Induction électromagnétique. Aspects énergétiques. Applications.



Documents pareils
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

TP 7 : oscillateur de torsion

Oscillations libres des systèmes à deux degrés de liberté

Electrotechnique. Fabrice Sincère ; version

MATIE RE DU COURS DE PHYSIQUE

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les Conditions aux limites

ELEC2753 Electrotechnique examen du 11/06/2012

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Travaux dirigés de magnétisme

Chapitre 1 Régime transitoire dans les systèmes physiques

5. Les conducteurs électriques

M HAMED EL GADDAB & MONGI SLIM

Circuits RL et RC. Chapitre Inductance

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

I - Quelques propriétés des étoiles à neutrons

La fonction exponentielle

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Précision d un résultat et calculs d incertitudes

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Les résistances de point neutre

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Chapitre 0 Introduction à la cinématique

DISQUE DUR. Figure 1 Disque dur ouvert

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

NOTICE DOUBLE DIPLÔME

Résonance Magnétique Nucléaire : RMN

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Champ électromagnétique?

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Charges électriques - Courant électrique

Chapitre 2 : Caractéristiques du mouvement d un solide

1 Systèmes triphasés symétriques

Chapitre 1 Cinématique du point matériel

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Les indices à surplus constant

MESURE DE LA TEMPERATURE

Premier principe de la thermodynamique - conservation de l énergie

La charge électrique C6. La charge électrique

L électricité et le magnétisme

Cours de Mécanique du point matériel

Electrotechnique: Electricité Avion,

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Calcul intégral élémentaire en plusieurs variables

Cours 9. Régimes du transistor MOS

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

Premier principe : bilans d énergie

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Electricité. Electrostatique

Voyez la réponse à cette question dans ce chapitre.

Test : principe fondamental de la dynamique et aspect énergétique

Mesure de la dépense énergétique

Chauffage par induction

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Plan du chapitre «Milieux diélectriques»

TD 9 Problème à deux corps

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande

Plan du cours : électricité 1

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Continuité et dérivabilité d une fonction

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

OM 1 Outils mathématiques : fonction de plusieurs variables

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Le transistor bipolaire

Fonctions de plusieurs variables

GELE5222 Chapitre 9 : Antennes microruban

PHYSIQUE 2 - Épreuve écrite

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Interactions des rayonnements avec la matière

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

DYNAMIQUE DE FORMATION DES ÉTOILES

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

À propos d ITER. 1- Principe de la fusion thermonucléaire

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Cours d Electromagnétisme

Cours d Analyse. Fonctions de plusieurs variables

Texte Agrégation limitée par diffusion interne

Chapitre 2 Le problème de l unicité des solutions

Rupture et plasticité

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Deux disques dans un carré

Cercle trigonométrique et mesures d angles

Transcription:

Sébastien Bourdreux Agrégation de Physique Université Blaise Pascal - Clermont-Ferrand Induction électromagnétique. Aspects énergétiques. Applications. Novembre 2002

TABLE DES MATIÈRES 2 Table des matières 1 Mise en lumière du phénomène physique 5 1.1 Deux approches expérimentales possibles............ 5 1.1.1 Circuit mobile dans un champ permanent....... 5 1.1.2 Circuit fixe dans un champ variable.......... 5 1.1.3 Synthèse.......................... 6 1.2 Loi de Lenz............................ 6 2 Mise en équations de l induction 8 2.1 Cadre d étude........................... 8 2.2 Force électromotrice de Lorentz................. 8 2.2.1 Force et champ électromoteurs............. 8 2.2.2 Roue de Barlow : générateur unipolaire........ 10 2.3 Loi de Faraday.......................... 11 2.3.1 Expression générale................... 11 2.3.2 Rail de Laplace...................... 12 2.3.3 Tension aux bornes d un dipôle électrocinétique.... 14 2.4 Champ électromoteur de Neumann............... 15 3 Les notions d auto-induction et d inductances 16 3.1 Auto-induction.......................... 16 3.2 Aspects énergétiques....................... 17 3.3 Couplage magnétique de circuits................ 18 3.3.1 Couplage de deux circuits................ 19 3.3.2 Principe du transformateur............... 21 4 Applications 23 4.1 Moteur asynchrone........................ 23 4.2 Accélération de particules : le bétatron............. 26 4.3 Courants de Foucault...................... 26 4.4 Machines tournantes génératrices................ 30 4.4.1 Alternateurs....................... 30 4.4.2 Dynamos......................... 31 5 Convertisseurs électromécaniques 32 5.1 Le haut-parleur électrodynamique............... 32 5.2 Moteur à courant continu.................... 34 5.2.1 Principe.......................... 34 5.2.2 Equation mécanique................... 35

TABLE DES MATIÈRES 3 5.2.3 Equation électrique.................... 36 5.2.4 Régime transitoire.................... 36 5.2.5 Régime permanent.................... 37 5.2.6 Fonctionnement en générateur............. 38

Agrégation : Leçon de Physique 24 Niveau : 1 er cycle universitaire (ou PC) Prérequis : les points suivants doivent être acquis (les équations de Maxwell) les forces de Lorentz et de Laplace les lois de l électrostatique et de la magnétostatique la loi d Ohm généralisée Introduction La découverte par Oersted de l action d un courant électrique sur une aiguille aimantée incita plusieurs physiciens à se demander si, inversement, le magnétisme ne pourrait pas créer des effets électriques. Bref, si le courant électrique produit des effets magnétiques, le magnétisme ne doit -il pas produire dans certaines conditions du courant électrique? Toutes les tentatives aboutirent à des résultats négatifs jusqu aux travaux du chimiste et physicien britannique Michael Faraday. Contrairement à Ampère, Faraday était avant tout un expérimentateur. Après des centaines d expériences, il parvient en 1831 à produire du courant électrique à l aide d un aimant. L expérience fondamentale qui démontre cette production de courant en l absence de pile se réalise très simplement. Tous les autres physiciens avaient cherché un phénomène permanent ; nous allons voir que la découverte inattendue de Faraday bouscula fortement les idées reçues de l époque... Aujourd hui, le phénomène de l induction, est à la base de la production d électricité dans les dynamos, les moteurs, les transformateurs et les alternateurs, et trouve ainsi d innombrables applications dont nous regarderons quelques exemples simples. 4

