Baccalauréat S Pondichéry 13 avril 2011

Documents pareils
Corrigé du baccalauréat S Pondichéry 13 avril 2011

Correction du Baccalauréat S Amérique du Nord mai 2007

O, i, ) ln x. (ln x)2

Probabilités conditionnelles Exercices corrigés

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Commun à tous les candidats

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Développements limités, équivalents et calculs de limites

Corrigé du baccalauréat S Asie 21 juin 2010

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

1S Modèles de rédaction Enoncés

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

BACCALAUREAT GENERAL MATHÉMATIQUES

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat ES Amérique du Nord 4 juin 2008

Cours Fonctions de deux variables

TSTI 2D CH X : Exemples de lois à densité 1

Comparaison de fonctions Développements limités. Chapitre 10

Correction du baccalauréat ES/L Métropole 20 juin 2014

Représentation géométrique d un nombre complexe

Deux disques dans un carré

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Cours d Analyse. Fonctions de plusieurs variables

Quelques contrôle de Première S

Calcul intégral élémentaire en plusieurs variables

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Fonctions de plusieurs variables

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

La fonction exponentielle

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

Probabilités conditionnelles Loi binomiale

Complément d information concernant la fiche de concordance

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Développements limités. Notion de développement limité

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

mathématiques mathématiques mathématiques mathématiques

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

EXERCICES - ANALYSE GÉNÉRALE

Planche n o 22. Fonctions de plusieurs variables. Corrigé

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Angles orientés et trigonométrie

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

C f tracée ci- contre est la représentation graphique d une

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

LE PRODUIT SCALAIRE ( En première S )

Angles orientés et fonctions circulaires ( En première S )

Chapitre 2 Le problème de l unicité des solutions

Probabilités Loi binomiale Exercices corrigés

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Ressources pour le lycée général et technologique

Equations cartésiennes d une droite

Loi binomiale Lois normales

Texte Agrégation limitée par diffusion interne

Feuille d exercices 2 : Espaces probabilisés

DOCM Solutions officielles = n 2 10.

Nombre dérivé et tangente

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Chapitre 1 : Évolution COURS

Exercices Corrigés Premières notions sur les espaces vectoriels

Image d un intervalle par une fonction continue

Géométrie dans l espace Produit scalaire et équations

Séquence 10. Géométrie dans l espace. Sommaire

Limites finies en un point

Statistique : Résumé de cours et méthodes

I. Ensemble de définition d'une fonction

Chapitre 6. Fonction réelle d une variable réelle

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

I. Polynômes de Tchebychev

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Problème 1 : applications du plan affine

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Logistique, Transports

Terminale SMS - STL

Activités numériques [13 Points]

F411 - Courbes Paramétrées, Polaires

6. Les différents types de démonstrations

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

5 ème Chapitre 4 Triangles

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Mais comment on fait pour...

CCP PSI Mathématiques 1 : un corrigé

Représentation d une distribution

PROBABILITÉS CONDITIONNELLES

Transcription:

Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes C 1 et C 2 représentatives de deux fonctions f 1 et f 2 définies sur l intervalle ]0 ; + [. 3 C 1 2 1 C 2 O 1 2 3 4 1 On sait que : l axe des ordonnées est asymptote aux courbes C 1 et C 2 l axe des abscisses est asymptote à la courbe C 2 la fonction f 2 est continue et strictement décroissante sur l intervalle ]0 ; + [ la fonction f 1 est continue et strictement croissante sur l intervalle ]0 ; + [ la limite quand x tend vers+ de f 1 x) est+. Pour chacune des quatre questions de cette partie, une seule des trois propositions est exacte. Le candidat indiquera sur la copie la réponse choisie. Aucune justification n est demandée. Chaque réponse juste rapporte 0,5 point. Une réponse fausse ou l absence de réponse n est pas sanctionnée. 1. La limite quand x tend vers 0 de f 2 x) est : 0 + On ne peut pas conclure 2. La limite quand x tend vers+ de f 2 x) est : 0 0,2 On ne peut pas conclure 3. En+, C 1 admet une asymptote oblique : Oui Non On ne peut pas conclure

4. Le tableau de signes de f 2 x) f 1 x) est : f 2 x) f 1 x) + f 2 x) f 1 x) f 2 x) f 1 x) +0 Partie II On considère la fonction f définie sur l intervalle ]0 ; + [ par f x)=lnx)+1 1 x. 1. Déterminer les limites de la fonction f aux bornes de son ensemble de définition. 2. Étudier les variations de la fonction f sur l intervalle ]0 ; + [. 3. En déduire le signe de f x) lorsque x décrit l intervalle ]0 ; + [. 4. Montrer que la fonction F définie sur l intervalle ]0 ; + [ par F x) = x ln x ln x est une primitive de la fonction f sur cet intervalle. 5. Démontrer que la fonction F est strictement croissante sur l intervalle ]1 ; + [. 6. Montrer que l équation F x)=1 1 admet une unique solution dans l intervalle ]1 ; + [ qu on note α. e 7. Donner un encadrement de α d amplitude 10 1. Partie III Soit g et h les fonctions définies sur l intervalle ]0 ; + [ par : g x)= 1 x et hx)=lnx)+1. Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes C g et C h représentatives des fonctions g et h. 3 C h 2 1 P C g O A 1 2 t 3 4 1 1. A est le point d intersection de la courbe C h et de l axe des abscisses. Déterminer les coordonnées du point A. Pondichéry 2 13 avril 2011

