Proposition d un model hiérarchique et coopératif agent pour la segmentation d image

Dimension: px
Commencer à balayer dès la page:

Download "Proposition d un model hiérarchique et coopératif agent pour la segmentation d image"

Transcription

1 Proposition d un model hiérarchique et coopératif agent pour la segmentation d image Mansouri Ziad 1, Hayet Farida Merouani 1, 1 Département d informatique Laboratoire LRI/Equipe SRF Université Badji Mokhtar Annaba Algérie Mansouri Ziad, Hayet Farida Merouani, Résumé: Une nouvelle approche hybride de segmentation d images couleurs ou en niveau de gris est proposée dans ce travail. C est une approche hiérarchique et adaptative basée sur une coopération région-contour. La segmentation procède par l élaboration d un ensemble de régions et de contours initiaux qui vont être améliorés mutuellement et hiérarchiquement dans un environnement multi-agents offrant une vision à la fois globale et locale au processus de segmentation. Mots clés: segmentation, coopération région-contour, Color Structure Code, traitement d image. 1 Introduction La segmentation d images est une étape cruciale dans tout processus d analyse d image. Elle consiste à préparer l image afin de la rendre mieux exploitable par un processus automatique telle que l interprétation. L approche de segmentation par contour consiste à localiser les frontières des objets, et qui opère d une manière purement locale, complique donc la délimitation et la précision de ces objets. Les approches de segmentation par région quant à elles agissent en partitionnant l image en un ensemble de régions où chaque une désigne un ou plusieurs objets connexes, mais ils ont tendance à déformer les frontières naturelles des objets. Dans la pratique les meilleurs résultats de segmentation sont obtenus en combinant conjointement des méthodes distinctes. En faisant cela nous obtenons des approches hybrides plus solides et plus efficaces, car la limite d une méthode peut être surpassée par une autre, ou bien sa force peut être renforcée. Dans ce travail, on propose un système de segmentation qui offre une coopération région-contours au sein d un système multi agent. Notre objectif est de concevoir un système qui engendrera des résultats de bonne qualité pour la segmentation d images couleurs et en niveau de gris tout en ayant un temps d exécution acceptable. Notre approche de segmentation requiert l utilisation d une topologie hexagonale spéciale pour coder l image afin que nous puissions utiliser l algorithme de

2 segmentation région CSC qui sera présentée en 2. Le principe de cette segmentation est donné en section 3, en précisant le seuil adaptatif, la coopération contour-contour en 3.2, la coopération région-contour en 3.3 et la correction des régions en 3.4. La plate forme d agents est donnée en section 4. Quelques précisions concernant l implémentation sont données en section 5, on termine cet article par une conclusion et discussion. 2 Segmentation par Color Structure Code CSC est une méthode de segmentation par région, introduit par Rehrmann [12]. Son fonctionnement requiert l utilisation d une structure hexagonale hiérarchique pour coder l image. Initialement l image est découpé en un ensemble de petits ilots contenant chaqu un 7 pixels. Ces ilots initiaux se recouvrent où chaque deux ilots adjacents partagent un seul pixel. Avec cette structure chaque ilot a exactement 7 ilots voisins comme illustre la figure1 [3] suivante: Figure 1 : Structuration des pixels dans des îlots. Ces ilots initiaux forment le niveau 0 de la hiérarchie. Pour générer le niveau suivant on considère que les ilots initiaux sont des pixels et on réitère le processus. Donc chaque ilot de niveau 1 est formé par l assemblement de 7 ilots de niveau 0. Le processus est itéré de façons que chaque îlot de niveau n sera constitué de 7 ilots de niveau n-1 jusqu'à l obtention d un seul îlot qui englobe toute l image [3]. Figure 2 : les îlots de différents niveaux [3]