1 MISE EN LUMIÈRE DU PHÉNOMÈNE PHYSIQUE 5 1 Mise en lumière du phénomène physique Les phénomènes d induction concernent l action à distance d un circuit électrique ou de toute source de champ magnétique sur un autre circuit électrique. L existence de ces phénomènes est liée à une évolution dans le temps de conditions de couplage magnétique existant entre ces éléments ; cette évolution peut avoir pour origine un mouvement dans l espace (ie apparition d une vitesse relative), et plus généralement toute variation en fonction du temps de ce couplage. 1.1 Deux approches expérimentales possibles 1.1.1 Circuit mobile dans un champ permanent On suppose que les sources du champ permanent sont extérieures au circuit, constitué d une bobine par exemple, reliée à un oscilloscope. Le champ magnétique permanent peut être celui d un aimant en U. Il existe une tension u(t) aux bornes de la bobine alors qu aucun générateur n est présent. On note que si la bobine est immobile, u = 0 que u(t) est positive lorsque la bobine s approche de l aimant et négative quand elle s en éloigne que l amplitude de u(t) croît avec la vitesse de déplacement de la bobine,v e La bobine est le siège d un phénomène d induction, qu on appelle induction de Lorentz. 1.1.2 Circuit fixe dans un champ variable Si l on déplace cette fois l aimant en laissant la bobine fixe, on observe les mêmes phénomènes que dans le premier cas. Le système se comporte comme un générateur. Comme l aimant se déplace dans le référentiel du laboratoire, la bobine voit un champ magnétique variable au cours du temps. Ce sont ces variations temporelles qui sont à l origine du phénomène d induction observé : on parle ici d induction de Neumann. On aurait pu créer un champ variable en utilisant une deuxième bobine reliée à un générateur de tension variable, observée par la deuxième voie de l oscilloscope. La bobine (fixe) détecte alors le champ généré par la bobine reliée au générateur (comme une antenne!).

1 MISE EN LUMIÈRE DU PHÉNOMÈNE PHYSIQUE 6 1.1.3 Synthèse Dans la première expérience, il apparaît une force magnétique de Lorentz de la forme F L = q v B 0 (1) susceptible de faire circuler les charges de conduction du circuit. Nous mettrons ceci en équations ultérieurement. Dans la seconde expérience, le circuit voit apparaître un champ magnétique variable créé par l aimant. D après l équation de Maxwell-Faraday, rot E = B t on sent que les variations temporelles du champ magnétique entraînent l apparition d un champ électrique induit, capable alors de mettre les charges du circuit en mouvement. Cependant, on peut remarquer finement que pour un observateur qui se déplacerait avec l aimant, la bobine se déplacerait dans un champ magnétique permanent : les deux expériences correspondent au même phénomène physique, la différence étant liée au choix du référentiel d étude. L induction électromagnétique est un phénomène unique : inductions de Lorentz et de Neumann en sont deux facettes différentes. 1.2 Loi de Lenz Les expériences précédentes soulèvent également un autre aspect important dans les phénomènes d induction : il existe un lien entre les effets magnétiques (création d une tension induite) et les effets mécaniques (mouvement). Une expérience simple permet d illustrer ce lien. Il s agit de placer une bobine reliée à un court-circuit (R=0) dans les machoires de l aimant, et de lui donner un mouvement de balancement en l écartant de sa position d équilibre. On observe que les oscillations de la bobine sont amorties, beaucoup plus rapidement dans ce cas que lorsque le circuit est ouvert (simple amortissement mécanique par frottements). Or, les seules forces qui sont suscetibles d exister sont les forces de Laplace liées au courant i(t) induit dans la bobine (longueur infinitésimale d l ) par la relation d F Lap = i d l B (3) Examinons les deux cas suivants : (2)

1 MISE EN LUMIÈRE DU PHÉNOMÈNE PHYSIQUE 7 Fig. 1 La bobine entre dans le champ magnétique de l aimant : ce champ devient de plus en plus intense, de la gauche vers la droite. Le courant induit i(t) étant uniforme dans la bobine, les forces de Laplace sont prépondérantes dans le domaine de champ fort : leur résultante freine le mouvement en s opposant à la vitesse. Il faut remarquer que le courant induit crée un champ magnétique appelé champ magnétique induit, opposé à la variation du champ (augmentation) vu par la bobine. Fig. 2 La bobine sort du champ magnétique de l aimant : ce champ devient de moins en moins intense, de la droite vers la gauche. Le courant induit i(t) étant uniforme dans la bobine, les forces de Laplace sont toujours prépondérantes dans le domaine de champ fort : leur résultante freine le mouvement en s opposant à la vitesse. Il faut remarquer que le courant induit crée un champ magnétique appelé champ magnétique induit, opposé à la variation du champ (augmentation) vu par la bobine. Dans le référentiel du laboratoire, l induction est due au déplacement de la bobine, et le système réagit en produisant une force qui s oppose à son mouvement. Dans le référentiel de la bobine, l induction est provoquée par la variation du champ B vu par la bobine : le système réagit en produisant un champ magnétique induit opposé à la variation du champ magnétique appliqué imposée à la bobine. On résume ces lois de comportement par la loi de Lenz Les effets magnétiques, électrocinétiques et mécaniques de l induction sont orientés de façon à s opposer à ses causes et on illustre tout ceci par la figure suivante :

2 MISE EN ÉQUATIONS DE L INDUCTION 8 2 Mise en équations de l induction 2.1 Cadre d étude Il faut être conscient que, si un circuit est suffisamment étendu et si, en un point de ce circuit, une grandeur électromagnétique varie au cours du temps, les effets électriques et magnétiques de cette variation ne se font pas sentir instantanément à distance : on observe une propagation, de proche en proche, des actions électromagnétiques, à vitesse bien déterminée suivant la nature du milieu et caractérisée par une longueur d onde de propagation. Il faut dans ce cas déterminer les grandeurs électromagnétiques en tout point. En revanche, si les dimensions du circuit sont petites devant la longueur d onde du phénomène en propagation, on peut considérer qu à un instant donné une grandeur donnée a même valeur en tous les points équivalents du circuit. Il devient alors possible de calculer cette grandeur en appliquant les lois de la statique. On dit que le circuit fonctionne en régime quasistationnaire ou dans l approximation des régimes quasi-stationnaires (ARQS). Dans la suite de cet exposé, nous nous placerons dans de telles conditions. 2.2 Force électromotrice de Lorentz 2.2.1 Force et champ électromoteurs On a vu que l expérience montrait que le déplacement d un circuit joue le rôle d un générateur électrique. On peut par conséquent définir une fém appelée force électromotrice de Lorentz e L. Nous avons vu que cette fém induite est liée au champ magnétique B 0 appliqué, de la même façon que le sont les efforts de Laplace subis par le circuit :