2. P est le point d intersection des courbes C g et C h. Justifier que les coordonnées du point P sont 1 ; 1). 3. On note A l aire du domaine délimité par les courbes C g, C h et les droites d équations respectives x = 1 e et x = 1 domaine grisé sur le graphique). a. Exprimer l aire A à l aide de la fonction f définie dans la partie II. b. Montrer que A = 1 1 e. 4. Soit t un nombre réel de l intervalle ]1 ; + [. On note B t l aire du domaine délimité par les droites d équations respectives x = 1, x = t et les courbes C g et C h domaine hachuré sur le graphique). On souhaite déterminer une valeur de t telle que A = B t. a. Montrer que B t = t lnt) lnt). b. Conclure. EXERCICE 2 Candidats n ayant pas suivi l enseignement de spécialité Partie 1 Dans cette partie, ABCD est un tétraèdre régulier, c est-à-dire un solide dont les quatre faces sont des triangles équilatéraux. A D B A A est le centre de gravité du triangle BCD. Dans un tétraèdre, le segment joignant un sommet au centre de gravité de la face opposée est appelé médiane. Ainsi, le segment [AA ] est une médiane du tétraèdre ABCD. 1. On souhaite démontrer la propriété suivante : P 1 ) : Dans un tétraèdre régulier, chaque médiane est orthogonale à la face opposée. a. Montrer que AA BD = 0 et que AA BC = 0. On pourra utiliser le milieu I du segment [BD] et le milieu J du segment [BC]). b. En déduire que la médiane AA ) est orthogonale à la face BCD. Un raisonnement analogue montre que les autres médianes du tétraèdre régulier ABCD sont également orthogonales à leur face opposée. 2. G est l isobarycentre des points A, B, C et D. On souhaite démontrer la propriété suivante : P 2 ) : Les médianes d un tétraèdre régulier sont concourantes en G. En utilisant l associativité du barycentre, montrer que G appartient à la droite AA ), puis conclure. C Pondichéry 3 13 avril 2011

Partie II On munit l espace d un repère orthonormal k. On considère les points P1 ; 2 ; 3), Q4 ; 2 ; 1) et R 2 ; 3 ; 0). 1. Montrer que le tétraèdre OPQR n est pas régulier. 2. Calculer les coordonnées de P, centre de gravité du triangle OQR. 3. Vérifier qu une équation cartésienne du plan OQR) est : 3x+ 2y+ 16z= 0. 4. La propriété P 1 ) de la partie 1 est-elle vraie dans un tétraèdre quelconque? EXERCICE 2 Candidats ayant suivi l enseignement de spécialité Partie A On considère, dans un repère k de l espace, la surface S d équation : z = x y) 2. 1. On note E 1 l intersection de S avec le plan P 1 d équation z = 0. Déterminer la nature de E 1. On note E 2 l intersection de S avec le plan P 2 d équation x = 1. Déterminer la nature de E 2. Partie B On considère, dans un repère k de l espace, la surface S d équation : z = x y. 1. On note E 3 l intersection de S avec le plan P 1 d équation z = 0. Déterminer la nature de E 3 2. On note E 4 l intersection de S avec le plan P 3 d équation z = 1. Déterminer la nature de E 4. Partie C On note E 5 l intersection de S et de S. Dans cette partie, on souhaite démontrer que le seul point appartenant à E 5 dont les coordonnées sont des entiers naturels est le point O0 ; 0 ; 0). On suppose qu il existe un point M appartenant à E 5 et dont les coordonnées x, y et z sont des entiers naturels. 1. Montrer que si x = 0, alors le point M est le point O. 2. On suppose dorénavant que l entier x n est pas nul. a. Montrer que les entiers x, y et z vérifient x 2 3x y+ y 2 = 0. En déduire qu il existe alors des entiers naturels x et y premiers entre eux tels que x 2 3x y +y 2 = 0. b. Montrer que x divise y 2, puis que x divise y. c. Établir que y vérifie la relation 1 3y + y 2 = 0. d. Conclure. Pondichéry 4 13 avril 2011

EXERCICE 3 Commun à tous les candidats Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure ci-dessous. 0 point 0 point 3 points On suppose que les lancers sont indépendants et que le joueur touche la cible à tous les coups. 1. Le joueur lance une fléchette. On note p 0 la probabilité d obtenir 0 point. On note p 3 la probabilité d obtenir 3 points. On note p 5 la probabilité d obtenir. On a donc p 0 + p 3 + p 5 = 1. Sachant que p 5 = 1 2 p 3 et que p 5 = 1 3 p 0 déterminer les valeurs de p 0, p 3 et p 5 2. Une partie de ce jeu consiste à lancer trois fléchettes au maximum. Le joueur gagne la partie s il obtient un total pour les 3 lancers) supérieur ou égal à 8 points. Si au bout de 2 lancers, il a un total supérieur ou égal à 8 points, il ne lance pas la troisième fléchette. On note G 2 l évènement : «le joueur gagne la partie en 2 lancers». On note G 3 l évènement : «le joueur gagne la partie en 3 lancers». On note P l évènement : «le joueur perd la partie». On note pa) la probabilité d un évènement A. a. Montrer, en utilisant un arbre pondéré, que p G 2 )= 5 36. On admettra dans la suite que p G 3 )= 7 36 b. En déduire pp). 3. Un joueur joue six parties avec les règles données à la question 2. Quelle est la probabilité qu il gagne au moins une partie? 4. Pour une partie, la mise est fixée à 2. Si le joueur gagne en deux lancers, il reçoit 5. S il gagne en trois lancers, il reçoit 3. S il perd, il ne reçoit rien. On note X la variable aléatoire correspondant au gain algébrique du joueur pour une partie. Les valeurs possibles pour X sont donc : 2, 1 et 3. a. Donner la loi de probabilité de X. b. Déterminer l espérance mathématique de X. Le jeu est-il favorable au joueur? Pondichéry 5 13 avril 2011