BANQUE D ÉPREUVES DUT-BTS SESSION 2008 ÉPREUVE DE MÉCANIQUE CODE ÉPREUVE : BE-MÉCA CALCULATRICE INTERDITE DURÉE : 2H30

Documents pareils
Cours de Résistance des Matériaux (RDM)

DISQUE DUR. Figure 1 Disque dur ouvert

Cours de résistance des matériaux

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

Problèmes sur le chapitre 5

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Département de Génie Civil

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Analyse statique d une pièce

Chapitre 2 : Caractéristiques du mouvement d un solide

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

XXXX F16D ACCOUPLEMENTS POUR LA TRANSMISSION DES MOUVEMENTS DE ROTATION; EMBRAYAGES; FREINS [2]

Oscillations libres des systèmes à deux degrés de liberté

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Eléments mobiles du moteur Moteur 1/9

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Guide pour l analyse de l existant technique. Partie 3

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

LE PRODUIT SCALAIRE ( En première S )

Représentation géométrique d un nombre complexe

Épreuve E5 : Conception détaillée. Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle

Les véhicules La chaîne cinématique

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Angles orientés et fonctions circulaires ( En première S )

Serrures de coffre-fort MP série 8500

BIFFI. Actionneurs quart de tour à gaz direct, double effet et rappel par ressort Couple de sortie jusqu à 6,500,000 lb.in.

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Rupture et plasticité

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

(51) Int Cl.: B23P 19/00 ( ) B23P 19/04 ( ) F01L 1/053 ( )

NEOTECHA. Robinets à tournant sphérique - Modèles SNB et SNC

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Le Dessin Technique.

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Statique des systèmes de solides. 1 Deux exemples d illustration Système de freinage du TGV Micro-compresseur...

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

Distributeur de carburant GPL

Cylindres de roue ATE d origine Allégés et résistants aux liquides de frein

Ces robinets à tournant sphérique sont utilisés pour une large gamme d'applications dans de nombreuses industries

Fonctions de deux variables. Mai 2011

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Essais de charge sur plaque

II - 2 Schéma statique

Roulements à une rangée de billes de génération C. Information Technique Produit

NOTIONS ÉLEMENTAIRES SUR LES PNEUS

Réalisation et modélisation de rubans déployables pour application spatiale

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

3) Demandeur: FIVES-CAIL BABCOCK, Société anonyme 7 rue Montallvet F Parts Cedex 08 (FR)

Angles orientés et trigonométrie

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

(ANALYSE FONCTIONNELLE ET STRUCTURELLE)

association adilca LE COUPLE MOTEUR

Un partenaire Un partenaire solide

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Vis à billes de précision R310FR 3301 ( ) The Drive & Control Company

CREATING POWER SOLUTIONS. 1D42 1D42C 1D50 1D81 1D81C 1D90 1D90V. Moteurs diesel Hatz.

TD 9 Problème à deux corps

1S Modèles de rédaction Enoncés

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

LE GÉNIE PARASISMIQUE

Quantité de mouvement et moment cinétique

Résolution d équations non linéaires

CFAO Usinage sur machine à commande numérique

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Mathématiques et petites voitures

TEST D'AUTOÉVALUATION MÉCANIQUE DE CAMION

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

STANDARD DE CONSTRUCTION CONDUITS, ATTACHES ET RACCORDS DE

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Les calculatrices sont autorisées

Test : principe fondamental de la dynamique et aspect énergétique

MODELISATION DES SYSTEMES MECANIQUES

Vis à billes de précision à filets rectifiés

Des innovations avec des matériaux plastiques haute performance. La gamme complète en PTFE, une gamme leader.