3 La problématique triviale de cette topologie hexagonale est que la plupart des outils d acquisition et d affichage des images adoptent une topologie orthogonale. Pour cela on propose de simuler une topologie hexagonale sur un grillage orthogonal, comme ce qui est résumé dans la figure 3 proposée par [6] : Figure 3 : adaptation de la topologie hexagonale sur une topologie orthogonale Généralement pour une image de taille : (2 mm + 1) (2 mm + 1) on aura m niveaux. Cette manière de grouper les zones de l image d une manière élégante et hiérarchiques facilite et encourage la répartition et le partage du processus de segmentation. Cette hiérarchie hexagonale va être utilisée par un processus de segmentation région Split & Merge utilisant le principe de croissance de régions dans les ilots initiaux comme on va décrire dans la section suivante où la méthode CSC procède en 3 étapes distinctes, à savoir l initialisation, le groupage et le découpage. 2.1 L initialisation Cette phase traite les îlots d niveau 0 seulement, elle consiste à appliquer dans chaque îlot un algorithme de croissance de régions, ceci va donner entre une et sept régions - de niveau 0- dans chaque îlot. Puisque ce processus traite les îlots d une manière indépendante, cette étape peut être exécutée en parallèle sur les différents îlots de niveau 0. Pour mesurer la similarité entre régions il est préférable d utiliser la représentation HSV des couleurs au lieu du RGB car il s accorde mieux au système visuel humain ce qui conduit à un meilleur résultat de segmentation. Les régions obtenues dans cette phase sont encapsulées dans des code-éléments (ou code-région). Un code-élément est une structure qui décrit une région ainsi que toutes les informations la concernant (couleur moyennes, taille,...etc.). Ainsi la phase d initialisation figure 4 [3], consiste à créer les code-éléments de niveau 0.

4 Figure 4 : Phase d initialisation 2.2 Le groupement Dans la phase d initialisation le processus de segmentation a eu une vision limitée aux ilots initiaux traité indépendamment, si on passe au niveau suivant on aura des ilots de niveau 1 qui englobent chaqu un 7 ilots de niveau 0 avec leurs code-elements respectifs. Donc on aura une vision plus globale qui nous permettra de fusionner les code-elements homogènes si nécessaire. Donc cette phase consiste à créer les code-elements des niveaux supérieurs à 0 comme suit : Dans chaque ilot de niveau n on génère les codes-éléments de niveau n en groupant les code-éléments de niveau n-1 qui sont à la fois connectés et similaires. La phase de groupement ressemble a la phase d initialisation, seulement elle ne groupe pas des pixels mais des sous régions indiquées par des code-éléments. Et la encore le processus peut être complètement parallèle pour chaque îlot de niveau n. Le résultat de cette étape est un ensemble d arbre de code-elements. Lorsqu un codeélément d un niveau quelconque i ne sera plus fusionné avec aucun autre codeélément de même niveau, alors ce dernier devient la racine d un arbre qui désigne une région proprement dite. Donc l image segmentée sera représentée par une liste de segments où chaque segment est désigné par une racine d un arbre de code-élément. Pour clarifier la structure de cet arbre on signale que chaque code-element a au maximum deux parents et un nombre n d enfants. Le fait de rechercher si deux codes éléments sont connectés devient une chose aisée avec l utilisation de la topologie hexagonale vu les îlots se recouvrent partiellement. Car deux code-éléments de niveau i sont connectés s ils ont au moins un code d éléments de niveau i-1 en commun (2 code-éléments de niveau 0 sont connectés s ils ont au moins un pixel en commun). Cette caractéristique offre plus de rapidité et moins de complexité, contrairement aux techniques split & merge qui utilisent des graphes d adjacences (temps de calcul, coût de MAJ,...etc.) [14].

5 Figure 5 : Phase de groupage 2.3 Le découpage Comme on peut le constater, le processus de segmentation est jusqu ici purement local, s il existe un groupe de pixels entre deux régions qui changent de couleurs finement entre-elle (le problème d enchaînement successif et aveugle des pixels voisins des méthodes locales) on peut fusionner ces deux régions même s ils ne sont pas assez homogènes. Dans ce cas on va avoir des petites sous régions homogènes, en les fusionnant on obtient une grande région non homogène. Ce problème dont souffre la plupart des méthodes de segmentation utilisant uniquement l information locale, peut être résolu en ajoutant une vision globale au résultat obtenue, afin de corriger toute fusion non adéquate. Ainsi, la phase de découpage opère simultanément avec la phase de groupement, en vérifiant le respect de similarité entre les différents code-éléments nouvellement connectés dans chaque niveau. Si la phase de groupement à mal grouper des codeéléments, créant ainsi un nouveau code-élément non homogène, alors la phase de découpage détecte automatiquement les sous code-éléments responsable et les privent de faire partie du code-éléments englobant (elle découpe ce dernier), ce qui donne une région homogène. On signale que découper deux code-éléments déjà connectés opère d une manière récursive dans toutes les parties communes de ces deux code-éléments. N oublions pas que dans l algorithme CSC tous les ilots s interposent (structure hexagonale), donc même si ces deux codes-éléments vont être séparés, ils auront quand même une zone commune. Ce qui nécessite qu on descend vers le niveau de cette zone commune et qu on la découpe elle aussi d une manière récursive jusqu au niveau des pixels. On peut conclure que la phase de découpage est couteuse en temps de calcule, mais fort heureusement pour nous qu elle ne s exécute que très rarement dans la pratique (en réalité, il y aura que des groupages et très peu de découpages). On peut améliorer le résultat de segmentation en changeant le seuil ou les critères d homogénéité dans chaque niveau. Par exemple les critères seront plus stricts dans les niveaux supérieurs qu au niveau inferieurs. La phase de découpage peut engendrer quelques problèmes dans certains cas très rares où on peut avoir des éléments non connexes (des régions disjointes), ou des régions vides. On peut corriger ces erreurs en ajoutant une phase de vérification qui

