Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Documents pareils
Premiers exercices d Algèbre. Anne-Marie Simon

Cours de mathématiques

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Problèmes de Mathématiques Filtres et ultrafiltres

Cours Fonctions de deux variables

Limites finies en un point

Chapitre 5 : Flot maximal dans un graphe

Structures algébriques

Image d un intervalle par une fonction continue

I. Polynômes de Tchebychev

Fonctions de plusieurs variables

1 Définition et premières propriétés des congruences

Axiomatique de N, construction de Z

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Mathématiques Algèbre et géométrie

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Université Paris-Dauphine DUMI2E 1ère année, Applications

Cours de Probabilités et de Statistique

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Continuité et dérivabilité d une fonction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours arithmétique et groupes. Licence première année, premier semestre

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Chapitre 6. Fonction réelle d une variable réelle

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Calcul intégral élémentaire en plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables

La fonction exponentielle

Continuité d une fonction de plusieurs variables

chapitre 4 Nombres de Catalan

Dérivées d ordres supérieurs. Application à l étude d extrema.

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Programmation linéaire

Statistique : Résumé de cours et méthodes

Théorème du point fixe - Théorème de l inversion locale

Fonction inverse Fonctions homographiques

CCP PSI Mathématiques 1 : un corrigé

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

Le produit semi-direct

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Raisonnement par récurrence Suites numériques

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

Texte Agrégation limitée par diffusion interne

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Deux disques dans un carré

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

MIS 102 Initiation à l Informatique

Chapitre 2 Le problème de l unicité des solutions

Cours 02 : Problème général de la programmation linéaire

Intégration et probabilités TD1 Espaces mesurés Corrigé

Approximations variationelles des EDP Notes du Cours de M2

Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct (ajout de la section 3 et augmentation de la section 1)

Capes Première épreuve

Théorie de la Mesure et Intégration

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

BACCALAUREAT GENERAL MATHÉMATIQUES

1 Première section: La construction générale

Développement décimal d un réel

CHAPITRE VIII : Les circuits avec résistances ohmiques

Fonctions de deux variables. Mai 2011

RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3

2.4 Représentation graphique, tableau de Karnaugh

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

I. Ensemble de définition d'une fonction

OPTIMISATION À UNE VARIABLE

Annexe commune aux séries ES, L et S : boîtes et quantiles

Optimisation des fonctions de plusieurs variables

Equations cartésiennes d une droite

Les algorithmes de base du graphisme

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Le théorème de Thalès et sa réciproque

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Problème 1 : applications du plan affine

Représentation géométrique d un nombre complexe

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Calcul différentiel. Chapitre Différentiabilité

Calcul différentiel sur R n Première partie

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Complément d information concernant la fiche de concordance

Chapitre 1 : Évolution COURS

Fonctions homographiques

Commun à tous les candidats

Continuité en un point

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

Angles orientés et trigonométrie

Sommaire de la séquence 8

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Introduction à la théorie des graphes. Solutions des exercices

Rappels sur les suites - Algorithme

Transcription:

Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers un ensemble F est une partie R de E F. Si (x,y) R on dit que x est en relation avec y et on note xry. Si (x,y) R on dit que x n est pas en relation avec y et on note xry. Dans le cas particulier où E=F on dit que R est une relation binaire définie sur E. Remarque 1 : Souvent on peut représenter une relation binaire par un diagramme sagittal, par un diagramme cartésien, par une table ou encore par une matrice. Graphique sagittal d après http://www.recreomath.qc.ca/am_graphique.htm Graphique formé par deux diagrammes de Venn. Des lignes munies d'un sens, appelées flèches, relie des éléments des deux diagrammes. Par convention, l'ensemble de départ est celui d'où partent les flèches. Soit A = {2, 5, 6, 9}, B = {1, 4, 5, 8, 11} et la relation "est plus petit que", le graphique sagittal est : Le graphe de cette relation est : {(2, 4), (2, 5), (2, 8), (2, 11), (5, 8), (5, 11), (6, 8), (6, 11), (9, 11)}. Graphique cartésien Grille dans laquelle chaque droite est à égale distance l'une de l'autre autant horizontalement que verticalement. On identifie par un point les couples qui vérifient la relation. Soit A = {1, 3, 6, 9,11}, B = {2, 4, 7, 9, 12}et la relation "est plus petit que", le graphique cartésien est : Le graphe de cette relation est {(1, 2), (1, 4), (1, 7), (1, 9), (1, 12), (3, 4), (3, 7), (3, 9), (3, 12), (6, 7), (6, 9), (6, 12), (9, 12), (11, 12)}. Diagramme cartésien 1