Coffrage MBA pour ceintures et linteaux

Voie Romaine F Maizières-lès-Metz Tél : +33 (0) Fax : +33 (

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

0 Numéro de publication: Al 0 DEMANDE DE BREVET EUROPEEN

Transcription:

BANQUE D ÉPREUVES DUT-BTS SESSION 2008 ÉPREUVE DE MÉCANIQUE CODE ÉPREUVE : BE-MÉCA CALCULATRICE INTERDITE DURÉE : 2H30

Eercice 1 (A) Un matériau qui ne reprend pas sa forme et ses dimensions initiales après avoir été déformé est dit non élastique. (B) La ductilité caractérise l aptitude d un matériau à se déformer plastiquement sans se rompre. (C) Lors d un essai de traction allant jusqu à rupture, la zone de striction de l éprouvette correspond à la partie de celle-ci qui ne s est pas déformée. (D) La résilience caractérise la capacité d un matériau à absorber les chocs sans se rompre. (E) La densité du cuivre est inférieure à celle de l acier. Eercice 2 (A) Un joint torique peut être utilisé pour réaliser une étanchéité dynamique. (B) Si la pression augmente de manière trop importante, un joint torique risque l etrusion. (C) Un joint à lèvre à contact radial ne doit être utilisé que pour une lubrification à l huile. (D) La vitesse circonférentielle admissible par un joint à lèvre à contact radial est de l ordre de 10 à 30 m/s. (E) Lors de la réalisation d une liaison encastrement par centrage court, appui plan prépondérant et vis, ces dernières servent à installer un champ de pression au niveau du contact qui permettra, par frottement, de limiter ou de stopper la rotation relative des deu pièces. Eercice 3 La Figure 1 représente un arbre en acier de module d Young E et de coefficient de Poisson ν. Cet arbre est modélisé par une poutre droite de longueur 2L, de section circulaire S (de rayon R), en appui au points O et A et sollicitée par un couple C = C z à son etrémité B. On se place sous l hypothèse d Euler-Bernoulli. S y y L L z R G z O A C B Figure 1 Arbre en fleion et sa section S (A) L arbre est sollicité en fleion pure. (B) Le moment de fleion dans la poutre présente une discontinuité au niveau de la section située en A. 1

(C) Si on note I le moment quadratique de la section S par rapport à l ae (G, z), la flèche maimale v ma dans la poutre est telle que : (D) Le moment quadratique I est : v ma = CL 6EI I = πr4 4 (E) Plus le coefficient de Poisson ν est grand, moins les déformations dans la poutre seront importantes. Eercice 4 On s intéresse au mécanisme de transformation de mouvement du moteur à eplosion représenté sur la Figure 2, à gauche. Ce mécanisme se compose d un vilebrequin, d une bielle, d un piston et d un cylindre et peut être modélisé par le système bielle-manivelle représenté sur la Figure 2, à droite. Sur ce schéma, on trouve le bâti 0, le vilebrequin 1, la bielle 2 et le piston 3. Le repère R 0 = (A, 0, y 0, z 0 ), lié au bâti 0, est fie. Le référentiel correspondant est supposé galiléen. Les solides 1, 2 et 3 sont munis des repères R 1 = (A, 1, y 1, z 1 ), R 2 = (B, 2, y 2, z 2 ) et R 3 = (C, 3, y 3, z 3 ) qui sont tels que z 0 = z 1 = z 2 = z 3 et que 3 = 0. On pose θ 1 = ( 0, 1 ) et θ 2 = ( 0, 2 ), mesurés autour de z 0, et on note AB = r 1, BC = L 2 et AC = 3 3. On suppose que les termes d inertie sont négligeables devant l action mécanique etérieure eercée sur le piston 3 (qui se résume à un glisseur F = F 3 d ae (C, 3 )) et devant l action mécanique etérieure eercée sur le vilebrequin 1 (qui se résume à un couple C = C z 0 au point A). On suppose en outre que toutes les liaisons sont parfaites. soupape d'admission soupape d'échappement 3 0 = 3 θ 2 2 piston cylindre bielle 1 θ 1 C vilebrequin y 0 B 1 2 A 0 Figure 2 Moteur à eplosion (A) Dans un moteur à eplosion fonctionnant selon un cycle à quatre temps, une combustion a lieu à chaque tour du vilebrequin. 2