6 contrôle l état des régions après chaque découpage (dans notre système, l agent contrôleur s occupe de ça) [6]. Finalement, on peut remarquer que la méthode CSC avec son organisation hiérarchique et parallèle et sa vision locale et globale s adapte bien à un système multi-agent, d où notre choix s est porté sur elle. Pour avoir plus d information sur la structure des ilots et l implémentation de cette méthode consulter [13]. 3 Principe général de l approche de segmentation En partant du principe que les deux primitives régions et contours sont complémentaires et qu une coopération ou une coordination entre ces 2 approches peut combler les lacunes dont souffrent les méthodes de segmentation classiques, et en considérant que notre approche doit être adaptative au contenu de l image, on a constater que notre système de segmentation en se basant sur la structure hiérarchique imposée par la méthode CSC va nous permette de : D avoir des zones de focalisation (ou de traitement) : la segmentation ne va pas procéder dans toute l image aveuglement, mais l image va être découpée en plusieurs petites zones (les ilots dans chaque niveau), et le processus de segmentation consiste à créer des sous processus de segmentation dans chaque zone. D avoir une coopération mutuelle entre les contours et les régions dans chaque zone : dans notre système les contours évoluent de niveau en niveau en utilisant l information région dans chaque ilot et l information contours des ilots des niveaux inferieurs, mais les régions seront construites indépendamment par la méthode CSC, et à la fin une phase de raccordement des régions sur les contours finales sera lancée. D affiner la qualité de segmentation : puisque notre approche est hiérarchique, alors à chaque fois qu on monte vers un niveau supérieur on aura une vision plus globale (cela est dû au système des ilots hiérarchiques du CSC), et une coopération avec les contours et les régions trouvés dans les sous zones de la zone concernée avec les contours et les régions de cette zone englobante peut améliorer la segmentation comme on va détailler par la suite (fermeture de contours, aménagement des régions, changement de seuil, etc.). De pouvoir exécuter le processus de segmentation d une manière parallèle et distribuée, car une image peut être découpée en plusieurs parties où chaque une peut être affectée a un sous processus de segmentation, et a la fin on groupe le résultat (afin de pouvoir obtenir l ilot globale) pour obtenir l image segmentée finale. Cette vision peut être implémentée dans les systèmes ayant une architecture parallèle pour bénéficier de l accélération du traitement.

7 SSSSSS Notre approche repose sur 4 concepts, on va les détailler dans ce qui suit : 3.1 Seuil adaptatif des contours Pour détecter un contour nous avons utilisé le filtre de Deriche qui offre bonne précision et détection. Cependant et comme on l a cité plus haut, la détection d un contour se fait dans un ilot précis de niveau n. Alors le seuil choisi pour ce filtre afin de retenir les points de conteurs dépend de l état de l ilot dans lequel ce contour appartient [11]. L état d un ilot pour nous est désigné par le niveau d homogénéité des régions contenues dans cet ilot. Si un contour se retrouve dans un ilot contenant des régions très homogènes (couleurs proche), alors le contour peut être négligé afin de fusionner ces régions dans le futur (dans l ilot de niveau supérieur), donc pour ignorer le contour il faut augmenter le seuil. Si un contour se retrouve dans un ilot contenant des régions très hétérogènes, alors le contour doit être renforcé afin de bien distinguer les frontières des régions dans le futur, donc pour renforcer le contour il faut diminuer le seuil. On aura donc une relation linéaire entre le seuil des contours et le niveau d homogénéité des régions, et qui peut être donnée par la formule : Avec : α : constante définie par l application qui control le nombre de contours. β : variable qui contrôle le niveau de prise en compte de l homogénéité, dans les niveaux inferieurs β sera plus petit que dans les niveaux érieurs sup (l homogénéité de gros régions est plus significative que l homogénéité de petites régions). Pour calculer l homogénéité des régions dans un ilot on a choisie le calcul de la variance des couleurs moyennes des régions (code-éléments) où : 1 ssss VVVVVVVVVVVVVVVV 0 HHHHHHHHHHénnéiiiié = VVVVVVVVVVVVVVVV VVVVll MMMMMM ssss VVVVVVVVVVVVVVVV = 0 (22) Avec: VVVVll MMMMMM : une constante définie par l application qui définie l homogénéité maximale. Donc, avec un seuil dynamique, la détection des contours sera adaptative selon le contenue de l image.

