https://femto-physique.fr/optique/opt_c2.php

Documents pareils
Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Chapitre 2 : étude sommaire de quelques instruments d optique 1 Grandeurs caractéristiques des instruments d optique Grossissement

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

chapitre 4 Nombres de Catalan

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire

Sujet. calculatrice: autorisée durée: 4 heures

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Oscillations libres des systèmes à deux degrés de liberté

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Comprendre l Univers grâce aux messages de la lumière

1S Modèles de rédaction Enoncés

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Chapitre 2 Les ondes progressives périodiques

Résolution d équations non linéaires

Continuité et dérivabilité d une fonction

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

GESTION DU LOGO. 1. Comment gérer votre logo? Format de l image Dimensions de l image Taille de l image 9

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/09

DIFFRACTion des ondes

Notion de fonction. Résolution graphique. Fonction affine.

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Chapitre 1 Cinématique du point matériel

Représentation géométrique d un nombre complexe

5 ème Chapitre 4 Triangles

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Fonctions de deux variables. Mai 2011

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

PRATIQUE DU COMPAS ou

Manuel d'utilisation de la maquette

Ensemble léger de prise de photo sous UV-A Tam Photo Kit n 1 pour appareil photo compact

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Caractéristiques des ondes

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Continuité en un point

Deux disques dans un carré

Panneau solaire ALDEN

TSTI 2D CH X : Exemples de lois à densité 1

Voyez la réponse à cette question dans ce chapitre.

Cours de Mécanique du point matériel

My Custom Design ver.1.0

Les interférences lumineuses

Les bases de l optique

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Chp. 4. Minimisation d une fonction d une variable

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Limites finies en un point

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Le théorème de Thalès et sa réciproque

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DOCM Solutions officielles = n 2 10.

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile

L.T.Mohammedia CHAINE D ENERGIE - DESSIN TECHNIQUE S.CHARI

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Chapitre 02. La lumière des étoiles. Exercices :

Utiliser le logiciel Photofiltre Sommaire

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Problèmes sur le chapitre 5

Ch.G3 : Distances et tangentes

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Chapitre 5. Le ressort. F ext. F ressort

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Construction d un cercle tangent à deux cercles donnés.

enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.

La médiatrice d un segment

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

TD: Cadran solaire. 1 Position du problème

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

"La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston

Calcul intégral élémentaire en plusieurs variables

Le Dessin Technique.

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Dr FOUGERAIS Guillaume, formateur Génération Implant, Nantes.

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Dérivation : Résumé de cours et méthodes

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

Cours Fonctions de deux variables

Optimisation, traitement d image et éclipse de Soleil

LE TRAVAIL SUR ÉCRAN DANS LA BRANCHE DES TÉLÉCOMMUNICATIONS

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

LE PRODUIT SCALAIRE ( En première S )

Les Conditions aux limites

Chapitre 2 Caractéristiques des ondes

Paris et New-York sont-ils les sommets d'un carré?

modélisation solide et dessin technique

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

DETERMINER LA LARGEUR DE PAGE D'UN SITE et LES RESOLUTIONS d'ecran

La perspective conique

possibilités et limites des logiciels existants

Transcription:

2 LES MIROIRS e chapitre est consacré à l étude des miroirs et plus particulièrement du miroir plan ainsi que des miroirs sphériques. On montre comment ces systèmes permettent la formation des images. e chapitre est accessible en ligne à l adresse : Sommaire https://femto-physique.fr/optique/opt_2.php 2.1 Généralités sur les systèmes optiques......................... 11 2.1.1 Stigmatisme.................................. 11 2.1.2 planétisme.................................. 13 2.2 Le miroir plan..................................... 14 2.2.1 Stigmatisme.................................. 14 2.2.2 planétisme.................................. 14 2.3 Le miroir sphérique dans l approximation de Gauss................ 15 2.3.1 Description.................................. 15 2.3.2 Notion de foyers............................... 16 2.3.3 onstruction des rayons lumineux..................... 17 2.3.4 ormule de conjugaison........................... 20 10

