Chapitre 10 : Conditionnement et indépendance.

Documents pareils
Probabilités sur un univers fini

Exercices sur le chapitre «Probabilités»

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités sur un univers fini

I. Cas de l équiprobabilité

Calculs de probabilités conditionelles

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

P1 : Corrigés des exercices

Probabilités. C. Charignon. I Cours 3

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Qu est-ce qu une probabilité?

Probabilités conditionnelles

Arbre de probabilité(afrique) Univers - Evénement

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Espaces probabilisés

Probabilités conditionnelles Loi binomiale

Probabilités (méthodes et objectifs)

CALCUL DES PROBABILITES

Introduction au Calcul des Probabilités

PROBABILITÉS CONDITIONNELLES

Feuille d exercices 2 : Espaces probabilisés

Probabilités Loi binomiale Exercices corrigés

Mesure de probabilité, indépendance.

Coefficients binomiaux

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

TSTI 2D CH X : Exemples de lois à densité 1

Fluctuation d une fréquence selon les échantillons - Probabilités

Travaux dirigés d introduction aux Probabilités

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Probabilités. I - Expérience aléatoire. II - Evénements

Les probabilités. Chapitre 18. Tester ses connaissances

Fonctions de plusieurs variables

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Cours de Probabilités et de Statistique

Calculs de probabilités

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

Programmes des classes préparatoires aux Grandes Ecoles

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Leçon N 4 : Statistiques à deux variables

4. Exercices et corrigés

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Limites finies en un point

Introduction à l étude des Corps Finis

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Moments des variables aléatoires réelles

Probabilités conditionnelles Exercices corrigés

Peut-on imiter le hasard?

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Analyse Combinatoire

Géométrie dans l espace Produit scalaire et équations

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

LES GENERATEURS DE NOMBRES ALEATOIRES

Couples de variables aléatoires discrètes

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Intégration et probabilités TD1 Espaces mesurés Corrigé

EI - EXERCICES DE PROBABILITES CORRIGES

Activités numériques [13 Points]

Andrey Nikolaevich Kolmogorov

Chapitre 2. Matrices

NOTIONS DE PROBABILITÉS

Résolution d équations non linéaires

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Les devoirs en Première STMG

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

Exercices de dénombrement

4 Distributions particulières de probabilités

III- Raisonnement par récurrence

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Continuité en un point

3. Conditionnement P (B)

Raisonnement par récurrence Suites numériques

Suites numériques 3. 1 Convergence et limite d une suite

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

PRIME D UNE OPTION D ACHAT OU DE VENTE

DOCM Solutions officielles = n 2 10.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Comparaison de fonctions Développements limités. Chapitre 10

1 Complément sur la projection du nuage des individus

Les indices à surplus constant

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Problèmes de Mathématiques Filtres et ultrafiltres

Introduction à la théorie des graphes. Solutions des exercices

TESTS D'HYPOTHESES Etude d'un exemple

Correction du baccalauréat ES/L Métropole 20 juin 2014

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Chapitre 1 : Évolution COURS

Transcription:

Chapitre 10 : Conditionnement et indépendance. Dans ce chapitre, nous allons donner un sens mathématique au mot «indépendance». Nous pourrons alors modéliser les répétitions indépendantes d expériences aléatoires, comme le jeu de pile ou face. Attention : nous ne reviendrons pas en détail sur ce chapitre lorsque nous traiterons les espaces probabilisés infinis. Les énoncés de ce chapitre sont donc, sauf mention contraire, valable lorsque l univers Ω est quelconque. 1 Définitions 1.1 Probabilité conditionnelle Théorème 1.1.1 Soit (Ω, A,P) un espace probabilisé, et A A tel que P(A) > 0. L application A [0, 1] P A : P(E A) E P(A) est une probabilité sur (Ω, A, P) appelée probabilité conditionnelle relative à A. Pour tout évènement B, P A (B) (ou P(B A)) est la probabilité de B sachant A. P(Ω A) Démonstration: On a P A (Ω) = = 1 et si (E i ) i I est une famille (finie) d évènements deux à deux incompatibles, alors (E i A) i est une famille (finie) deux à deux P(A) incompatibles et P ( i (E i A)) = P(E i A). Ainsi P A ( i E i) = P A (E i ). i I i I Remarque. Dans le cadre des espaces probabilisés infinis, le théorème est analogue, la preuve s obtient en remplaçant les «finie» par «au plus dénombrable» et les sommes finies par des sommes de séries. Exercice. Supposons que l on dispose de deux urnes U et V. L urne U contient 7 boules blanches et deux boules noires. L urne V contient 2 boules blanches, 1 rouge et 3 noires. On considère l expérience suivante : on tire une boule de U et, sans la regarder, on la place dans l urne V. On tire alors une boule de V. Représenter les résultats possibles sur un arbre. Identifier les probabilités de chaque branche. Proposition 1.1.1 Soit (Ω, P(Ω),P) un espace probabilisé fini, où P est la probabilité uniforme. Pour tout Card (A B) évènement A, on a P A (B) =. Card(A) Démonstration: Exercice. J. Gärtner. 1