8 3.2 La coopér ation contour -contour Initialement les contours initiaux (se situant sur des ilots de niveau 0) seront construits comme on a expliqué en choisissant un seuil spécifié, ensuite et au niveau suivant on aura un ilot englobant de niveau 1 contenant 7 ilot de niveau 0. Dans cet ilot on va recommencer le même processus (designer un nouveau seuil et créer une nouvelle carte de contours). Donc on aura une carte de contour de niveau 1 nouvellement créé, et 7 sous-cartes de contours résultant des 7 sous ilots de niveau 0. Une coopération contour-contour se fasse entre les différentes cartes de contours des deux niveaux afin de mieux suivre et fermer les contours comme illustre la figure 6. On signale que les cartes de contours de différents niveaux ne seront pas nécessairement les mêmes vu que les seuils utilisés pour les calculer diffèrent d un niveau a l autre car l homogénéité change assurément. Figure 6 : coopération des contours Ce processus de négociation entre les contours se poursuit de niveau en niveau jusqu au dernier où on obtient la carte de contour finale. 3.3 La coopér ation région-contour (les contours utilisent les régions) Deux cas se présentent : Si un contour est inclut dans une région (c est à dire tous les points du contour sont dans la zone de la région) et que ce contour n a pas évolué (changer de taille) depuis au moins 2 niveaux de la hiérarchie malgré que la région englobante a amplifié, alors ce contour sera supprimé car il s agit d un faux contour ou d un contour négligeable. Si un contour se situe entre 2 régions distinctes, alors en coopérant avec les deux régions avoisinantes il peut se complété en suivant les frontières des deux régions.

9 On signale que cette coopération ne ce produit que dans les niveaux supérieurs de la hiérarchie où les régions serons assez grande, car si on procède par compléter les contours dans les niveaux inferieurs on aura plus de faux contours et la performance de la coopération contours-contours sera diminuée 3.4 Cor r ection des régions Figure 7 : coopération contours-régions La segmentation par CSC donne parfois des objets ayant des contours qui ne collent pas bien avec les frontières exactes des objets (elle fusionne des parties des objets avoisinantes), mais avec une coopération contour on peut corriger cela on coupant les régions pour leur donner un contour plus naturel. Ce processus de découpage produit de nouveaux régions sur les frontières des objets qui doivent être fusionnés avec les régions avoisinantes de l autre coté comme illustre la figure 8. Donc pour avoir une bonne segmentation on doit fusionner ces petites régions avec leurs régions correspondantes après leurs découpages (une coopération régionrégion). On signale que la phase de correction des régions ne s applique qu à la fin du processus de segmentation quand toutes les régions et les contours seront définis car le découpage d une région de niveau inferieur est très couteux en temps de calcule et ça nous donne rien de meilleur de diviser une centaine de sous régions vu que le résultat sera le même.

10 Figure 8 : correction des régions 4 La plate forme d agents La plateforme d agents proposée est constituée de 4 types d agent: l agent région, l agent contours, l agent coordinateur et l agent contrôleur. 1. L agent région : représente une région (chaque agent région pour chaque racine d un arbre de code-élément), il gère les informations de sa région (sa taille, son homogénéité, sa forme, etc.), ainsi que la coopération avec les contours via l agent coordinateur. 2. L agent contours : représente une carte de contours dans un ilot définie, il gère la communication et la coopération avec les autres cartes de contours des niveaux supérieurs et inferieurs ainsi que la coopération avec les régions. 3. L agent coordinateur : coordonne et arrange les transactions entre les agents contours et régions. Il fait les calcules concernant le seuil des contours et l homogénéité des régions. Pour chaque ilot on aura un seul agent coordinateur. 4. L agent contrôleur : qui vérifier progressivement le résultat et la qualité du processus de segmentation (si une incohérence se produit, il l a détecte et tente de la corriger en communicant avec les agents contours et régions). On aura un seul agent contrôleur par niveau.