2 MISE EN ÉQUATIONS DE L INDUCTION 9 ce sont des manifestations des effets du terme magnétique de la force de Lorentz exercée sur une particule chargée. Or, on sait que la puissance associée à ce terme est nulle (le terme magnétique ne travaille pas, il est normal à la vitesse) : comme B 0 n apparaît pas dans le bilan énergétique, la puissance de la fém de Lorentz et celle des actions de Laplace doivent se compenser : P Laplace + e L i = 0 (4) Considérons maintenant une portion de circuit mobile. Dans notre référentiel d étude, la vitesse d une particule de conduction est composée et s écrit v Labo = v deplacement + v conduction (5) ce qui implique que chaque charge q est soumise à la force F Lorentz = q ( E + v d B 0 + v c B 0 + E H ) (6) Le terme v c B 0, homogène à un champ électrique, est responsable de l effet Hall : normal à v c, donc aux lignes de courant, il ne peut pas être la cause d un courant induit. Le terme E H représente le champ de Hall qui se crée en régime permanent par effet Hall. Ces deux termes précédents tendent par ailleurs à se compenser. Par contre, le terme q v d B 0 correspond à une force supplémentaire qui ne s applique que si le circuit est en mouvement. Dans ce cas, elle peut mettre les porteurs en mouvement et générer une fém d induction. On appelle champ électromoteur de Lorentz la grandeur E m = v d B 0 (7) Sur une portion linéique ÂB qui se déplace, la puissance des efforts de Laplace a pour expression B P Laplace = ( i d l B 0 ) v d (8) A ce qui s écrit encore de manière équivalente P Laplace = i B A = i ( v d B 0 ) d l (9) B A E m d l (10)

2 MISE EN ÉQUATIONS DE L INDUCTION 10 et sachant d après le bilan initial que P Laplace = e L, i, nous en tirons l expression de la force électromotrice de Lorentz e L = B A E m d l (11) L existence de courants induits est liée au caractère non conservatif de la circulation du champ électromoteur : ils existent si et seulement si la fém totale d une maille est non nulle. 2.2.2 Roue de Barlow : générateur unipolaire Parfois appelé disque de Faraday, ce dispositif est constitué par un disque de cuivre tournant uniformément autour de son axe, dans un champ magnétique stationnaire et uniforme. Deux contacts glissants, l un sur l axe en M et l autre sur la périphérie en N, permettent de refermer le circuit sur un dipôle électrocinétique extérieur D. Le circuit n est pas défini de façon unique puisque le conducteur n est pas filiforme mais massif entre le centre O du disque et N. En outreles points matériels qui assurent la conduction entre O et N changent au cours du temps

2 MISE EN ÉQUATIONS DE L INDUCTION 11 On peut calculer la fém de par son expression générale sur le contour MONDM ; le champ magnétique appliqué est stationnaire, et tel que B = B e z. Le disque a un rayon R et tourne à la vitesse angulaire ω. La vitesse des seuls points mobiles du contour, comme P situé entre O et N, s écrit dans la base cylindrique v = ω ρ eθ (12) et ainsi c est-à-dire e(t) = e(t) = R 0 C ( v B ) d r (13) Bω ρdρ = B ω 2 R2 (14) Ordre de grandeur : pour un champ de 0, 2 T, une roue de 10 cm de rayon et une vitesse angulaire de ω = 3000 tr.min 1, on obtient 2.3 Loi de Faraday 2.3.1 Expression générale e 0, 63 V (15) Avec les conventions de la section précédente, appelons maintenant λ la translation d un point M du circuit dans l intervalle de temps, ce qui revient à dire que d λ = v d. La fém induite aux bornes de d l s écrit dans ce cas de L = E m d l = (d l d λ ) B 0 (16) Or, la grandeur (d λ d l ) B 0 représente le flux coupé d 2 φ c par l élément de circuit d l lors du déplacement d λ. Il vient donc que, lorsque l ensemble du circuit se déplace de d λ pendant, il est le siège d une fém induite e L = dφ c (17) On montre facilement que le flux coupé par un circuit en déplacement est égal à la variation de flux traversant le circuit mobile ; par ailleurs, la variation de flux à travers le circuit peut avoir une cause quelconque, autre que le mouvement de ce dernier (dans le cas de l induction de Neumann par

2 MISE EN ÉQUATIONS DE L INDUCTION 12 exemple). On généralise donc l égalité précédente pour atteindre la loi de Faraday 1 e L = dφ (18) Remarque : Dans les problème d induction de Lorentz, le champ électrique peut être mis sous la forme E = gradv + E m (19) La loi de Faraday donne e(t) = E m d l = (C) (C) E d l = dφ(t) = d S B d S (20) soit encore par le théorème de Stokes (C) E d l = S rot E d S = B S t d S (21) d où l on tire l équation locale dite de Maxwell-Faraday rot E = B t (22) Exemple : rotation d un cadre dans un champ magnétique constant. Le flux est de la forme φ = ab B 0 cos(ωt) ; le phénomène d induction implique que le cadre est parcouru par un courant alternatif dû à l existence aux bornes du cadre de la fém alternative induite e L = dφ = ab B 0 ω sin(ωt) (23) 2.3.2 Rail de Laplace Prenons un exemple de calcul de fém par la loi de Faraday. On considère la configuration suivante : La tige NP de masse m peut glisser sans frottements ; le circuit est parcouru par un courant continu I et placé dans un champ magnétique normal B 0, uniforme et constant. 1 On ne peut pas définir de flux si le circuit n est pas filiforme ou si l on ne connaît pas B en tout point d une surface s appuyant sur le circuit. Par ailleurs, la démonstration de la loi de Faraday par le flux coupé est valable si la vitesse des points du circuit est discontinue (roue à contact mobile).

2 MISE EN ÉQUATIONS DE L INDUCTION 13 Sous l action de ce champ, la tige est soumise à la force de Laplace F = IaB 0 ex ; le flux magnétique à travers le circuit, φ = axb 0, varie au cours du temps puisque la tige se déplace, et il apparaît aux bornes du circuit une fém induite. Si la tige est initialement animée d une vitesse v 0 à la distance b de MQ, l application du PFD donne ce qui donne après deux intégrations d où l expression du flux magnétique F = m d2 x 2 = IaB 0 (24) x(t) = IaB 0 2m t2 + v o t + b (25) φ(t) = Ia2 B 2 0 2m t2 + av 0 B 0 t + abb 0 (26) On en tire alors l expression de la fém induite aux bornes du circuit e(t) = dφ = Ia2 B 2 0 m t av 0B 0 (27)

2 MISE EN ÉQUATIONS DE L INDUCTION 14 2.3.3 Tension aux bornes d un dipôle électrocinétique Quel que soit son mode de fonctionnement, un voltmètre est un appareil dont l indication est reliée directement à la quantité E d l (28) AV B qui est la circulation du champ électrique entre les bornes A et B, le long de la branche de mesure AVB dans laquelle est inséré voltmètre. Considérons un dipôle électrique D fixe, placé dans une région où existe un champ magnétique variable B (t), et plaçons un voltmètre entre les points A et B : (C) On a, si la courbe (C) correspond au trajet fermé ADBVA, E d l = ADB soit par conséquent E d l + BV A u AB = E d l = ADB ADB E d l + dφ B E d l uab = S t d S (29) (30) où apparaît le taux de variation du flux de B à travers une surface s appuyant sur tout le contour (C) : si l on déplace le voltmètre, l indication qu il donne n est pas modifiée à condition que le flux de B t soit négligeable dans la zone considérée. La tension u AB n est définie qu à cette condition