Tableau à double entrée qui représente une relation entre les éléments d un ensemble de départ et ceux d un ensemble d'arrivée. Les éléments d'un ensemble sont écrits à gauche et les éléments de l'autre ensemble en bas ou en haut. Une flèche indique le sens dans lequel la relation doit être lue. La case où la relation s'applique est marquée par un signe distinctif, soit par un x, par un oui ou par un non. Voici un diagramme cartésien : L'ensemble de départ est {Manon, Lucie, Natacha, Sébastien}. L'ensemble d'arrivée est {1, 2, 3, 4}. La relation est "a fait les exercices numéros". Le graphe de la relation est : {(Manon, 1), (Manon, 3), (Lucie, 2), (Lucie, 3), (Natacha, 4), (Sébastien, 1), (Sébastien, 2), (Sébastien, 4)}. On peut donc lire que Manon a réussi les exercices nos 1 et 3, etc. Définition 2 : Soit R une relation binaire d un ensemble E vers un ensemble F. On appelle domaine de R et on note Dom(R) l ensemble Dom(R,)={x E tq y F tq xry} On appelle codomaine de R et on note Codom(R) l ensemble Codom(R)={y F tq x E tq xry} On appelle coupe de R selon un élément x0 de E et on note Coupe x0 (R) l ensemble Coupe x0 (R) ={(x0,y) E F tq x0ry} Cas particuliers : Soit R=, R=E F et l égalité : (x,y) x=y Définition 3 : Soit R une relation binaire d un ensemble E vers un ensemble F. On appelle relation réciproque de R et on note R -1 la relation binaire de F vers E définie par : ( (x,y) E F) (xr -1 y) (yrx). Définition 4 : On dit qu une relation R est incluse dans une relation S et on note R S, si (x,y) E F (x,y) R (x,y) S. On dit que deux relations R et S sont égales si R S et S R. Définition 5 : Soit R une relation binaire d un ensemble E vers un ensemble F. On appelle relation complémentaire de R et on note R la relation binaire de E vers F définie par : ( (x,y) E F) (x,y) R (x,y) R. Définition 6 : Soient R et S deux relations binaires d un ensemble E vers un ensemble F. On appelle réunion de R et S et on note T=R S la relation binaire T de E vers F définie par : ( (x,y) E F) xty (xry) (xsy). On appelle intersection de R et S et on note T=R S la relation binaire T de E vers F définie par : ( (x,y) E F) xty (xry) (xsy). De même on définit sur les relations binaires l analogue des opérations ensemblistes R\S etc. Définition 7 : Soient R une relation binaire d un ensemble E vers un ensemble F et S une relation binaire de l ensemble F vers un ensemble G. La composée T de R et S est une relation binaire de l ensemble E vers l ensemble G notée T =RοS ou T =RS et définie par : ( (x,y) E G) (xty) ( z F tq (xrz) (zsy)). Notation 1 : Dans le cas particulier où E=F=G on note R 2 =RοR=RR Proposition 1 : Soient R une relation binaire d un ensemble E vers un ensemble F, S une relation binaire de l ensemble F vers un ensemble G et T une relation binaire de l ensemble G vers un ensemble H. Alors (RS)T =R(ST). (associativité de la composition des relations binaires) 2