11 Figure 9 : Principe du système de segmentation à travers l évolution d un ilot Agent contrôleur du niveau L+1 Agent coordinateur Agent région Un ilot de niveau L+1 Agent contours Coopération contourcontour inter-niveau Le niveau L+1 Agent coordinateur n Agent coordinateur 1 Définir le seuil Coopération région contour Intra-niveau Agent Région Agent Contours Agent Région Agent Contours Îlot n Îlot 1 Agent contrôleur du niveau L Le niveau L Figure 10 : les interactions entre les agents

12 5 Implémentation Nous avons implémenté en JAVA la méthode CSC ainsi que l algorithme de détection de contours de Deriche. On a utilisé JADE de FIPA pour implémenter notre SMA, mais nous n avons pas encore réalisé toutes les types de coopérations cités. On a comparé notre système incomplet (prototype) avec les méthodes de segmentation par histogramme, et par split & merge, et il était clair que le résultat de segmentation de notre système est bien meilleur. Donc, en attendant l achèvement de notre SMA, l étape de comparaison et d estimation de la qualité de l approche est à prévoir dans un futur proche. 6 CONCLUSION Figure 11 : Segmentation par notre système (incomplet). L architecture basée agents présentée offre une flexibilité et une adaptabilité supérieure à la plupart des méthodes de segmentation classique, elle exploite le maximum d information en combinant les deux approches région et contour profitant ainsi des avantages de chacune d elles, et donne une vision locale et globale appuyée par un environnement hiérarchique et coopératif, cette manière de faire comble les lacunes de ces deux approches.

13 References 1. T. Acharya, Ajoy K. Ray, "Image Processing, Principles and Applications", ouvrage, "A Wiley-Interscience Publication", chapitre Z. AI Aghbari, R. AI-Haj, "Hill-manipulation: An effective algorithm for color image segmentation", Département d'informatique, université de Sharjah, Emirates, J.C Baillie, 2003, "Segmentation", Cours Traitement d'image et Vision Artificielle. 4. A. Chehikian, "Image segmentation by contours and regions cooperation", Laboratoire des Images et des Signaux, Institut National Polytechnique de Grenoble et l'université Joseph Fourier Grenoble, INPG, Grenoble Cedex, France, H.D. Cheng, X.H. Jiang, Y.Sun, Jingli Wang, "Color image segmentation: advances and prospects", Département d'informatique, Utah state university, USA, Gy. Dorko, D. Paulus, U. Ahlrichs. Color segmentation for scene exploration. Université d Erlangen-Nurenberg, Institut d informatique. 7. J. Lecoeur, C. Barillot, "Segmentation d images cérébrales : État de l art", Théme BIO Systèmes biologiques, Projet VisAGeS Rapport de recherche n 6306 Juillet Z. Mansouri, F. H. Merouani, Un modèle d interaction multi-agents région-contour pour la segmentation d images, Conférence JSIA 2009-Guelma-Algérie. 9. [Moghaddamzadeh, 1996] A. Moghaddamzadeh, N. Bourbakis, "A Fuzzy Region Growing Approch For Segmentation Of Color Images", Departement de EE, AAAI Lab, université de Binghamton, Binghamton, USA, O. Monga, "Segmentation d images : ou en somme nous?" Support de cours pour le congres PIXIM E. Navon, O. Miller, A. Averbuch, "Color image segmentation based on adaptative local thresholds", Département d'informatique, université de Tel-Aviv 69978, Israel, L. Priese, V. Rehrmann, A Fast Hybride Color Segmentation Method, Institut d informatique, Université de Koblenz-Landau, Rheinau 1, D Koblenz, Allemagne. 13. L. Priese, V. Rehrmann. Introduction to the Color Structure Code and its Implementation, V. Rehrmann, L.Priese. Fast and Robust Segmentation of Natural Color Scenes, Image Recognition Lab, Université de Koblenz-Landau. Rheinau 1, Koblenz. Allemagne. 15. A. Tremeau, N. Borel, "A region growing and merging algorithm to color segmentation", Institut d'ingénierie de la vision, Saint-Etienne, France, D. Zugai, V.Lattuati, "A new approach of color images segmentation based on fusing region and edge segmentation outputs", Laboratoire d'automatique des arts et métiers/laam, F Paris, France, 1997.

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Use Cases. Introduction

Use Cases. Introduction Use Cases Introduction Avant d aborder la définition et la conception des UC il est bon de positionner le concept du UC au sein du processus de développement. Le Processus de développement utilisé ici

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Les graphes planaires

Les graphes planaires Les graphes planaires Complément au chapitre 2 «Les villas du Bellevue» Dans le chapitre «Les villas du Bellevue», Manori donne la définition suivante à Sébastien. Définition Un graphe est «planaire» si

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

IVRG Image and Visual Representation Group

IVRG Image and Visual Representation Group IVRG Image and Visual Representation Group Projet en Digital Photography Responsable : Patrick Vandewalle Sylvain PASINI Bertrand GRANDGEORGE le 2 juin 2003 Table des matières Table des matières 2 1. Introduction

Plus en détail

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium dans le cadre du projet JASMINe Avril 2008 Table des matières 1 Introduction 3 1.1 Rappel sur JASMINe.......................................

