1. Notion de fonction a) Relation b) Préimage et image c) Définition de fonction d) Domaine et codomaine (image) e) Représentations d une fonction f) Notation fonctionnelle g) Variables indépendante et dépendante h) Abscisse et ordonnée à l origine 2. Fonction affine a) Définition b) Domaine c) Graphique d) Pente e) Équation d une droite 3. Fonction quadratique a) Définition b) Domaine c) Ordonnée à l origine d) Zéros e) Concavité f) Graphique et sommet g) 6 différents graphiques h) Démarche pour tracer un graphique 4. Fonctions définies par morceaux a) Définition à partir du graphique b) Graphique à partir de la définition Lucie Nadeau
1. Notion de fonction a) Relation : ensemble de couples f : {...( 20;16),...( 10;17,4),...(0;34,5),... } b) Préimage et image Soit (a ; b) un couple d éléments correspondants d une relation f. Le premier élément du couple est appelé la préimage de b par la relation f et le deuxième élément du couple est appelé l image de a par la relation f. c) Définition de fonction Relation pour laquelle chaque préimage a une et une seule image. 2
d) Domaine et codomaine (image) domaine d une fonction : ensemble des éléments qui sont préimage d un couple de la fonction. On le note dom f codomaine d une fonction (image): ensemble des éléments qui sont image d un couple de la fonction. On le note codom f ou Ima f e) Représentations d une fonction en extension : par un tableau de valeurs ou une liste de couples. en compréhension : par une phrase ou une équation (règle de correspondance ) décrivant la relation entre les variables. graphique : en associant à chaque couple d une relation un point dans le plan cartésien. 3
f) Notation fonctionnelle L image d un premier élément x d un couple est généralement appelée y. Pour les fonctions, l image d un premier élément x d un couple étant unique, nous allons utiliser une notation particulière pour la représenter : f (x), qui se lit «f de x» et signifie «l image de x par la fonction f». Cette notation indique qu une variable y est exprimée en fonction d une autre variable x ou que y est dépendante de x. Cette notation est utilisée dans l équation d une fonction. g) Variables dépendante et indépendante Une fonction de par sa nature et de par sa notation exprime une dépendance entre deux variables. Elle permet d associer une valeur de la variable dépendante à chaque valeur de la variable indépendante. Pratiquement, la variable indépendante est celle dont on a la liberté de choisir les valeurs et la variable dépendante est celle qu on mesure et dont les valeurs dépendent de celles de la variable indépendante. Graphiquement, la variable indépendante est représentée sur l axe horizontal et la variable dépendante, sur l axe vertical. 4
h) Abscisse et ordonnée à l origine abscisse à l origine (zéro) : abscisses qui annulent la variable dépendante ou valeurs de x pour lesquelles f (x) = 0. Graphiquement : points d intersection avec l axe horizontal ordonnée à l origine : l ordonnée qui correspond à 0 ou l image de 0 par la fonction. Graphiquement : point d intersection avec l axe vertical. 2. Fonction affine a) Définition C est une fonction définie par l équation suivante : f (x) = mx + b où m R et b R et m 0. b) Domaine C est l ensemble des nombres réels. c) Graphique La représentation graphique d une fonction affine est une droite dont l intersection avec l axe vertical est ( 0 ; b) et dont le coefficient m est la pente de la droite. d) Pente Soit ( x 1 ;y 1 )et ( x 2 ;y 2 )deux points d une droite, tels que x 1 x 2. On définit la pente de cette droite par le rapport : m = y x = y y 2 1. x 2 x 1 Ce rapport est aussi appelé le taux de variation de la fonction. Une caractéristique du modèle affine est que le taux de variation est constant. 5
e) Équation d une droite Pour déterminer l équation d une droite, il faut connaître deux de ses points ou sa pente et un de ses points. Démarche à suivre : 3. Fonction quadratique a) Définition C est une fonction définie par l équation suivante : f (x) = ax 2 + bx + c où a, b et c R et a 0. b) Domaine C est l ensemble des nombres réels. 6
c) Ordonnée à l origine C est c. d) Zéros On peut trouver ces valeurs en résolvant l équation quadratique : ax 2 + bx + c = 0 par factorisation ou en utilisant la formule quadratique : x 1,2 = b ± b2 4ac. 2a Si b 2 4ac > 0, alors il y a 2 zéros distincts. Si b 2 4ac < 0, alors il n y a pas de zéros réels. Si b 2 4ac = 0, alors il y a un zéro double. e) Concavité Si a > 0, alors la concavité est vers le haut et si a < 0, alors la concavité est vers le bas. f) Graphique et sommet Le graphique d une fonction quadratique est une parabole dont le point le sommet. b 2a ; f b 2a est g) 6 différents graphiques Il y a 6 différents graphiques selon la concavité de la parabole et le nombre de zéros de la fonction quadratique. a > 0 b 2 4ac > 0 b 2 4ac = 0 b 2 4ac < 0 a < 0 7
h) Démarche pour tracer un graphique Placer l ordonnée à l origine. Déterminer la concavité. Placer les zéros. Placer le sommet. Placer quelques points supplémentaires symétriquement de chaque côté du sommet. 8
4. Fonctions définies par morceaux a) Définition à partir du graphique Exemple : Donner la définition par morceaux de la fonction dont le graphique apparaît ci-dessous. f(x) 4 2-4 -2-2 2 4 6 x -4 9
b) Graphique à partir de la définition Exemple : Représenter graphiquement la fonction suivante : 0 si x 0 f (x) = 2 si 0 < x 2 5 1,5x si 2 < x 6 10
1. Soit f ( x) = 3x 4. Calculer a) f (0) b) f (1) c) f ( 3) d) f (a) 2. Soit f (x) = 3x 2 + 2. Calculer a) f ( 2) b) f (4) c) f (0) 3. Soit g(x) = x +1 x 1. Calculer a) g( 2) b) g( 1 4 ) 4. Soit h(t) = 4 t 2. Calculer a) h(0) b) h( 3) c) h( 1) 5. Soit i(t) = ( t 2) 3. Calculer a) i(2) b) i(-2) c) i(1/2) 6. Soit f (x) = x 2 + 5. Trouver la préimage de 7. 7. Soit g(z) = 3z 2. Trouver la préimage de 6. 8. Soit h(v) = 1. Trouver la préimage de 5. v + 3 9. Tracer le graphique de la fonction dont la règle de correspondance est : 2 si x 5 3 f (x) = x +1 si 5 < x 5 5 2 si x > 5 11
10. Tracer le graphique de la fonction dont la règle de correspondance est : 2 si x 2 x si 2 < x 0 f (x) = x si 0 < x 3 4 si x > 3 11. Écrire la règle de correspondance de la fonction représentée ci-dessous : f(x) 4 2-4 -2-2 2 4 6-4 12
1. a) -4 b) -1 c) -13 d) 3a 4 2. a) 14 b) 50 c) 2 3. a) 1/3 b) -5/3 4. a) 2 b) 1 c) 3 5. a) 0 b) -64 c) -27/8 6. ± 2 7. 38/3 8. -14/5 9. y (5;4) (5;2) x (-5;-2) 13
10. y (3;4) (-2;2) (3;3) x 11. 4 si x < -2 f (x) = 3 5 x + si 2 x < 2 4 2-5 si 2 x 8 14