2 MISE EN ÉQUATIONS DE L INDUCTION 15 qui, dans la pratique, est peu contraignante car les champs intenses sont localisés à l intérieur de machines électriques. Dans le cas où le dipôle est une résistance R, on observe u AB = Ri + dφ 2.4 Champ électromoteur de Neumann (31) Nous avons vu que, bien que l approche du phénomène d induction soit différente, les points de vue de Lorentz ou de Neumann sont équivalents. En effet, dans l approximation non relativiste (B, donc φ, sont les mêmes dans les référentiels), la fém induite obtenue au bornes d une bobine ne dépend pas du référentiel choisi : e N = e L = dφ(t) Reprenons l équation de Maxwell-Faraday, selon laquelle (32) rot E = B t (33) Pour un circuit filiforme, soumis à un champ magnétique B (M, t), le flux peut s exprimer à l aide du potentiel-vecteur A(M, t) en vertu du théorème d Ostrogradski, φ(t) = B (M, t) d S = A(M, t) d l (34) donc, si le circuit est fixe, Σ e N = dφ = Γ Γ A(M, t) t d l (35) ce qui revient à associer au phénomène d induction le champ électromoteur E m = A t et ainsi calculer la fém correspondante sous la forme générique e N = Γ E m d l 1 (36) 1 Le choix du champ électromoteur E m n est bien sûr pas unique et dépend du choix de jauge effectué. Ce choix n est pas déterminant dans la pratique, puisqu on se ramène le plus souvent au calcul de la fém pour un circuit bouclé (maille).

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 16 Remarque : on admettra que, si les deux causes de l induction (Lorentz et Neumann) existent simultanément, il faut additionner leurs effets : e induite = e L + e N. 3 Les notions d auto-induction et d inductances Jusqu à présent, nous avons systématiquement considéré les interactions entre un aimant et une bobine, ou bien entre deux bobines. Cependant, si le passage d un courant dans une bobine génère une fém et un courant induits, il génère également un champ magnétique induit de manière à s opposer à la variation de flux. Ne serait-il pas logique de considérer l action de ce champ sur le circuit générateur lui-même? Peut-on généraliser à plusieurs circuits? 3.1 Auto-induction Un élément de circuit filiforme est en fait soumis au champ magnétique total B = B exterieur + B propre (37) De même, la force électromotrice d induction est la somme de deux termes ; en pratique, e propre n est appréciable que si B propre est lui-même intense, ce qui est le cas pour de grands bobinages (nombre de spires élevé) parcourus par de forts courants. On définit un flux propre φ propre, qui représente le blux du champ créé par la bobine à travers toute surface s appuyant sur le contour du circuit. Cette grandeur (comme B propre ) étant proportionnelle à l intensité, on pose φ propre = L i (38) où L représente l inductance du circuit. C est un coefficient positif purement géométrique 1 qui ne dépend que de la forme du circuit à l instant t, et qui s exprime en henry (H). Ainsi, d(l i) e propre = = L di (39) pour un circuit rigide (L est alors constante). 1 La proportionnalité est une conséquence de la linéarité des équations du champ magnétique dans le vide : ce n est plus le cas dans le fer par exemple. Le modèle du circuit filiforme est cependant souvent inutilisable dans le calcul d inductances propres (intégrales divergentes) ; pour des nappes de courant surfaciques (coaxes), on ne définira pas de surface s appuyant sur le contour, mais on utilisera une définition énergétique.

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 17 Exemple : la bobine torique de section rectangulaire Pour une bobine torique constituée de N spires jointives d axe (Oz), les lignes de champ sont des cercles de rayon ρ et d axe (Oz). L application du théorème d Ampère donne B(ρ) = µ 0 N I 2πρ (40) Le flux ϕ à travers une spire du cricuit dépend de sa forme. Pour une section rectangulaire, ϕ = b a B(ρ) c dρ = µ 0 N I 2π c Ln( b a ) (41) Le flux total s écrit φ = N ϕ, et on en déduit l inductance 3.2 Aspects énergétiques L = φ I = µ 0N 2 2π c Ln( b a ) (42) Pour une bobine rigide prise aux bornes d un générateur, la loi d Ohm s écrit u = Ri e propre e ext = Ri + L di e ext (43) équation différentielle faisant apparaître la constante de temps τ = L R. En l absence de champ extérieur, et si u est une tension constante, l équation a pour solution i(t) = u R [1 e t τ ] (44) Remarquons que la puissance fournie par le générateur P source = ui et la puissance dissipée par effet Joule P Joule = Ri 2 ne sont pas égales : P source P Joule = L i di (45) Pendant le régime transitoire, le solénoïde, qui absorbe donc une pussance supplémentaire, accumule une énergie magnétique 1 ɛ m = t 0 L d( i2 2 ) = 1 2 Li2 (46) 1 Cette énergie magnétique emmagasinée est de même nature que l énegie électrostatique emmagasinée dans une capacité. On peut le mettre en évidence à l aide d un circuit simple : en parallèle, résistance+diode et bobine sur un générateur de tension ; un commutateur permet de charger la bobine et de la décharger sur la branche capacitive...

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 18 La densité volumique d énergie associée à un champ électromagnétique est ϖ em = B2 + ɛ 0 E 2 (47) 2 µ 0 2 Prenons un solénoïde idéal de longueur l, comportant N spires de section S. Le champ propre a pour valeur (cf. magnétostatique) B = µ 0 N l i (48) à l intérieur (nul à l extérieur). L énergie magnétique associée au champ B s écrit ɛ m = ϖ m V = B2 2 µ 0 Sl (49) = µ 0 N 2 S 2 l d où l on déduit l expression de l inductance du solénoïde, L = µ 0 N 2 S l i 2 (50) (51) Cette méthode de calcul, faisant appel à des considérations énergétiques, est très commobe pour le calcul d inductances. Ordre de grandeur : si N = 1000 spires, de surface S = 50 cm 2 sur une longueur l = 10 cm, on obtient (µ 0 = 4π.10 7 H.m 1 ) 3.3 Couplage magnétique de circuits L 63 mh (52) Soit deux circuits filiformes et fermés repérés par les indices (1) et (2). Pour une position donnée des circuits, le flux de B 1 créé par (1) à travers (2) est proportionnel à i 1 ; ce flux de (1) à travers (2) peut se mettre sous la forme φ 1 2 = B 1 2 d S 2 = A 1 2 d l 2 (53) S 2 C 2 d après le théorème de Stokes. Par ailleurs, le potentiel-vecteur créé en chaque point du circuit (2) a pour expression A 1 2 = µ 0 4π I l1 1 (54) r C 1 d