HPITRE 2. LES MIROIRS 11 2.1 Généralités sur les systèmes optiques 2.1.1 Stigmatisme Sources de lumière On distingue usuellement les sources primaires qui sont des sources autonomes de lumière (comme par exemple le soleil, une lampe, une flamme etc.) des sources secondaires qui renvoient la lumière par réflexion, di raction ou di usion (comme par exemple la lune, la plupart des objets de notre environnement, etc.). L optique géométrique s intéressant au trajet de la lumière, la nature de la source n a pas d importance. Une source de lumière peut se décomposer en une infinité de sources ponctuelles émettant des rayons lumineux, apriori, dans toutes les directions de l espace. La figure 2.1 illustre quelques types de faisceaux issus d un point source. Source ponctuelle isotrope Source ponctuelle anisotrope Source ponctuelle à l infini igure 2.1 Quelques exemples de sources ponctuelles Système optique centré On appelle système optique centré tout système constitué d éléments transparents (dioptres) ou réfléchissants (miroirs) et possédant un axe de symétrie de révolution appelé axe optique. e système transforme un rayon lumineux incident en un rayon émergeant dans une direction, apriori di érente de la direction incidente. Si le rayon émergeant ressort par la face d entrée, on parle de système catadioptrique, sinon on parle de système dioptrique. Par la suite, tous les systèmes optiques seront considérés centrés. Stigmatisme onsidérons un point source envoyant des rayons lumineux sur un système optique. On dira que est un objet ponctuel réel. Le système est stigmatique si les rayons émergeant ou leurs prolongements se coupent tous en un même point. Deux cas de figure se présentent : 1. Les rayons émergeants convergent en un point. e point lumineux peut être enregistré sur une plaque photosensible sans nécessiter de système optique annexe. On dit qu il s agit d une image réelle. 2. Les rayons émergeants semblent provenir d un point (leurs prolongements se coupent en ). Dans ce cas, on ne peut pas capturer sur une plaque photosensible mais on peut le

HPITRE 2. LES MIROIRS 12 Objet réel Image réelle Objet réel Image virtuelle igure 2.2 ormation de l image d un objet ponctuel réel par un système optique stigmatique. voir à l œil nu : en e et, pour l œil, tout se passe comme s il y avait un point lumineux en de telle sorte que si l œil fait la mise au point en, un point lumineux sera produit sur la rétine. on dit que est une image virtuelle. ocalisons maintenant un faisceau sur un système optique de telle sorte que le point de convergence des rayons se trouve dans ou derrière le système (cf. ig. 2.3). Dans ce cas on dit que est un objet virtuel. Là encore, si les rayons émergeants ou leurs prolongements se coupent tous en un même point, on dira que le système est stigmatique. Objet virtuel Image réelle Objet virtuel Image virtuelle igure 2.3 ormation de l image d un objet ponctuel virtuel par un système optique stigmatique. Relation de conjugaison Lorsqu un système donne d un point objet une image, on dit qu il conjugue et ou que est le conjugué de. La relation de conjugaison est la relation mathématique qui relie la position de avec celle de : f(, Õ )=0 Pour schématiser le fait qu un système optique (SO) conjugue un objet et une image on écrit æ (SO) Exemples Mis à part le miroir plan que nous étudierons en détail dans la partie 2.2, il n existe pas de système optique rigoureusement stigmatique pour tout point. Par contre il est, en général, possible de trouver la forme que doit avoir un système optique pour conjuguer deux points particuliers. Par exemple, le miroir parabolique est rigoureusement stigmatique pour le couple (Œ,) : l image d un point à l infini sur l axe de révolution est le foyer de la surface parabolique. De même, l ellipse conjugue parfaitement ses deux foyers(cf. ig 2.4)

HPITRE 2. LES MIROIRS 13 miroir parabolique miroir elliptique igure 2.4 Exemples de stigmatisme rigoureux Grandissement longitudinal onsidérons un segment lumineux B sur l axe optique. L image est nécessairement un segment B sur l axe optique puisque la symétrie de révolution oblige tout rayon incident confondu avec l axe optique à sortir en restant sur l axe optique. On définit alors le grandissement longitudinal B B = B B 2.1.2 planétisme Un système optique est le plus souvent destiné à donner d un objet étendu une image la plus nette possible que l on peut recueillir sur un capteur généralement plan et perpendiculaire à l axe optique. ussi, il est souhaitable que l image d un objet plan soit également plane. planétisme Un système optique est aplanétique s il donne de tout objet lumineux situé dans un plan perpendiculaire à l axe optique une image plane également perpendiculaire à l axe optique. Le système optique présentant un axe de révolution, on peut étudier le système dans un plan contenant l axe optique. Dans ce cas il su t que l image d un segment droit soit un segment droit pour parler d aplanétisme. ependant le segment image n a pas nécessairement la même taille que le segment objet. On définit alors le grandissement transversal t : t, B B Si t > 1, l image est droite et agrandie. B B Si 0 < t < 1, l image est droite et rétrécie. Si 1 < t < 0, l image est renversée et rétrécie. Enfin, si t < 1, l image est renversée et agrandie.