Il est souvent plus facile de déterminer la probabilité conditionnelle que de déterminer la probabilité d une intersection car on considère alors que l univers réduit contenant les résultats de l expérience conditionnée. Exemple. On distribue complètement 52 cartes à 4 joueurs. Notons Ω l ensemble des mains possibles des 4 joueurs, et prenons A = P(Ω). La probabilité est la probabilité uniforme. Calculons la probabilité que le joueur A ait deux cœurs dans sa main en supposant que les joueurs 3 et 4 en possèdent 8 à eux deux (on connaît donc une information supplémentaire : par exemple la composition exacte des 26 cartes des joueurs 3 et 4). Le nombre de mains possibles pour le joueur 1, sachant que les joueurs 3 et 4 ont 8 cœurs est ( 26 ( 13). Le nombre de mains contenant au moins deux cœurs est 5 )( 21 2 11) (on choisit 2 cœurs parmi les 5 restant, ( et 11 cartes parmi les 21 possibles). Ainsi la probabilité 5 21 ) 2)( (conditionnelle) cherchée est 11 ( 26 13 ). Exercice. Une entreprise organise un dîner pour les employés qui ont deux enfants dont au moins un garçon. Chaque employé est convié avec son aîné(e). Quelle est la probabilité que M. X. vienne au dîner accompagné de son fils sachant qu il est invité? Quelle est la probabilité qu il ait deux fils sachant qu il est invité? 1.2 Résumé Puisque P A est une probabilité, elle vérifie toutes les propriétés du chapitre précédent. En particulier : 1. P A (A) = 1. 2. Si A B, P A (B) = 1. 3. P A (B C) = P A (B) + P A (C) P A (B C) 2 Trois formules 2.1 Formule des probabilités composées C est la formule «générale» pour calculer la probabilité d une intersection (utile lorsque les évènements ne sont pas indépendants). Théorème 2.1.1 (Formule des probabilités composées) Soit n 2. Soit (A 1,...,A n ) une famille d évènements de l espace probabilisé (Ω, A,P), tels que P(A 1 A n 1 ) 0. Alors P(A 1 A n ) = P(A 1 )P A1 (A 2 ) P A1 A n 1 (A n ) Démonstration: Déjà, remarquons que puisque pour tout k [ 1 ; n 1 ], A 1 A n 1 (A 1 A k ), on a 0 < P(A 1 A n 1 ) P(A 1 A k ) et les probabilités conditionnelles sont toutes définies. Montrons ce résultat par récurrence sur n. Initialisation : par définition P(A 1 A 2 ) = P(A 1 )P A1 (A 2 ). Hérédité : soit n 2. Supposons que P(A 1 A n ) = P(A 1 )P A1 (A 2 ) P A1 A n 1 (A n ). Soit A 1,..., A n+1 des évènements tels que P( n i=1 A i) 0. Alors d après le cas n = 2, P( n+1 i=1 A i) = P( n i=1 A i)p T n Ai(A n+1). Mais par hypothèse i=1 P( n i=1 A i) = P(A 1 )P A1 (A 2 ) P A1 A n 1 (A n ), ce qui permet de conclure. J. Gärtner. 2