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 19 Ainsi, on obtient l expression du flux φ 1 2 = µ 0 4π I d l1 d l 2 1 = M 1 2 I 1 (55) C 2 C 1 r De la même façon, on montrerait que φ 2 1 = µ 0 4π I d l2 d l 1 2 = M 2 1 I 2 (56) C 1 C 2 r On note immédiatement que M 1 2 = M 2 1 = M où le coefficient M est donné par la formule de Neumann M = µ 0 4π C 1 3.3.1 Couplage de deux circuits C 2 d l1 d l 2 r (57) Soit deux circuits constitués chacun d une bobine rigide et d une source. Pour chaque circuit, en l absence d autre champ magnétique, φ i = φ i i + φ j i (58) di avec i j. Dans ce cas, e 1 = L 1 1 M di 2 di et e 2 = L 2 2 M di 1. Les tensions di 1 u 1 = R 1 i 1 + L 1 + M di 2 (59) et di 2 u 2 = R 2 i 2 + L 2 + M di 1 (60) qui régissent les deux circuits sont donc couplées par le terme d inductance mutuelle. La résolution de problèmes de ce type, dont les flux et les intensités sont reliés par des relations linéaires, conduit habituellement à introduire un formalisme matriciel, à l aide de matrices inductance, qui sont symétriques et à diagonale positive (coefficients d auto-induction L). Exemple : Bobines en série Pour deux bobines, (1) et(2), parcourues par un courant i, le flux du champ magnétique à travers l ensemble des spires est φ = φ 1 + φ 2 = (L 1 i + Mi) + (L 2 i + Mi) (61) Ce flux est de la forme φ = Li avec L = L 1 + L 2 + 2M : on voit qu en règle générale, L equivalente L 1 + L 2!

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 20 Les sources fournissent la puissance P sources = u 1 i 1 + u 2 i 2 (62) = (R 1 i 1 + L 1 di 1 + M di 2 )i 1 +(R 2 i 2 + L 2 di 2 + M di 1 )i 2 La puissance dissipée par effet Joule s écrit P Joule = R 1 i 2 1 + R 2 i 2 2 (63) et par conséquent le bilan énergétique P source = P Joule + dɛm devient dɛ m di 1 = L 1 i 1 + L di 2 2i 2 + Mi di 2 1 + Mi 2 c est-à-dire, en prenant ɛ m = 0 lorsque les courants sont nuls, di 1 (64) ɛ m = 1 2 L 1i 2 1 + 1 2 L 2i 2 2 + M i 1 i 2 (65) L inductance mutuelle des deux circuits dépend de leur position relative. Pour en fixer les limites, il suffit de poser que l énergie magnétique est positive, voire nulle s il n existe pas de courant dans l espace. En posant X = i 1 i2, il vient L 1 X 2 + 2 MX + L 2 > 0 (66) condition satisfaite pour tout X si le discriminant de cette équation est négatif : M 2 < L 1 L 2 (67) Le cas limite d égalité est en réalité celui du couplage parfait, n ayant pas d existence réelle, pour lequel toutes les lignes de champ créées par un circuit traversent l autre. En fait, il existe toujours des pertes de flux magnétique. Pour les transformateurs cuirassés, on pose habituellement M = k L 1 L 2 (68) où k est un coefficient inférieur à l unité traduisant la qualité de couplage.

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 21 3.3.2 Principe du transformateur Il s agit d un cadre de fer assurant la canalisation des lignes de champ B créé par deux bobines de N1 et N 2 spires. La bobine (1), appelée primaire, est alimentée par une tension u 1 (t) et la bobine (2), appelée secondaire, alimente un appareil (ou charge). On écrit conventionnellement le diagramme suivant : Au primaire, écrivons di 1 u 1 = R 1 i 1 + L 1 + M di 2 (69) et au secondaire di 2 u 2 = R 2 i 2 + L 2 + M di 1 (70) Si les résistances sont nulles (ou en l absence de charge pour le secondaire), di 1 u 1 = L 1 + M di 2 di 2 u 2 = L 2 + M di 1 On montre par récurrence que, pour un bobinage de N spires, (71) (72) L total = N 2 L 0. Par ailleurs, en introduisant le facteur de couplage k, il vient M = k L 1 L 2

3 LES NOTIONS D AUTO-INDUCTION ET D INDUCTANCES 22. et le champ parfaitement canalisé, le flux de B a la même valeur φ 0 à travers toutes les spires : et u 1 = N 1 dφ 0 u 2 = N 2 dφ 0 Nous obtenons alors la relation très simple u 2 = N 2 N 1 u 1. Dans le cas général, on peut ramener chaque circuit à un équivalent électrocinétique série du type (exemple du primaire) impédance Z p inductance propre ilω inductance mutuelle im ω avec la loi d Ohm e p = (Z p + il p ω)i p + imω I s. De même pour le secondaire, 0 = (Z s + il s ω)i s + imω I p. On obtient donc le système d équations { imω Ip Is = Z s,t e p = (Z p,t + M 2 ω 2 Z s,t ) I p cette dernière équation permettant de donner l équivalent série. De la même façon, pour le secondaire, on obtient l équation i Mω Z p,t e p = ( M 2 ω 2 Z p,t + Z s,t )I s (75) ce qui donne l équivalent série du secondaire. Si l on suppose le transformateur parfait, R p il p ω et ainsi Z p,t il p ω. L expression de la fém du secondaire devient et sachant que Ls L p e s = i Mω Lp L s ωe e = i Z p,t il p ω = L s L p e (76) = n2 s n, il vient finalement la relation simple 2 p e s e p = n s n p (77) et on retrouve le théorème d Ampère en écrivant Is I p L utilisation du transformateur est simple : sans charge, I s = 0 dont e p = e = Z p,t I p,0 = ns n p. (73) (74)

4 APPLICATIONS 23 en charge, e = Z p,t I p,0 = Z p,t I p + imω I s, ce qui donne encore I p I p,0 I s = imω Z p,t (78) et sachant que dans le cas d un transformateur parfait, M = k L p L s avec k = 1, on aboutit finalement à n p (I p I p,0 ) + n s I s = n p I p,0 (79) En chargeant le secondaire, l accroissement de courant qui passe dans le primaire est n p (I p I p,0 ) et est compensé par le courant dans le secondaire ( n s I s ) exactement : le flux d induction magnétique à travers le fer ne change pas, qu on soit en en charge ou non. 4 Applications 4.1 Moteur asynchrone Pour les installations de forte puissance, la distribution de l énergie électrique se fait en triphasé. Par rapport à une tension de référence, le neutre, les trois fils de phase sont portés à des tensions de même valeur efficace et déphasées de 2π 3. Pour réaliser un champ tournant, il suffit de disposer trois électroaimants faisant des angles de 2π 3 entre eux et reliés aux sources du triphasé.