Proposition 2 : Soit R une relation binaire d un ensemble E vers un ensemble F, S et T deux relations binaires de l ensemble F vers un ensemble G et U une relation binaire de l ensemble G vers un ensemble H. Alors : R(S T)=RS RT R(S T) RS RT (S T)U=SU TU (S T)U SU TU Remarque 3 : La composition des relations binaires étant associative on supprimera les parenthèses : (RS)T =R(ST)=RST. En particulier si R une relation binaire définie sur un ensemble E on notera Rn =RR R où n N*. En particulier R 1 =R et par convention R 0 sera l égalité. Définition 8 : On dit qu une relation binaire R définie sur un ensemble E est : réflexive si ( x E) xrx. symétrique si ( (x,y) E 2 ) (xry) (yrx). transitive si ( (x,y,z) E 3 ) (xry) (yrz) (xrz). antisymétrique si ( (x,y) E 2 ) (xry) (yrx) (x=y). 2. Fermeture des relations binaires Définition 9 : Soit R une relation binaire définie sur un ensemble E. On appelle fermeture réflexive de R et on note r(r) la plus petite (au sens de l inclusion) relation réflexive définie sur E contenant R. Autrement dit r(r) est la relation binaire définie sur l ensemble E telle que : r(r) est réflexive R r(r) Pour toute relation binaire S réflexive définie sur l ensemble E, si S R alors S r(r) Définition 10 : Soit R une relation binaire définie sur un ensemble E. On appelle fermeture symétrique de R et on note s(r) la plus petite (au sens de l inclusion) relation symétrique définie sur E contenant R. Autrement dit s(r) est la relation binaire définie sur l ensemble E telle que : s(r) est symétrique R s(r) Pour toute relation binaire S symétrique définie sur l ensemble E, si S R alors S s(r) Définition 11 : Soit R une relation binaire définie sur un ensemble E. On appelle fermeture transitive de R et on note t(r) la plus petite (au sens de l inclusion) relation transitive définie sur E contenant R. Autrement dit t(r) est la relation binaire définie sur l ensemble E telle que : t(r) est transitive R t(r) Pour toute relation binaire S transitive définie sur l ensemble E, si S R alors S t(r) Remarque 4 : Soit R une relation binaire définie sur un ensemble E. Alors R est réflexive si et seulement si R=r(R) R est symétrique si et seulement si R=s(R) R est transitive si et seulement si R=t(R) Théorème 4 : Soit R une relation binaire définie sur un ensemble E. Alors r(r)= R où est la relation «égalité» sur E s(r)= R R -1 où R -1 est la relation réciproque de R t(r)=r R 2 R 3.. Remarque 5 : Soit R une relation binaire définie sur un ensemble E. Alors (x,y) t(r) si et seulement si il existe une suite c0, c1, c2,, cn d éléments de E où n 1, c0=x et cn=y et telle que 0 i<n circi+1 (notion de chemin). 3

Notation 2 : On note R+ la fermeture transitive de R et R* la fermeture réflexive et transitive de R. 3. Relations d équivalence Définition 12 : Une relation binaire dans un ensemble E est une relation d équivalence si elle est réflexive, symétrique et transitive. Définition 13 : Soit R une relation d équivalence dans un ensemble E et x E. On appelle classe d équivalence de x par R (ou modulo R ) et on note χ l ensemble χ = {y E tq xry}. Un élément d une classe d équivalence est appelé représentant de cette classe d équivalence. L ensemble de toutes les classes d équivalence est appelé ensemble quotient de E par R. On le note E/R. Remarque 6 : Soit R une relation d équivalence dans un ensemble E et x E. On a : χ E, χ E/R, E/R P(E) Lemme 1 : Soit R une relation d équivalence dans un ensemble E et x et y deux éléments de E. Alorsχ=γ x R y Proposition 3 : Toute relation d équivalence dans un ensemble E détermine une partition de E. Inversement toute partition de E détermine une relation d équivalence dans E. 4. Relations d ordre Définition 14 : Une relation binaire dans un ensemble E est une relation de préordre si elle est réflexive et transitive. C est une relation d ordre si en plus elle est antisymétrique. Une relation d ordre est totale si ( (x,y) E 2 ) (xry) (yrx). Elle est dit partielle dans le cas contraire. Définition 15 : Un couple (E,R) formé d un ensemble E et d une relation d ordre R est appelé ensemble ordonné. Si R est totale l ensemble est dit totalement ordonné. Notation 3 : Soit (E, R) un ensemble ordonné et (x,y) E 2. On note : [x, y] = {z E tq (xrz) (zry)} [x, y[ = {z E tq (xrz) (zry) (z y)} ]x, y] = {z E tq (xrz) (zry) (z x)} ]x, y[ = {z E tq (xrz) (zry) (z x) (z y)} [x, [ = {z E tq xrz} ]x, [ = {z E tq (xrz) (z x)} ], x] = {z E tq zrx} ], x[ = {z E tq (zrx) (z x)} Terminologie 1 : Soit (E, R) un ensemble ordonné et (x,y) E 2. On dit que x et y sont comparables si (xry) ou (yrx). Ils sont dits non comparables dans le cas contraire. Si xry on dit que x est inférieur à y ou que y est supérieur à x. Si xry et y x on dit que x est strictement inférieur à y ou que y est strictement supérieur à x. On dit que y est un successeur immédiat de x (ou que y couvre x) si x est strictement inférieur à y et il n existe pas de z tel que x soit strictement inférieur à z et z soit strictement inférieur à y. On dit alors que x est un prédécesseur immédiat de y (ou que x est couvert par y). Définition 16 : Soit (E,R) un ensemble ordonné et A une partie de E. a A est un élément maximal de A s il n existe pas de y A tel que ary et y a. 4