Exemple. Une urne contient n boules blanches ou rouges dont b blanches et r 5 rouges, indiscernables. On tire successivement et sans remise 4 boules de cette urne. Calculons la probabilité que les quatre boules tirées soient rouges. Notons R i l évènement «la i-ème boule est rouge. On cherche à calculer P(R 1 R 2 R 3 R 4 ). Utilisons la formule des probabilités composées (qui est plus naturelle que la formule du crible ici...). On suppose que la probabilité est uniforme. Alors P(R 1 ) = r n 0. Il reste n 1 boules, dont r 1 rouges. Ainsi P R1 (R 2 ) = r 1 n 1 et P(R 1 R 2 ) = r(r 1) n(n 1) 0. On peut donc calculer P R1 R 2 (R 3 ) : il reste r 2 boules rouges parmis les n 2 boules de l urne : P R1 R 2 (R 3 ) = r 2 n 2 et P(R 1 R 2 R 3 ) 0. On a donc justifié l emplois de la formule des probabilités composées et P R1 R 2 R 3 (R 4 ) = r 3 n 3. r(r 1)(r 2)(r 3) Finalement P(R 1 R 2 R 3 R 4 ) = n(n 1)(n 2)(n 3). Exercice. Dans l exemple ci-dessus, calculer la probabilité qu une boule rouge apparaisse pour la première fois au k-ième tirage. Exercice. On dispose de n poupées russes emboitées, numérotées de 1 à n (n est la plus grande). La poupée numéro k peut être coloriée de k couleurs différentes, choisies au hasard parmi les k+1 couleurs de la poupée k+1. On suppose que la poupée numéro n est coloriée de n couleurs, dont le vert, et qu à chaque étape, le vert est choisi avec probabilité p. Quelle est la probabilité que la poupée numéro 1 soit verte? 2.2 Formule des probabilités totales Théorème 2.2.1 Soit (Ω, A,P) un espace probabilisé et A un évènement de probabilité non nulle. B A, P(B) = P A (B)P(A) + P Ā (B)P(Ā) Démonstration: (A, Ā) est un système complet d évènements, donc P(B) = P(A B) + P(Ā B). La formule découle de la définition de P A(B). Théorème 2.2.2 (Formule des probabilités totales, cas fini) Soit (Ω, A,P) un espace probabilisé et (A 1,...,A n ) un système complet d évènements tel que i [1; n ], P(A i ) 0. Alors B A, P(B) = n P(A k B) = k=1 n P Ai (B)P(A i ) k=1 J. Gärtner. 3

Démonstration: Puisque (A i ) est un système complet d évènements, P(B) = n P(B A i ). Le résultat découle de la définition de P A (B). Dans le cas où l espace probabilisé est infini, la formule reste valable (et la démonstration est analogue) Remarque. Si (A i ) i I est un système complet d événements, on a P(B) = i I P(A i B) = i I P(A i)p Ai (B). Cette formule permet de traiter les disjonctions de cas. Exemple. On dispose de quatre urnes numérotées de 1 à 4. On répartit dans ces urnes des boules noires et des boules blanches. L urne i contient n i boules noires. On suppose que toutes les urnes contiennent le même nombre B de boules. On choisit un urne; l urne i est choisie avec probabilité i. On prélève alors une boule de l urne choisie. Quelle est la 10 probabilité que cette boule soit noire? Notons U i l évènement «l urne choisie est la numéro i», et N «la boule est noire». (U 1,U 2,U 3,U 4 ) est un système complet d évènements de probabilité non nulle. D après la formule des probabilités totales P(N) = P U1 (N)P(U 1 ) + P U2 (N)P(U 2 ) + P U3 (N)P(U 3 ) + P U4 (N)P(U 4 ) = n 1 + 2n 2 + 3n 3 + 4n 4 10B Exercice. Une compagnie d assurance estime que la population se divise en deux catégories : une première catégorie d individus enclins aux accidents représentant 40% de la population et une deuxième population d individus ayant peu d accidents. Un individu de la première catégorie a un accident en l espace d un an avec la probabilité 0, 5 et pour un individu de la deuxième catégorie cette probabilité est 0,1. Quelle est la probabilité qu un nouvel assuré soit victime d un accident pendant sa première année de souscription? 2.3 Formule de Bayes La formule de Bayes exprime P A (B) en fonction de P B (A). Elle permet ainsi de «remonter le temps». Si chronologiquement B survient avant A, on calcul a posteriori la probabilité de la cause sachant la conséquence 1. Théorème 2.3.1 («petite» formule de Bayes) Soit (Ω, A, P) un espace probabilisé et A, B A tels que P(A)P(B) 0. Alors P A (B) = P(B)P B(A) P(A) i=1 Démonstration: Exercice. Exemple. On reprend l exemple de la section précédente. Calculons la probabilité d avoir tiré une boule dans l urne 1 sachant qu elle est noire. 1. D où le nom de probabilité des causes parfois donné à la formule de Bayes. J. Gärtner. 4