4 APPLICATIONS 24 Les trois électroaimants créent, au voisinage du point O, trois champs proportionnels respectivement aux tensions correspondantes (avec la même constante de proportionnalité), qui s ajoutent : B (O, t) = 3 2 B m (cos(ω 0 t) e x + sin(ω 0 t) e y ) (80) Si on place une bobine de N spires d aire S, fermée sur elle-même, de résistance R, d inductance L et de moment d inertie J par rapport à l axe (Oz), elle peut tourner sur elle-même sous l action du champ tournant, moyennant un couple résistant Γ qui maintient sa vitesse constante. On repère cette bobine par l angle θ(t) = ( e x, S ) et le champ tournant est tel que ( B, e x ) = ω t 1. Le flux de B à travers la bobine varie dans le temps, ce qui provoque un courant induit. La loi de Lenz montre que l effet mécanique de ce courant s oppose à la cause de l induction : la bobine subit des efforts de Laplace qui tendent à la placer dans l état où le flux ne varie pas (la vitesse angulaire étant égale à ω 0 ) 2. Classiquement, le problème se décompose en deux parties : une équation mécanique La bobine est assimilable à un dipôle de moment magnétique M = Ni S. Le théorème du moment cinétique donne alors soit encore ( M B ) e z Γ = J θ (81) J θ φ 0 i sin(ω 0 t θ(t)) + Γ = 0 (82) une équation électrique Pour la spire orientée, le flux du champ extérieur est tel qu φ ext = φ 0 cos(ω 0 t θ(t)) d où l expression de l équation qui devient Ri + L di + dφ ext = 0 (83) Ri + L di (ω 0 θ)φ 0 sin(ω 0 t θ(t)) = 0 (84) 1 On suppose que le champ est uniforme 2 Le moment des actions de Laplace est donc positif si ω est inférieure à ω 0

4 APPLICATIONS 25 C est en régime permanent que les deux équations se découplent. L équation électrique est alors une équation linéaire, dont le second membre est une fonction sinusoïdale de pulsation Ω = (ω 0 ω) : Ri + L di = Ω φ 0 sin(ωt) (85) La solution d une telle équation s obtient par les complexes : avec les grandeurs i m = i = i m sin(ωt ψ) (86) Ω φ 0 et ψ = Arctan( L Ω R 2 + L 2 Ω 2 R ) (87) L équation mécanique permet alors d obtenir l expression du moment Γ(t) = Ω φ 2 0 sin(ωt ψ) sin(ωt) (88) R 2 + L 2 Ω2 de moyenne Ω φ 2 0 < Γ >= 2 cos, ψ (89) R 2 + L 2 Ω2 soit encore en remplaçant ψ par sa valeur, et en posant X = ω ω 0, < Γ >= Γ 0 (1 X) 1 + λ 2 (1 X) 2 (90) où λ = Lω 0 R. On peut alors tracer l évolution de Γ Γ 0 en fonction de X, puis celle de la puissance mécanique < P m >=< Γ > ω en fonction de X. On se limite à l intervalle [0, ω 0 ] On a les cas suivants :

4 APPLICATIONS 26 si ω = ω 0, le couple < Γ > est nul car le flux est constant si ω < ω 0, on observe < Γ >> 0 et le moteur tourne moins vite que le champ, d où son nom de moteur asynchrone si le facteur λ < 1, le couple est une fonction décroissante de la pulsation, mais en général on a toujours λ > 1, ce qui implique que le couple passe par un maximum. Si deux valeurs de ω correspondent à la valeur imposée < Γ >, seule la plus grande est relatvie à un état stable (< Γ > (ω) étant décroissante, une augmentation de la vitesse se traduit par une diminution du couple moteur, qui ramène la vitesse à sa valeur d équilibre. 4.2 Accélération de particules : le bétatron La possibilité d exercer des forces électriques par des variations de champ magnétique est mise à profit dans l accélérateur de particules chargées appelé bétatron. Un électroaimant crée un champ magnétique B de révolution autour d un axe (Oz) et parallèle à cet axe. On injecte dans la zone périphérique, à une distance r de l axe des électrons de charge e et de masse m, de vitesse v perpendiculaire à (Oz). L intensité du champ magnétique est choisie de façon à ce qu ils décrivent le cercle de rayon r et d axoe (Oz). On fait croître B : le potentiel-vecteur A croît de même, et un champ électrique induit tangentiel accélère les électrons sur leur orbite. On peut montrer que, moyennant certaines conditions sur la géométrie de B, ce procédé d accélération peut s effectuer sans modifier le rayon de l orbite. 4.3 Courants de Foucault Toute pièce de métal placée près d un circuit électrique parcouru par un courant variable, ou en mouvement près d un aimant, est le siège de courants

4 APPLICATIONS 27 volumiques induits appelés courants de Foucault, non guidés par les fils, ce qui les rend souvent impossibles à calculer analytiquement. De manière générale, les courants de Foucault se développent dans une conducteur en mouvement ou soumis à un champ magnétique B variable, s il peut exister des lignes de champ sur lesquelles la circulation de J i et donc celle du champ électromoteur, est positive. Ainsi, il n y a pas de courant de Foucault dans un conducteur solide en rotation autour d un axe parallèle au champ B uniforme, car alors E m est le gradient de ωb 2 r2 (cf. calcul de la roue de Barlow) ; en revanche, si B est normal à l axe, il existe des courants de Foucault dans le conducteur. Plaçons par exemple un conducteur cylindrique de volume V dans un champ magnétique uniforme B 0 appliqué selon l axe de révolution et créé par des sources extérieures. En régime variable, il apparaît un champ électrique induit E i tel que rot E i = B 0 (91) t d où l existence dans le conducteur de courants induits, appelés courants de Foucault, de densité volumique J i = γ E i. En première approximation, supposons que le champ B appliqué reste égal à B 0. Par ailleurs, tout plan passant par M et contenant l axe (Oz) est plan d antisymétrie pour l ensemble conducteur + sources de champ magnétique : le champ électrique (et le courant volumique) est normal à ce plan. Dans le système de coordonnées cylindriques adéquat, nous pouvons écrire B = B0 = B 0 (t) e z (92) et Ji = γ E i (ρ, t) e φ (93)