(B) Dans un moteur diesel, le déclenchement de la combustion ne nécessite pas de dispositif d allumage. (C) Les paramètres du mouvement sont reliés par la relation : ẋ 3 = r( θ 2 θ 1 )sinθ 1 (D) Si on suppose que l ecentration r du vilebrequin est petite devant la longueur L de la bielle, alors les paramètres du mouvement sont reliés par la relation : ẋ 3 = r θ 1 sinθ 1 (E) Le couple C et l effort F sont reliés par la relation : C = Fr sinθ 1 (1+ ) r cosθ 1 L 2 r 2 sin 2 θ 1 Eercice 5 Le système symbolisé sur la Figure 3 permet l embrayage entre un «moteur» et un «récepteur». La partie mobile du moteur tourne à la vitesse ω m et a pour inertie J m autour de l ae de rotation. Elle est soumise, de la part de la partie fie, à un couple C m autour de ce même ae. La partie mobile du récepteur tourne à la vitesse ω r et a pour inertie J r. Elle eerce sur l etérieur un couple C r. Lorsque l embrayage est activé, le couple eercé par la partie mobile du moteur sur la partie mobile du récepteur est noté C e. Les vitesses initiales, avant de débuter la phase d embrayage, sont respectivement ω m0 et ω r0 (avec ω m0 ω r0 ). Durant toute cette phase, les couples C m, C r et C e sont supposés constants. embrayage moteur J m ω m ω r récepteur J r Figure 3 Embrayage entre un moteur et un récepteur (A) Le théorème de l énergie cinétique appliqué au moteur permet d écrire : J m ω m = C m C e (B) Le temps d embrayage t e, nécessaire pour avoir égalité de la vitesse du moteur et du récepteur, est : ω m0 ω r0 t e = 1 J m (C e C m )+ J 1 r (C e C r ) (C) L énergie W d dissipée dans l embrayage pendant toute la phase d embrayage est : W d = 1 2 C e(ω m0 ω r0 )t e 3

(D) La puissance maimale P ma dissipée pendant la phase d embrayage est : P ma = 1 2 C e(ω m0 ω r0 ) (E) La puissance moyenne P moy dissipée pendant la phase d embrayage est : P moy = 1 2 C e(ω m0 ω r0 ) Eercice 6 On s intéresse maintenant au système d embrayage monodisque schématisé sur la Figure 4. Les contacts entre les deu jeu de garnitures ont lieu sous l effet d un effort aial F généré par le système presseur. Les garnitures ont la forme d une couronne de rayon intérieur r et de rayon etérieur R. Le contact est modélisé par la loi de Coulomb, le coefficient d adhérence est noté f 0 et le coefficient de frottement f. On suppose que la pression p au niveau du contact est uniforme. plateau de pression r garniture arbre moteur arbre récepteur garniture disque système presseur R Figure 4 Embrayage monodisque (A) La pression p au niveau du contact est donnée par la relation : p = F π(r 2 r 2 ) (B) Le couple maimum C e transmissible par le système d embrayage est : C e = 4 3 π f R 3 r 3 0 R 2 r 2 F (C) Un système de lubrification de l embrayage est parfois nécessaire. (D) Pour assurer une répartition uniforme de la pression de contact p, il est préférable d avoir recours à des garnitures de grand rayon etérieur R. 4