Plus en détail

Chargement de processus Allocation contigüe Allocation fragmentée Gestion de pages. Gestion mémoire. Julien Forget

Chargement de processus Allocation contigüe Allocation fragmentée Gestion de pages. Gestion mémoire. Julien Forget Julien Forget Université Lille 1 École Polytechnique Universitaire de Lille Cité Scientifique 59655 Villeneuve d Ascq GIS 3 2011-2012 1 / 46 Rôle du gestionnaire de mémoire Le gestionnaire de mémoire a

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Projet ESINSA 5 TRAITEMENT D IMAGE. Active Contours without Edges for Vector-Valued Images. Par Nicolas Brossier et Cyril Cassisa

Projet ESINSA 5 TRAITEMENT D IMAGE. Active Contours without Edges for Vector-Valued Images. Par Nicolas Brossier et Cyril Cassisa Projet ESINSA 5 TRAITEMENT D IMAGE Active Contours without Edges for Vector-Valued Images Par Nicolas Brossier et Cyril Cassisa Page 1 sur 14 Abstract Pour ce projet, nous implémentons un algorithme de

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Les systèmes RAID Architecture des ordinateurs

Les systèmes RAID Architecture des ordinateurs METAIS Cédric 2 ème année Informatique et réseaux Les systèmes RAID Architecture des ordinateurs Cédric METAIS ISMRa - 1 - LES DIFFERENTS SYSTEMES RAID SOMMAIRE INTRODUCTION I LES DIFFERENTS RAID I.1 Le

Plus en détail

RAPPORT DE CONCEPTION UML :

RAPPORT DE CONCEPTION UML : Carlo Abi Chahine Sylvain Archenault Yves Houpert Martine Wang RAPPORT DE CONCEPTION UML : Bamboo Ch@t Projet GM4 Juin 2006 Table des matières 1 Introduction 2 2 Présentation du logiciel 3 2.1 Précisions

Plus en détail

Méthode de tests MODE D EMPLOI POINTS IMPORTANTS

Méthode de tests MODE D EMPLOI POINTS IMPORTANTS Méthode de tests MODE D EMPLOI Cette première partie est destinée à ceux qui débutent en tests et permet une approche progressive et simple de la méthodologie des tests. L introduction vous aura permis

Plus en détail

Bibliothèque de Traitement d Images en Niveaux de Gris

Bibliothèque de Traitement d Images en Niveaux de Gris TP Bibliothèque de Traitement d Images en Niveaux de Gris Étudiants : Besnier Alexandre Taforeau Julien Version 1.2 Janvier 2008 2008 Rapport TP - Version 1.2 i Table des matières Introduction 1 1 Objectif

Plus en détail

Système de Gestion de Fichiers

Système de Gestion de Fichiers Chapitre 2 Système de Gestion de Fichiers Le système de gestion de fichiers est un outil de manipulation des fichiers et de la structure d arborescence des fichiers sur disque et a aussi le rôle sous UNIX

Plus en détail

INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES

INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES Les contenus de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Analyse d images numériques en microscopie

Analyse d images numériques en microscopie Analyse d images numériques en microscopie Yves Usson Reconnaissance et Microscopie Quantitative, Laboratoire TIMC UMR5525 CNRS Institut d Ingénierie et d Information de Santé (IN3S), La Tronche Traitement

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Evolution d un scénario dans l expérience e-colab EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Cadre général Groupe e-colab au sein de l INRP Collaboration

Plus en détail

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES Nathalie GORRETTA MONTEIRO 1 1 UMR Information et Technologies pour les Agro-Procédés, Cemagref Montpellier, France Présentée le 25 Février

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Modélisation des Systèmes d Information Jean-Yves Antoine

Modélisation des Systèmes d Information Jean-Yves Antoine Modélisation des Systèmes d Information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine Processus de développement logiciel Jean-Yves Antoine U. Bretagne Sud - UFR SSI - IUP Vannes année 2001-2002

Plus en détail

Présentation du PL/SQL

Présentation du PL/SQL I Présentation du PL/ Copyright Oracle Corporation, 1998. All rights reserved. Objectifs du Cours A la fin de ce chapitre, vous saurez : Décrire l intéret du PL/ Décrire l utilisation du PL/ pour le développeur

Plus en détail

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Résumé de PFE PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Introduction Dans le domaine de la robotique, la robotique

Plus en détail

Plan d Action sur la Gouvernance d Entreprise

Plan d Action sur la Gouvernance d Entreprise Plan d Action sur la Gouvernance d Entreprise 3 mars La Salle de Conférence Centre Panafricain Ecobank 2365 Boulevard du Mono Lomé Togo 3443_GRP_EX_AGM_NOTICE_275x190mm_FR.indd 2 11/02/ 10:04 Proposition