HPITRE 2. LES MIROIRS 14 Remarque : La définition des grandissements fait intervenir des mesures algébriques ce qui suppose d orienter les axes. Les résultats ne dépendent pas du choix de cette orientation mais il est d usage d orienter l axe horizontal de gauche à droite (comme le sens de la lumière) et l axe vertical de bas en haut. 2.2 Le miroir plan Le miroir plan est une surface plane dont le pouvoir de réflexion est proche de 1. est le seul type de miroir qui soit rigoureusement stigmatique et aplanétique, comme nous allons le voir. 2.2.1 Stigmatisme onsidérons un point source envoyant des rayons lumineux sur un miroir plan. Une simple construction des rayons réfléchis montre que tous les rayons émergeants semblent provenir d un point, image virtuelle de. De la même manière, si l on inverse le sens de la lumière, on constate que l image d un objet virtuel placé en est une image réelle placée en. En résumé nous avons Miroir plan Objet réel æ Image virtuelle Miroir plan On Objet virtuel æ Image réelle voit donc sur ces deux exemples que le miroir est un système qui donne d un point objet lumineux un point image que l on peut, soit capturer directement sur un écran (image réelle), soit capturer à l aide d un système optique (œil, appareil photo, etc.). Le miroir plan est donc rigoureusement stigmatique. La relation de conjugaison qui lie la position de l objet à celle de l image associée s écrit H = H (2.1) où H est le projeté orthogonal de sur le miroir : L image de est le symétrique orthogonal de. 2.2.2 planétisme La symétrie orthogonale étant une isométrie, l image que donne un miroir plan conserve ses dimensions. Il n y a donc aucune déformation. Plus précisément, pour un objet B perpendiculaire à l axe optique, on a t = B B =1 et pour un objet B sur l axe optique, = B B = 1 Dans le cas du miroir, on a = 1 ce qui traduit l inversion gauche-droite.

HPITRE 2. LES MIROIRS 15 Gauche Û Droite Ù Droite Gauche igure 2.5 ormation d une image avec un miroir plan. L image est inversée (gauche/droite) mais pas renversée (haut/bas). 2.3 Le miroir sphérique dans l approximation de Gauss 2.3.1 Description (a) Miroir concave (b) Miroir convexe igure 2.6 Miroirs sphériques Un miroir sphérique est une calotte sphérique de centre et de sommet S rendue réfléchissante. L axe de symétrie est l axe optique du miroir. et axe est habituellement orienté de la gauche vers la droite car la lumière arrive de la gauche (par convention). On distingue deux types de miroirs sphériques : le miroir concave est un miroir sphérique tel que S < 0, le miroir convexe est un miroir sphérique tel que S > 0. Une simulation (cf. ig-2.7) du trajet des rayons provenant d un point situé à l infini sur l axe montre que les rayons réfléchis ne se coupent pas en un seul point : il n y a pas stigmatisme rigoureux! En revanche, si l on se limite aux rayons proches de l axe optique et de faible inclinaison par rapport à celui-ci (ces rayons sont dit paraxiaux), les rayons se coupent quasiment tous en un même point image : il y a stigmatisme approché. ela constitue l approximation de Gauss. De la même manière, on montre que si l on se limite aux rayons paraxiaux, l image d un segment droit est aussi un segment droit. insi, le miroir sphérique présente un aplanétisme approché.

HPITRE 2. LES MIROIRS 16 igure 2.7 onditions de stigmatisme approché : L image d un point est un point (ici un point à l infini sur l axe) si les rayons font des angles faibles et sont proches de l axe optique (rayons paraxiaux). pproximation de Gauss Si les rayons sont peu inclinés de l axe optique et peu écartés, on se trouve alors dans le cadre des conditions de Gauss. Dans ces conditions, on admettra que le miroir sphérique est aplanétique et stigmatique : L image d un segment droit est un segment droit. Remarque : Le miroir sphérique n est rigoureusement stigmatique que pour un point lumineux situé en (objet réel dans le cas du miroir concave et virtuel dans le cas convexe). En e et, tout rayon issu de est réfléchi en rebroussant chemin de telle sorte que l image de est lui même. 2.3.2 Notion de foyers Deux points jouent un rôle particulier dans tout système optique centré : le foyer objet et image. Définitions oyer image : l image d un point à l infini sur l axe est le foyer image. La distance focale image f Õ est la mesure algébrique S. oyer objet : un point à l infini sur l axe est l image du foyer objet. La distance focale objet f est la mesure algébrique S. Dans le cas des miroirs sphériques, le principe du retour inverse de la lumière implique = La position des foyers s obtient grâce aux relations de Descartes. Dans les conditions de Gauss, on montre que le foyer est le milieu de [S] : S = S = S 2 = f = f Õ (2.2) Démonstration Démontrons ce résultat dans le cas particulier du miroir concave.

