 14 Soit l expression A(x) = (3x 4) 2 (3x 4)(2x+5). 1. Développer, réduire et ordonner l expression A(x). 2. Factoriser l expression A(x). 3. Résoudre l équation A(x) = 0. Exercice 15 Soit l expression B(x) = (3x 5) 2 (2x+1) 2. 1. Développer, réduire et ordonner l expression B(x). 2. Factoriser l expression B(x). 7

3. Résoudre B(x) = 0. Exercice 16 Résoudre l équation suivante : (25x 1) 4 = (12x+x 2 +36) 2 Exercice 17 Deux personnes A et B n ont qu une bicyclette pour rejoindre la gare qui est à 23 km. B s empare du vélo et file à 15 km.h 1, cependant que A le suit à pied, à 6 km.h 1. Après un certain trajet, B s arrête et poursuit son chemin à pied à 5 km.h 1. A trouve la bicyclette et rejoint la gare à 11 km.h 1. Les deux personnes arrivent en même temps à la gare. À quelle distance de la gare B a-t-il abandonné le vélo? Combien de temps a duré le trajet? Exercice 18 ABCD est un carré, ABE un triangle rectangle en A E 1. Calculer les deux aires pour x = 1 ; puis pour x = 4 3 A B 2. Calculer les deux aires en fonction de x 3. Pour quelle valeur de x, l aire de ABCD est-elle égale à celle de ABE? x D x C Exercice 19 Le périmètre d un rectangle est 140 mm. En doublant la largeur initiale et en retranchant 7 mm à la longueur initiale, on obtient un nouveau rectangle dont le périmètre est égal à 176 mm. Quelles sont les dimensions du rectangle initial? Exercice 20 Trouver deux fractions de dénominateurs égaux à 7 et à 8. La somme de ces fractions est égale à 129 ; et si l on échange les numérateurs de ces fractions, la somme des 56 fractions obtenues ainsi sera égale à 9 4. Exercice 21 Résoudre le système x+y +z = 2 2x+3y +5z = 1 x 5y +6z = 3 8