Plus en détail

Bienvenue dans le monde de la construction logicielle

Bienvenue dans le monde de la construction logicielle Chapitre 1 Bienvenue dans le monde de la construction logicielle Sommaire : 1.1 La construction logicielle, qu est-ce que c est? : page 3 1.2 Pourquoi la construction logicielle est-elle importante? :

Plus en détail

Rapport d activité. Mathieu Souchaud Juin 2007

Rapport d activité. Mathieu Souchaud Juin 2007 Rapport d activité Mathieu Souchaud Juin 2007 Ce document fait la synthèse des réalisations accomplies durant les sept premiers mois de ma mission (de novembre 2006 à juin 2007) au sein de l équipe ScAlApplix

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Vérification du bâti à partir de la disparité de points de contour

Vérification du bâti à partir de la disparité de points de contour Vérification du bâti à partir de la disparité de points de contour Charles Beumier Signal and Image Centre (Prof. Marc Acheroy) Ecole royale militaire Bruxelles, Belgique 8 Jan 29, Paris-Tech 1 Vérification

Plus en détail

Meeting Room : An Interactive Systems Laboratories Project

Meeting Room : An Interactive Systems Laboratories Project Travail de Séminaire DIVA Research Group University of Fribourg Etude de Projets Actuels sur l enregistrement et l analyse de Réunions Meeting Room : An Interactive Systems Laboratories Project Canergie

Plus en détail

INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES

INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES Les contenus de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et

Plus en détail

Projet : Plan Assurance Qualité

Projet : Plan Assurance Qualité Projet : Document : Plan Assurance Qualité 2UP_SPEC_DEV1 VERSION 1.00 Objet Ce document a pour objectif de définir la démarche d analyse et de conception objet ainsi les activités liées. Auteur Eric PAPET

Plus en détail

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Optimisation : pipeline jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture des

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

Cartographie de mots : application à la visualisation de noms de marque

Cartographie de mots : application à la visualisation de noms de marque Université Montpellier II UFR Fac des Sciences Master 1 Informatique Université Montpellier II UFR Fac des Sciences Master 1 Informatique Cartographie de mots : application à la visualisation de noms de

Plus en détail

CSCW : une Bibliographie

CSCW : une Bibliographie CSCW : une Bibliographie 1 Si Vous êtes pressés 2 Objectif bibliographie de CSCW + documentation de notre démarche : support de la création d applications CSCW par le Model Driven Engineering La mobilité

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

Profil du candidat et connaissances techniques à connaître/maîtriser

Profil du candidat et connaissances techniques à connaître/maîtriser Utilisation d algorithmes de deep learning pour la reconnaissance d iris. jonathan.milgram@morpho.com Dans ce cadre, l'unité de recherche et technologie a pour but de maintenir le leadership Au sein de

Plus en détail

Gé nié Logiciél Livré Blanc

Gé nié Logiciél Livré Blanc Gé nié Logiciél Livré Blanc Version 0.2 26 Octobre 2011 Xavier Blanc Xavier.Blanc@labri.fr Partie I : Les Bases Sans donner des définitions trop rigoureuses, il faut bien commencer ce livre par énoncer

Plus en détail

Cameleon. Cameleon au cœur de la stratégie de croissance des entreprises de service

Cameleon. Cameleon au cœur de la stratégie de croissance des entreprises de service Cameleon Cameleon au cœur de la stratégie de croissance des entreprises de service AUGMENTEZ vos performances marketing Les entreprises de service sont soumises à de multiples enjeux ayant des conséquences

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

SERVICES RELATIFS A L EXPLOITATION DE RESEAUX DE TELECOMMUNICATIONS (Terrestres et satellitaires)

SERVICES RELATIFS A L EXPLOITATION DE RESEAUX DE TELECOMMUNICATIONS (Terrestres et satellitaires) PROBLEMATIQUE - L APPROCHE JADE Telecom L exploitation de réseaux de télécommunications implique pour les entreprises la prise en compte de différents points importants : La mise en place de personnel

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Ingénerie du logiciel orienté objet. Les cas d utilisation

Ingénerie du logiciel orienté objet. Les cas d utilisation Ingénerie du logiciel orienté objet Répétition : Les cas d utilisation Cours d Ingénierie du Logiciel Orienté-Objet Examen écrit du mercredi 5 juin 2005 Livres fermés. Durée : 3 heures /2. Veuillez répondre