P N (U 1 ) = P U 1 (N)P(U 1 ) P(N) = n 1 /B (n 1 + 2n 2 + 3n 3 + 4n 4 )/10B = n 1 n 1 + 2n 2 + 3n 3 + 4n 4 Exercice. Dans l exercice de la section précédente, quelle est la probabilité qu un individu soit de la catégorie à risque sachant qu il n a pas eu d accident? Pour exprimer la probabilité du dénominateur, on utilise souvent la formule des probabilités totales. Théorème 2.3.2 (Formule de Bayes) Soit (Ω, A,P) un espace probabilisé et (E i ) i I un système complet d évènements. Soit A A avec P(A) 0. Alors puisque i I, P(E i ) 0, on a j I, P A (E j ) = P E j (A)P(E j ) i I P E i (A)P(E i ) En particulier, si B A est de probabilité non nulle : P A (B) = P B (A)P(B) P B (A)P(B) + P B (A)P( B) Démonstration: Exercice. Exemple. Un étudiant passe le bac et l exercice 2 consiste en un QCM. m réponses sont possibles et une seule est correcte. Soit l étudiant connaît la réponse (ce qui arrive avec probabilité p ]0, 1[) soit il choisit la réponse au hasard. Sachant que la réponse de l étudiant est correcte, quelle est la probabilité qu il ait répondu en connaissant la réponse? Soit C l évènement «ma réponse est connue de l étudiant» et J l évènement «la réponse P C (J)P(C) est juste». On a P J (C) =. Ainsi P C (J)P(C) + P C(J)P( C) P J (C) = 1 p 1 p + 1 m (1 p) = pm (m 1)p + 1 Exercice. Dans une usine, deux ateliers A et B fabriquent des composants électroniques pour la construction de lecteurs Blue Ray. Ces composants arrivent ensuite sur la chaîne d assemblage. Après une étude statistique, il est constaté que 5% des composants de l atelier A sont défectueux et 1% des composants de l atelier B le sont. 75% des composants arrivant sur la chaîne d assemblage proviennent de l atelier A. Un composant parfait arrivant sur la chaîne d assemblage peut être déterioré avec probabilité 1 lors de l assemblage. 48 Après assemblage, un lecteur Blue Ray est prélevé au hasard, et il ne fonctionne pas. On sait que seuls les composants fournis par A ou B sont en cause. Quelle est la probabilité que ce composant ait été déterioré lors de l assemblage? Quelle est la probabilité que ce composant soit sorti défectueux de l atelier A? De l atelier B? J. Gärtner. 5

3 Indépendance d évènements 3.1 Indépendance de deux évènements Définition 3.1.1 Soit (Ω, A,P) un espace probabilisé. Soit A,B A. On dit que A et B sont indépendants lorsque P(A B) = P(A) P(B) Remarque. Attention : l incompatibilité est une notion ensembliste, elle est définie dans un espace probabilisable. La dépendance est une notion probabiliste, elle dépend d un espace probabilisé. Remarque. De plus si un évènement est presque sûr (i.e. P(A) = 1) ou négligeable (P(A) = 0), il est indépendant de tous les autres. Exemple. Une pièce de monnaie est lancée deux fois. La pièce est biaisée : elle tombe sur Pile avec probabilité p ]0, 1[. Soit A l évènement «les deux lancers donnent le même résultat» et B l évènement «le deuxième lancé donne Face». Ω = {(F,F),(F,P),(P,F),(P,P)}. En général, on a P(A) = P(F,F)+P(P,P) car ces deux évènements élémentaires sont incompatibles. Donc P(A) = p 2 + (1 p) 2. De même P(B) = p(1 p) + (1 p) 2 = 1 p, et P(A B) = P(F,F) = (1 p) 2. On a donc P(A B) P(A)P(B) sauf si p = 1 2 P(A) = 1 4 + 1 4 = 1 2, P(B) = 1 2 et P(A B) = 1 4. (i.e. la pièce est équilibrée) car alors Ainsi à moins que la pièce ne soit équilibrée, A et B ne sont pas indépendants. Remarque. On a supposé implicitement que les deux tirages de l expérience ci-dessus étaient indépendants... Lorsque dans un énoncé on parle d épreuves indépendantes, c est cette notion qui est en jeu. Théorème 3.1.1 Soit (Ω, A,P) un espace probabilisé. Soit A,B A de probabilité non nulle. Alors A et B sont indépendants si et seulement si P A (B) = P(B). Démonstration: Exercice. Exercice. Soit (Ω, A, P) un espace probabilisé. Soit A, B A deux évènements incompatibles et non négligeables. Montrer que A et B ne sont pas indépendants. Proposition 3.1.1 Soit (Ω, A,P) un espace probabilisé. Soit A,B A deux évènements indépendants. Alors les couples (Ā,B),(A, B),(Ā, B) sont constitués d évènements indépendants. Démonstration: Il suffit de montrer que A et B sont indépendants (car la dépendance de dépend pas de l ordre des évènements choisis, et en appliquant deux fois le résultat que l on va montrer, on obtient que Ā et B sont indépendants). J. Gärtner. 6