(E) Le coefficient de frottement à sec entre les matériau classiquement utilisés pour les garnitures d embrayage est de l ordre de 2. (F) Dans le cas d un embrayage multidisque, il est préférable d avoir un nombre pair de disques afin d éviter que l effort aial assurant l embrayage ne soit repris par les liaisons pivots avec le bâti des arbres moteur et récepteur. Eercice 7 On se propose dans cet eercice d étudier les spécifications géométriques portées sur la Figure 5.,,,,, Figure 5 Spécification géométrique (A) Considérons les spécifications 80 ± 0,1 d une part et la cote encadrée 80 associée à la localisation de tolérance 0,1 par rapport à A et B d autre part. Ces deu spécifications ont eactement la même signification. (B) Si la spécification de localisation de tolérance 0,2 par rapport à A est satisfaite, alors celle de parallélisme de tolérance 0,3 par rapport à A l est aussi. (C) La surface de référence B de la localisation de tolérance 0,1 par rapport à A et B est le plan des moindres carrés associé à la surface réelle B et perpendiculaire au plan des moindres carrés associé à la surface réelle A. (D) La zone de tolérance de la localisation de tolérance 0,1 par rapport à A et B est un cylindre de diamètre 0,1 mm dont l ae est distant de 10 mm (respectivement de 20 mm) de la surface de référence A (respectivement B). Ces deu surfaces de référence étant associées au surfaces réelles de la pièce par un critère normalisé. 5

(E) Le symbole «E cerclé» associé à la spécification 10 ± 0,2 mm signifie que la surface réelle réputée cylindrique spécifiée doit, entre autres, être comprise dans un cylindre parfait de diamètre 9,8 mm. Eercice 8 Considérons le solide indéformable S présenté sur la Figure 6. Ce solide S est posé sur un plan horizontal (O,, z) immobile par rapport à un référentiel galiléen noté R. y S O A F z Figure 6 Équilibre d un solide posé sur un plan Le solide S est un parallélépipède rectangle homogène de dimensions L suivant, l suivant y et h suivant z. On note ρ sa masse volumique. Un effort etérieur est imposé au point A tel que OA = L + 2 l y+ h 2 z), de telle sorte que le torseur associé soit le suivant : { } { } F = F et S = 0 On suppose que la liaison entre le solide S et le plan est unilatérale et donc que le solide peut éventuellement basculer sous l action de l effort etérieur. (A) Pour que le solide S reste immobile par rapport à R, la résultante de l action mécanique de R sur S (notée R R S ) doit vérifier : R R S = ρllhg f 0 où f 0 désigne le coefficient d adhérence entre R et S (on utilise ici un modèle de Coulomb) et g l accélération de la pesanteur. (B) Le modèle de frottement de Coulomb utilisé ici donne une information sur R R S. (C) Le coefficient d adhérence f 0 dépend des couples de matériau en présence sur la zone de contact. A 6

(D) Le coefficient d adhérence est supérieur au coefficient de frottement ce qui eplique les phénomènes de «stick-slip» (adhérence-glissement). (E) Le solide S bascule si F > ρgll 2. Eercice 9 On considère l assemblage claveté entre l arbre 1 et le pignon 2 représenté sur la Figure 7 et on désire dimensionner l arbre 1. On se place dans le cadre classique de la théorie des poutres et on fait l hypothèse que les effets d inertie sont négligeables par rapport au autres actions mécaniques mises en jeu. Le couple transmis par cet assemblage est noté C 1 2 et correspond à la projection suivant l ae de l arbre du moment de 1 sur 2 eprimé sur un point de l ae de l arbre. Figure 7 Assemblage claveté (A) En considérant que le matériau est élastique homogène et isotrope, le module de cisaillement G de l arbre s eprime en fonction du module d Young E et du coefficient de poisson ν par la relation : E G = 2(1+ν) (B) L utilisation de la théorie des poutres dans la zone de clavetage, lieu d application de conditions limites, conduit à des résultats peu réalistes. (C) La contrainte de cisaillement maimale τ dans l arbre 1 est telle que : τ = C 1 2 d GI 2 où d désigne le plus petit diamètre de l arbre. avec (D) La clavette est sollicitée principalement en fleion. I = πd4 64 (E) La longueur d une clavette est déterminée par un critère de pression maimale admissible correspondant au non matage de la clavette. 7