4 APPLICATIONS 28 Les lignes de courant sont des cercles concentriques centrés sur l axe des plans z = cte. On adopte le contour (C) correspondant à une telle ligne de courant, de rayon ρ et orientée selon e φ. La relation de Maxwell-Faraday donne e = (C) E i d l = d ce qui s écrit donc, si d S est orientée selon e z, d où l on extrait et ainsi S 2πρ E i = πρ 2 db 0 E i = 1 2 ρ db 0 B 0 d S (94) (95) (96) Ji = γ 2 ρ db 0 eφ (97) Remarquons que ces courants induits de Foucault sont plus intenses à la périphérie du conducteur. Leur sens, selon e φ si db 0 < 0, obéit à la loi de Lenz : le champ additionnel B i créé par J i, dirigé selon e z, tend à compenser la diminution du champ extérieur B 0 sont d autant plus intenses que B 0 (t) varie rapidement dans le temps : si B 0 (t) = B 0m cos(ωt), Ji = γω 2 ρb 0m sin(ωt) e φ (98)

4 APPLICATIONS 29 La puissance élémentaire dissipée par effet Joule dans le conducteur est δp = E i J i dv = J 2 i γ soit sur tout le volume du conducteur P = γω2 4 B2 0m h sin 2 (ωt) soit, puisque V = πa 2 h, a Ainsi, en moyenne dans le temps, 0 dv (99) ρ 2 2πρ dρ = π 8 γω2 B 2 0m a 4 h sin 2 (ωt) (100) P = V 8 γω2 B 2 0m a 2 sin 2 (ωt) (101) < P V > t= 1 16 γω2 B 2 0m a 2 (102) Cette puissance dissipée est d autant plus grande que la conductivité γ et la pulsation ω sont grandes, et que le conducteur est massif (rayon a grand). On voit par ailleurs que l on peut diminuer les courants de Foucault dans le conducteur en divisant ces derniers en feuilles ou fibres que l on sépare par des isolants : en remplaçant le conducteur massif cylindrique de rayon a par des fils conducteurs de rayon b = a n tel que le volume total reste inchangé, les pertes moyennes par unités de volume sont divisées par n 2 : < P V > t= 1 16 γω2 B 2 0m b 2 = 1 n 2 < P V > t (103) C est ce qui est réalisé dans les noyaux des bobines et dans les transformateurs. En revanche, si l on veut obtenir un échauffement important dans le conducteur, à γ et V fixés, on augmente en principe la fréquence (ω) du champ magnétique : c est ce qu on réalise dans un four à induction, où le matériau est chauffé alors que son support isolant reste froid ; un tel échauffement est efficace puisque ce type de fours permet d atteindre la fusion du conducteur! Enfin, les courants de Foucault engendrés par le mouvement d un conducteur dissipent une puissance proportionnelle au carré de la vitesse et créent une action de freinage proportionnelle à la vitesse et au carré du champ. De tels dispositifs sont utilisés comme ralentisseurs sur certains poids lourds mais ne peuvent néanmoins se substituer aux freinages à friction, car la force de freinage du ralentisseur n est intense qu à grande vitesse.

4 APPLICATIONS 30 4.4 Machines tournantes génératrices 4.4.1 Alternateurs Une bobine comportant N spires de surface S tourne à vitesse angulaire constante ω dans un champ magnétique uniforme B, autour d un de ses diamètres perpendiculaires à B. A l instant t, le flux à travers la bobine s écrit φ = N B S = NBS cos(ωt + ϕ) (104) Une fém est donc induite, et donnée par le loi de Faraday e(t) = dφ = ω NBS sin(ωt + ϕ) (105) Elle est sinusoïdale et de valeur moyenne nulle (le circuit se retrouve dans la même position après un tour complet). Deux contacts glissants permettent de l utiliser pour alimenter un circuit fixe externe : on parle d alternateur à induit mobile. On peut éviter de tels contacts pour les forts courants en prenant une bobine fixe et en faisant tourner la source de champ magnétique (aimant ou électroaimant suivant la taille de l alternateur) : ce sont des alternateurs à induit fixe. Les alternateurs de puissance ont un bobinage enroulé sur une carcasse en

4 APPLICATIONS 31 fer doux pour canaliser les lignes de champ magnétique. L inducteur est une bobine à noyau animée d une vitesse de rotation constante. Si l induit possède deux pôles, la fréquence de la fém induite est celle de la rotation de l inducteur ; pour obtenir du 50 Hz, la vitesse de rotation doit être de l ordre de 3000 tr.min 1, c est-à-dire assez élevée, mais obtenue directement par certaines turbines. Les fém industrielles obtenues sont au maximum de 20000 V. Pour opérer avec une vitesse de rotation moindre, il faut augmenter le nombre de pôles de l induit et de l inducteur : avec 2p pôles par exemple, la fréquence de la fém sera p fois celle de la rotation. 4.4.2 Dynamos Une spire tournante dans un champ magnétique est le siège d une fém sinusoïdale.

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 32 Il est possible d obtenir une fém toujours de même sens si l on prend soin de réaliser, en synchronisme avec la rotation, une commutation chaque fois que la fém s annule. C est le rôle du collecteur. L induit est en fait constitué d un nombre important de conducteurs actifs, convenablement reliés entre eux, avec un collecteur comportant k lames distinctes : la fém obtenue est quasi constantes et est de l ordre de e = N n φ 0 (106) où N est le nombre de tours par seconde, n le nombre de conducteurs actifs et φ 0 le flux maximal à travers une spire. Le flux magnétique externe est produit par un circuit auxiliaire, l inducteur fixe : ce dernier peut être alimenté par un générateur externe (excitation séparée ) ou par une fraction dérivée du courant produit (excitation parallèle ), ou bien encore en mettant en série l inducteur avec le circuit d utilisation (cas rare, excitation série ). 5 Convertisseurs électromécaniques 5.1 Le haut-parleur électrodynamique Il s agit d une application très importante et extrêmement répandue. On peut représenter un haut-parleur comme suit : L aimant permanent annulaire crée un champ radial constant B = B(r) e r au niveau des fils de la bobine. Celle-ci est solidaire de la membrane, ce qui

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 33 permet de conférer à la membrane un mouvement de translation ; elle est rappelée vers sa position d équilibre par une force élastique qu on modélise le plus souvent par un ressort de raideur k. Les frottements mécaniques sont représentés par un frottement proportionnel à la vitesse. L étude de ce dispositif peut faire l objet d une séance de travaux pratiques ; la résolution du problème est typique. Lorsqu un circuit électrique est mobile dans un champ magnétique, les grandeurs électriques et mécaniques ne sont pas indépendantes : on parle de couplage électromécanique. Comme nous allons le voir sur l exemple suivant, plus simple, l analyse consiste en deux étapes : une équation mécanique, faisant intervenir les actions de Laplace, c est-à-dire les courants une équation électrique tenant compte des fém d induction (donc de la vitesse des conducteurs) La caractéristique électrocinétique dépend des contraintes mécaniques, de la même façon que le comportement mécanique dépend des composants du circuit.