On a A = (A B) (A B). Puisque (A B) et (A B) sont incompatibles, on a P(A B) = P(A) P(A B). Par indépendance : D où le résultat. P(A B) = P(A) P(A)P(B) = P(A)(1 P(B)) = P(A)P( B) Remarque. Attention! Si A et B sont indépendants d une part et d autre part A et C sont indépendants, on ne peut rien dire sur l indépendance des évènements A et B C ou A et B C. Donnons des exemples : Cas où les évènements sont dépendants : on dispose d un dé rouge et d un dé noir, tous les deux équilibrés. On lance ces deux dé et les numéros obtenus constituent l univers Ω = [1; 6]] 2. Soit A l évènement «la somme des chiffres est 7», B «le dé rouge a donné 2» et C «le dé noir a donné 5». On suppose que l on est en situation d équiprobabilité. P(A) = P(B) = P(C) = 1 1. P(A B) = P(A C) = 6 36. Donc (A,B) et (A,C) sont deux couples d évènements indépendants. On a P(B C) = 1 36 et P(B C) = 11 1, mais P(A B C) = P(A)P(B C) et P(A (B C)) = 36 36 1 P(A)P(B C). Les couples (A,B C) et (A,B C) sont dépendants. 36 Cas où les évènements sont indépendants : dans la même expérience, A «la somme des chiffres est 7» B«le dé rouge donne 2» et D «le dé rouge donne un chiffre paire». Alors P(D) = 1 1. P(A D) = 2 12 donc A et D sont indépendants. De plus P(B D) = 1 6, P(B D) = P(D) = 1 2. Alors P(A B D) = 1 36 = P(A)P(B D) et P(A (B D)) = P(A)P(B D) = 1. Les couples (A,B D) 12 et (A,B D) sont constitués d évènements indépendants. 3.2 Famille d évènements indépendants Définition 3.2.1 Soit (Ω, A,P) un espace probabilisé. (A 1,...A n ) une famille d évènements. Alors 1. Les (A i ) sont dits deux à deux indépendants si i j [ 1; n ], P(A i A j ) = P(A i )P(A j ) 2. Les (A i ) sont dits mutuellement indépendants lorsque ( ) I [[1; n ], P A i = P(A i ) i I i I Proposition 3.2.1 Soit (Ω, A,P) un espace probabilisé. (A 1,... A n ) une famille d évènements. Si les (A i ) sont mutuellement indépendants, alors ils sont deux à deux indépendants Démonstration: Il suffit de prendre pour I les paires d éléments de [ 1 ; n ] dans la définition. J. Gärtner. 7