b A est un élément minimal de A s il n existe pas de y A tel que yrb et y b. Diagramme de Hasse : un ensemble ordonné (E, R) où E est fini peut être représenté par un diagramme où la réflexivité et la transitivité sont implicites. Chaque élément de E est représentée par un point, un segment (ou arc) joignant deux points x et y représente xry. On utilise le «haut» et le «bas» (la «gauche» et la «droite») pour se passer d un sens fléché. Le diagramme de Hasse d un ensemble ordonné s obtient en procédant de proche en proche à partir des éléments maximaux et de leurs prédécesseurs immédiats. Le diagramme d un ensemble totalement ordonné s appelle une chaîne Une partie A d un ensemble ordonné est une chaîne maximale si 1) C est une chaîne de E 2) Il n existe pas de chaîne B telle que AB. Pour dessiner un diagramme de Hasse : * On représente les éléments de l ordre par des points. * Si un élément x est plus grand qu un autre élément y selon, on place la représentation de x plus haut que celle de y. * Le fait que deux éléments sont en relation est représenté par un segment entre ces deux points. Du fait de la disposition des points, on n a pas besoin d orienter ces segments avec une flèche (on sait qu on va du bas vers le haut). * Pour ne pas charger le schéma, on ne représente pas toute la relation d ordre, mais seulement sa réduction réflexive transitive : d une part si x y, mais qu il existe z différent de x et de y tel que ( x z ) ( z y ), alors on ne trace pas le segment entre x et y ; d autre part on ne représente pas les boucles d un élément vers lui-même. * On veille autant que possible à ne pas croiser les segments. En cas d ordre infini, on peut néanmoins aussi utiliser le diagramme de Hasse pour représenter une restriction finie de l ordre. * Exemple de diagramme de Hasse : Ici, on a représenté un ensemble ordonné de 11 éléments avec trois éléments maximaux, et un minimum (qui est donc aussi un minorant de l ensemble et sa borne inférieure). Définition 17 : Soit (E, R) un ensemble ordonné et A une partie de E. On dit qu un élément x de E est un majorant (resp minorant) de A si ( y A) yrx. (resp ( y A) xry.) Si l ensemble des majorants (resp minorant) de A est non vide on dit que A est majoré (resp minoré). Une partie A majorée et minorée est dite bornée. 5

Définition 18 : Soit (E, R) un ensemble ordonné et A une partie de E. On dit que m est un minimum (ou plus petit élément) de A si m est un minorant de A et m A. On note m = min(a). On dit que M est un maximum (ou plus grand élément) de A si M est un majorant de A et M A. On note M = max(a). Remarque 7 : Si A admet un plus petit (resp plus grand) élément alors cet élément est unique. Définition 19 : Soit (E,R) un ensemble ordonné et A une partie de E. Si A est majoré et si l ensemble des majorants de A possède un plus petit élément alors ce dernier est appelé borne supérieure de A et on note SupA. Si A est minoré et si l ensemble des minorants de A possède un plus grand élément alors ce dernier est appelé borne inférieure de A et on note InfA. Remarque 8 : Si A admet un plus grand (resp plus petit) élément alors on a maxa = SupA (resp mina = InfA). Définition 20 : On appelle treillis un ensemble ordonné (E,R) tel que toute paire {x,y} d éléments de E possède une borne supérieure (notée x+y) et une borne inférieure (notée x.y) Définition 21 : Soit (E,R1) et (F,R2) deux ensembles ordonnés et f une application de E dans F. On dit que f est croissante (resp décroissante) si pour tout couple (x,y) de E 2 tel que xr1y on a f(x)r2f(y) (resp f(y)r2f(x)). Proposition 4 : La composée de deux applications croissantes est croissante. La composée de deux applications décroissantes est croissante. Si f est une bijection croissante sa réciproque n est pas nécessairement croissante. 6