HPITRE 2. LES MIROIRS 17 I y S Un rayon parallèle à l axe optique coupe l axe optique suite à la réflexion en I. Les lois de la réflexion permettent de montrer que le triangle I est isocèle et donc que : cos = R/2 = apple 1 sin 2 de plus, si l on note y la distance entre le rayon incident et l axe optique, on a insi, on a = sin = y R R Ò 2 1! y R ette formule montre que la position du foyer dépend de la position du rayon par rapport à l axe optique : ainsi le miroir sphérique n est pas rigoureusement stigmatique. Par contre, dans l approximation de Gauss, c est-à-dire pour y π R on obtient à l ordre 1 en y/r : est donc le milieux de [S]. " 2 = R 2 O( y 2 /R 2 ) 2.3.3 onstruction des rayons lumineux Pour construire les images d un objet étendu on obéira à ces quelques principes : On se placera dans l approximation de Gauss : il y a donc stigmatisme approché et aplanétisme approché. Pour trouver l image d un point il su t de considérer deux rayons issus de ce point ; tous les autres issus du même point passeront nécessairement par le point image. De plus, l image d un point sur l axe optique étant sur l axe optique, pour trouver l image d un objet droit vertical B ( est sur l axe optique et B est l extrémité de l objet) il su tde trouver B l image de B ; on sait alors que l image est B où est le projeté orthogonal de B sur l axe optique. vant toute chose il faut placer l objet. Si l objet B est réel, il est forcément à gauche du miroir (là où la lumière peut se propager) et les rayons sont issus de chaque point de l objet. Si l objet est virtuel, il se situe à droite du miroir et les rayons objets se dirigent vers l objet mais sont réfléchis avant d atteindre l objet. Pour trouver l image d un point il faut choisir des rayons dont on connait le comportement. un rayon horizontal arrivant sur un miroir sphérique convergera en s il est concave et divergera en semblant provenir de si le miroir est convexe.

HPITRE 2. LES MIROIRS 18 un rayon passant par (cas concave) ou dont le prolongement passe par (cas convexe) rebrousse chemin. un rayon arrivant en S est réfléchi de façon symétrique par rapport à l axe optique. Une fois les rayons tracés on détermine si l image est réelle ou virtuelle. Si les rayons issus de B se coupent e ectivement en B, alors B est une image réelle. On pourra la capturer sur un écran. Si les rayons issus de B divergent après réflexion en semblant provenir de B, alors B sera une image virtuelle visible à l œil nu mais que l on ne pourra pas capturer sur un écran. Les figures 2.9 et 2.8 montrent di érents cas de figure pour le miroir concave et convexe. Objet Image construction réel virtuelle rétrécie droite virtuelle virtuelle renversée virtuelle réelle agrandie droite igure 2.8 onstruction des images pour un miroir convexe.

HPITRE 2. LES MIROIRS 19 Objet Image construction réel réelle rétrécie renversée réel réelle agrandie renversée réel virtuelle agrandie droite virtuel réelle rétrécie droite igure 2.9 onstruction des images pour un miroir concave.

HPITRE 2. LES MIROIRS 20 2.3.4 ormule de conjugaison La formule de conjugaison est la relation qui relie la position objet avec la position de l image. On l obtient rigoureusement à l aide des lois de Descartes, mais on peut l obtenir à l aide de considérations géométriques (les notions de foyers objet et image étant admises). Pour cela nous allons calculer le grandissement transversal de deux manières di érentes. idons nous de la B S B igure 2.10 onstruction d image avec un miroir concave formation d une image réelle par un miroir concave ; les résultats se généraliseront à toutes les situations et pour tous les miroirs sphériques. La figure 2.10 permet d écrire, à l aide des formules de Thales, t = B B = S S = S = S On pose f Õ = S et f = S.Biensûrici,f = f Õ. Les formules du grandissement permettent d obtenir deux relations : Relation avec origine aux foyers (relation de Newton) : = ff Õ (2.3) En développant = S S et = S S, on obtient la relation avec origine au sommet : 1 S 1 S = 2 S = 1 f = 1 f Õ (2.4)