Remarque. La réciproque est fausse! Si on lance un dé équilibré deux fois, les évènements A«la somme des chiffres vaut 7» B«le premier chiffre est supérieur à 4» et C «le deuxième chiffre est supérieur à 3» sont deux à deux indépendants mais non mutuellement indépendants : P(A) = 1 6, P(B) = 1 2, P(C) = 2 3 4, P(A B) =, P(A C) = 3 36 36, P(B C) = 12 36 Proposition 3.2.2 mais P(A B C) = 1 36. Pour toute famille (A 1... A n ) d évènements, soit (B 1,...B n ) une famille d évènements telle que B i = A i ou B i = Āi. Alors si les A i sont deux à deux indépendants, les B i aussi et si les A i sont mutuellement indépendants, les B i aussi. Démonstration: Le cas deux à deux indépendants est clair d après la section précédente. Pour le cas de l indépendance mutuelle, il suffit (via la même astuce que pour la proposition analogue de la section précédente) de s intéresser à B k = Āk et pour tout i k B i = A i. Soit I [[1 ; n ]. Alors si k / I, on a P ( i I B ) i = i I P(B i). Si k I. Alors P ( i I B ) i = P( i I {k} A i) P( i I A i) car i I A i = i I {k} A i i I B i et que ces évènements sont incompatibles. Alors par indépendance mutuelle P ( i I B ) i = i I {k} P(A i) i I P(A i) = (1 P(A k )) i I {k} P(A i) = P(Āk) i I {k} P(A i). Ce qui prouve l indépendance mutuelle des B i. Proposition 3.2.3 Pour tout triplet (A,B,C) d évènements mutuellement indépendants, A et B C sont indépendants. Exercice. Montrer la proposition ci-dessus. Remarque. Cette proposition est fausse dans le cas d évènements deux à deux indépendants. Cet énoncé se généralise aux familles finies d évènements mutuellement indépendants. 3.3 Epreuves indépendantes Cette section est hors programme. Le but est d expliquer comment on peut construire un modèle rigoureux permettant de modéliser des épreuves indépendantes. L indépendance en probabilités apparaît naturellement dans la répétition d expériences aléatoires dans des conditions identiques. Comment modéliser ces répétitions? Nous allons donner un exemple pour les répétitions d épreuves de Bernoulli. Définition 3.3.1 Une épreuve de Bernoulli est une expérience aléatoire qui ne possède que deux issues possibles : le succès (souvent noté 1) et l échec (noté 0). La probabilité de succès est un nombre p ]0, 1[. On peut modéliser cette épreuve par Ω 0 = {0,1}, A 0 = P(Ω 0 ) et P 0 (1) = p, P 0 (0) = 1 p. Exemple. On jette une pièce de monnaie. On considère que la pièce tombe sur Pile avec probabilité p et que l on gagne le jeu dans ce cas. L expérience est une épreuve de Bernoulli. J. Gärtner. 8

On répète n 2 fois et de manière indépendantes des épreuves de Bernoulli identiques. L univers considéré est alors Ω = {0,1} n. Prenons A = P(Ω). On définit la probabilité des évènements élémentaires ω = (ε 1,...,ε n ) Ω par P(ω) = P 0 (ε 1 ) P 0 (ε n ). On étend la définition de cette probabilité aux évènements quelconques à l aide de la propriété d additivité finie. L espace probabilisé (Ω, A, P) est construit pour traduire le sentiment que les expériences répétées dans des conditions identiques sont indépendantes. Soit k [ 0; n ]. Notons A k l évènement «les épreuves fournissent k succès puis exclusivement des échecs, dans cet ordre» B k «les épreuves fournissent k succès» et C k «les épreuves fournissent au moins k succès». Donnons quelques probabilités classiques dans ce cas : 1. Probabilité de k [0; n ] succès dans un ordre fixé : cette probabilité est la même quel que soit l ordre fixé de ces succès. C est donc par exemple P(A k ) = P(1,1,...,1,0,...,0). Ainsi P(A k ) = p k (1 p) n k 2. Probabilité de k succès : on choisi le numéro des expériences qui fournissent les succès (soit le choix de k expériences parmi les n répétées), que l on multiplie par la probabilité d exactement k succès dans un ordre déterminé. ( ) n P(B k ) = p k (1 p) n k k 3. Obtenir au moins k succès, c est obtenir exactement l succès avec l [[k ; n ]. Ainsi C k est union d évènements incompatibles : C k = n l=k B l. On a donc P(C k ) = n l=k ( ) n p l (1 p) n l l Munis de ces probabilités, soit S i l évènement «l épreuve numéro i est un succès». La notion «naturelle» d indépendance nous conduit à affirmer par exemple que S i et S j sont deux évènements indépendants si i j. S i est donné par S i = Ω 0 {1} Ω 0 Les évènements de cette union sont incompatibles. Ainsi D où De même, S i S j est donné par Par définition de P, on a P(S i ) = P 0 (Ω 0 ) P 0 (1)...P 0 (Ω 0 ) P(S i ) = P(S j ) = p Ω 0 Ω 0 {1} Ω 0 Ω 0 {1} Ω 0 Ω 0 P(S i S j ) = p 2 Finalement, on a bien P(S i S j ) = P(S i )P(S j ). Les évènements S i et S j sont indépendants : le modèle adopté est bien conforme à l intuition. J. Gärtner. 9

En général, si on répète indépendamment n fois une expérience aléatoire modélisée par un espace probabilisé (Ω 0, P(Ω 0 ),P 0 ), où Ω 0 est fini, on peut modéliser la répétition de n de ces expériences de manière indépendante par l espace «produit cartésien» (Ω n 0, P(Ωn 0 ),P) où P est définie sur les évènements élémentaires (ω 1,...,ω n ) par n P(ω 1,...,ω n ) = Π P 0(ω k ). k=1 J. Gärtner. 10