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 34 5.2 Moteur à courant continu 5.2.1 Principe Une bobine constituée de N spires enroulées sur un cadre rectangulaire de côtés a et b, est en rotation autour d un axe. Sa position est repérée par l angle θ ; sa résistance totale est R et son inductance L. Elle est reliée tout d abord à une source de tension E par des contacts H et K qui commutent à chaque demi-tour. L extrémité K de la bobine est reliée au pôle si sin(θ) > 0 au pôle si sin(θ) < 0 Le système mobile a un moment d inertie J par rapport à l axe. Un aimant permanent produit un champ magnétique B, supposé radial et de norme uniforme au niveau des fils MN et PQ 1. Un système mécanique S exerce sur l axe un couple mécanique résistant, de norme supposée constante, noté ( Γ). 1 On se rapproche de cette structure en jouant sur la forme des pôle et en plaçant un cylindre de fer sur l axe de la bobine. Il existe une zone de transition où le champ n a pas tout à fait la structure voulue, mais nous la négligerons ici.

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 35 5.2.2 Equation mécanique Les forces de Laplace sur les côtés NP et QM sont parallèles à l axe : leur moment par rapport à ce dernier sera donc nul. Les forces de Laplace exercées sur les côtés MN et PQ sont égales à Bib en norme ; en raison de la commutation, leur moment a toujours le même signe.

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 36 Ce moment a pour expression M δ forces de Laplace est = a 2 Bib. Au total, le moment des M Laplace = 2N Bib a 2 = iφ 0 (107) où φ 0 = N B ab a bien les dimensions d un flux. Il vient donc l équation différentielle J θ = M Laplace Γ = i φ 0 Γ (108) 5.2.3 Equation électrique La puissance des actions de Laplace est P Laplace = e Lorentz i = M Laplace θ = i φ0 θ (109) On en déduit l expression de la force électromotrice de Lorentz, e L = φ 0 θ. D un point de vue électrocinétique, la rotation équivaut à un générateur idéal de tension e = φ 0 θ opposée au courant qui engendre cette rotation (on appelle parfois cette quantité force contre-électromotrice). On a l équation 5.2.4 Régime transitoire R i + L di + φ 0 θ = E (110) Il est possible d éliminer i(t) dans les équations précédentes. On obtient alors l équation différentielle en termes de ω(t) = θ(t) L R ω + ω + ω φ2 0 RJ + Γ J = E φ 0 RJ (111)

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 37 Dans la pratique, il est raisonnable de faire l approximation que L ω ω (112) R L équation se réduit au premier ordre : ω + ω φ2 0 RJ = E φ 0 RJ Γ J. Cette équation linéaire admet une solution simple si Γ est constant et si le moteur est initialement arrêté : avec les grandeurs ω l = E RΓ φ 0 φ 2 0 et τ = RJ φ 2 0. Pendant ce régime transitoire, le courant décroît donc de E R à Γ φ 0. 5.2.5 Régime permanent ω = ω l (1 e t τ ) (113) i(t) = E ωφ 0 R En régime permanent, le moment des forces de Laplace, opposé au couple résistant, est égale à Γ et la vitesse angulaire limite ω l est une fonction affine décroissante de Γ : la valeur maximale de cette vitesse est obtenue à vide pour Γ = 0 et vaut E φ 0 si le couple vérifie Γ > Eφ 0 R, le moteur ne peut pas tourner. La pussance mécanique fournie par le moteur s écrit soit encore, utilisant le bilan, P meca = Γ ω = φ 0 E R ω(1 ω ω max ) (114) avec i = E φ 0ω R. On obtient donc le graphe P source = P meca + Ri 2 = E i (115)

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 38 sur lequel on se rend compte que la puissance est maximale lorsque ω = 1 2 ω max et vaut alors E2 4R. 5.2.6 Fonctionnement en générateur Ce dispositif peut également fonctionner en générateur. Supposons qu un opérateur impose un régime permanent de rotation à vitesse constante ω 0 en exerçant un couple moteur Γ = Γ. Remplaçons la source par une résistance R 0. l équation électrique donne i = φ 0ω 0 R 0 + R (116) l équation mécanique donne Γ = i φ 0, soit Γ = φ2 0 ω 0 R 0 + R (117) D un point de vue mécanique, le couplage se traduit par un couple de frottement proportionnel à la vitesse, qui dépend de la valeur de R 0. D un point de vue électrique, le système est équivalent à un générateur de Thévenin de fém E(t) = φ 0 ω 0.

5 CONVERTISSEURS ÉLECTROMÉCANIQUES 39 S il était possible de faire abstraction des résistances et des frottements internes, le rendement énergétique de ces convertisseurs électromécaniques serait de 100% : en effet, la puissance de l opérateur, opposée en moyenne à celle des forces de Laplace, est égale à la fém du générateur 1. Ici, la puissance est dissipée dans le résistance de charge, et on obtient bien Γ ω 0 = (R 0 + R)i 2 (118) Notons que l on regroupe plus généralement les moteurs et générateurs électriques sous le terme de convertisseurs de puissance, susceptibles de produire de la puissance mécanique à partir d une source électrique ou inversement de la puissance électrique à partir d une excitation mécanique. Théoriquement, les deux sens de conversion sont possibles, mais les appareils sont en réalité conçus techniquement pour un seul mode de fonctionnement. 1 La puissance mécanique est celle des actions de Laplace, et la puissance électrique est, en l absence de résistance, celle de la fém de déplacement. D après les lois de l induction, des deux grandeurs sont égales en valeur absolue.

Conclusion La découverte du phénomène d induction électromagnétique par Faraday a constitué un grand pas dans la physique. Faraday avait appris le travail du cuir et la réfection des ouvrages chez un libraire français de Londres, mais il se prit très vite d une passion pour les sciences chimiques et électriques ; ses fabuleuses qualités d expérimentateur l amenèrent à postuler l existence de lignes de force appelées lignes de champ, mais il restait à expliquer comment elle se propageaient dans l espace. Faraday franchit le pas, supprime toute référence à la matière, et suggère que les forces observées sont créées par un ensemble de champs électriques, magnétiques ou gravitationnels qui traversent l espace vide. C est ainsi qu il pose les bases d une physique nouvelle, par ce saut conceptuel. Cependant, son langage est trop approximatif, et il lui manque la puissance du formalisme mathématique. Ce sont des mathématiciens et des physiciens tels que Hamilton, Thomson (futur Lord Kelvin) ou Maxwell qui poursuivirent la route s ouvrant sur une théorie électromagnétique de plus en plus consistante. La progression amène ensuite vers les célèbres équations vectorielles de Maxwell (écrites sous leur forme actuelle par l anglais Heaviside) et à la propagation d ondes. Comme nous l avons vu à travers quelques exemples, les phénomènes d induction sont aujourd hui encore au goût du jour 40