Eercice 10 On reprend ici le montage de la Figure 7 et on s intéresse cette fois à la liaison par éléments roulants entre l arbre 1 et le boîtier 0. (A) Le montage est constitué de deu roulements à billes à contact oblique, numérotés 4 et 5, montés en «X». (B) Si on néglige tous les jeu, les roulements utilisés, tels qu ils sont montés, n autorisent qu un mouvement de rotation de l arbre par rapport au boîtier. (C) On considère que la résultante des efforts etérieurs sur l arbre 1 est uniquement due au efforts etérieurs appliqués sur le pignon 2. La direction de cette résultante est fie par rapport à l arbre 1. (D) Il est conseillé de monter les bagues intérieures des roulements serrées sur l arbre 1. (E) Un ajustement glissant entre bague intérieur et arbre peut être réalisé en imposant une tolérance de type k6 sur le diamètre de l arbre. Eercice 11 On considère dans cet eercice le mécanisme de la croi de malte représenté sur la Figure 8. Ce mécanisme est constitué d un bâti, d un plateau d entrée P, d une came de sortie C et d un galet G en mouvement plan sur plan de normale z. La modélisation proposée est la suivante : le plateau P est en liaison pivot d ae (A, z) avec le bâti ; La came C est en liaison pivot d ae (O, z) avec le bâti ; le galet G est en liaison pivot d ae (B, z) avec le plateau P. Le fonctionnement comporte deu phases. Dans la phase 1 (Figure 9), le galet est supposé rouler sans glisser sur la came en un point noté I (contact sur un seul flanc de la rainure). Sur cette figure sont définies la base (, y) liée au bâti et la base ( a, b) liée à la came. On note θ = (, a) l angle de sortie et α = (, AB) l angle d entrée. Dans la phase 2 (Figure 10), le plateau est supposé en liaison linéaire annulaire avec la came, le galet est alors désengagé de la rainure. On note OA = L. z B G A O C P Figure 8 Mécanisme de la croi de malte Dans cet eercice, on se place dans la phase de fonctionnement 1 et on suppose que le plateau a une vitesse de rotation constante par rapport au bâti. 8

a b y B O θ I A α C P Figure 9 Phase 1 Figure 10 Phase 2 (A) La condition de roulement sans glissement entre le galet et la came s écrit : V(I,C/G) = 0 (B) La condition de non pénétration entre le galet et la came s écrit : V(I,C/bâti) b = V(I,bâti/G) b (C) La loi entrée-sortie du mécanisme, au cours de cette phase, s écrit : L+ AB cosα OB cosθ = 0 (D) Si on fait l hypothèse que l on reste dans un état d équilibre statique, la relation entre les couples C e et C s, eercés par l etérieur sur le plateau d entrée P et sur la came C et portés par l ae z est : C s = AB C e OB 9

(E) Si on considère maintenant les deu phases de fonctionnement, lorsque le plateau P effectue un tour complet, la came C effectue un quart de tour. Eercice 12 Dans cet eercice, on reprend le mécanisme de la croi de malte proposé précédemment ainsi que les notations associées. (A) Dans la phase de fonctionnement 1, en considérant l hypothèse de roulement sans glissement en I, le mécanisme présente 2 mobilités. (B) Dans cette même phase, la modélisation du mécanisme est isostatique. (C) Dans un mécanisme dont le modèle est isostatique, il n est pas systématiquement possible de pouvoir déterminer l ensemble des actions mécaniques dans les liaisons. (D) Dans la phase de fonctionnement 2, la modélisation du mécanisme est hyperstatique d ordre 1 en 2 dimensions et d ordre 2 en trois dimensions. (E) Dans cette même phase de fonctionnement, le mécanisme présente 2 degrés de mobilité. 10