Plus en détail

Guide de l apprentissage mixte Questions de suivi

Guide de l apprentissage mixte Questions de suivi Guide de l apprentissage mixte Questions de suivi Le processus consiste à aider les conseillers à fournir des ateliers par étapes successives (ou mise à niveau). Ceci peut s effectuer de différentes manières,

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Projet 2009 2010 Biométrie 3D PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Département : TIC Mots clés : Biométrie, Analyse d images, Vision, Caméra thermique, Caméra temps de vol, Détection

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

Projet Informatique. Philippe Collet. Licence 3 Informatique S5 2014-2015. http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415

Projet Informatique. Philippe Collet. Licence 3 Informatique S5 2014-2015. http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415 Projet Informatique Philippe Collet Licence 3 Informatique S5 2014-2015 http://deptinfo.unice.fr/twiki/bin/view/linfo/projetinfo201415 Réalisation d'un développement de taille conséquente? r Firefox? Ph.

Plus en détail

L ORGANISATION COMMERCIALE

L ORGANISATION COMMERCIALE L ORGANISATION COMMERCIALE I. Les structures commerciales L équipe commerciale est définie, au sens large du terme, comme l ensemble des acteurs intervenant dans le processus de vente. Organiser l équipe

Plus en détail

Routage Grande Vitesse des Cartes Electroniques

Routage Grande Vitesse des Cartes Electroniques Routage Grande Vitesse des Cartes Electroniques Roberto Reyna 1, aniela ragomirescu 2,3 1-Freescale Toulouse 2 - Université de Toulouse : INSA Toulouse, 135 Av. de Rangueil Toulouse cedex 4 3-LAAS-CNRS

Plus en détail

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006 Rapport de Stage Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees (15 janvier - 15juillet 2006 15 avril - 15 juillet 2007) Effectué au sein du laboratoire MAP-ARIA

Plus en détail

Analyse d images introduction

Analyse d images introduction L3, option Image Analyse d images introduction http ://perception.inrialpes.fr/people/boyer/teaching/l3/ Elise Arnaud - Edmond Boyer Université Joseph Fourier / INRIA Rhône-Alpes elise.arnaud@inrialpes.fr

Plus en détail

Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques

Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques NATIONS UNIES BES IPBES/3/L.8 Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques Distr. : limitée 17 janvier 2015 Français Original : anglais Plénière

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

Module ITC34 - Algorithmique et Programmation

Module ITC34 - Algorithmique et Programmation Module ITC34 - Algorithmique et Programmation TDs Algorithmique (trois séances) Benoît Darties - benoit.darties@u-bourgogne.fr Univ. Bourgogne Franche-Comté Année universitaire 2015-2016 Avant-propos :

Plus en détail

Autostabilisation. de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque

Autostabilisation. de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque : de l exclusion mutuelle sur un anneau à l élection d un chef sur un graphe quelconque Laboratoire d Informatique Fondamentale d Orléans, Université d Orléans, Orléans, FRANCE JIRC 30 juin 2005 Blois

Plus en détail

Utilisation du Numérique pour l Enseignement et l Evaluation des Compétences à l Université

Utilisation du Numérique pour l Enseignement et l Evaluation des Compétences à l Université 1er Colloque International sur l Usage du Numérique dans l Enseignement Supérieur Utilisation du Numérique pour l Enseignement et l Evaluation des Compétences à l Université Farida Bouarab-Dahmani Maitre

Plus en détail

RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005

RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005 Oussama ELKACHOINDI Wajdi MEHENNI RAPPORT DU PREMIER MINI PROJET «FORUM DE CHAT» Novembre 2005 Sommaire I. Préliminaire : Notice d exécution et mode opératoire...4 II. Architecture globale de l application...5

Plus en détail

Introduction à Windows Workflow Foundation

Introduction à Windows Workflow Foundation Introduction à Windows Workflow Foundation Version 1.1 Auteur : Mathieu HOLLEBECQ Co-auteur : James RAVAILLE http://blogs.dotnet-france.com/jamesr 2 Introduction à Windows Workflow Foundation [07/01/2009]

Plus en détail

Design Patterns. Pourquoi utiliser des patterns? Pourquoi utiliser des patterns? Les patterns vue de loin. D où viennent les design patterns?

Design Patterns. Pourquoi utiliser des patterns? Pourquoi utiliser des patterns? Les patterns vue de loin. D où viennent les design patterns? Noël NOVELLI ; Université de la Méditerranée ; LIF et Département d Informatique Case 901 ; 163 avenue de Luminy 13 288 MARSEILLE cedex 9 Design Patterns D où viennent les design patterns? D où viennent

Plus en détail

Polytechnique. Épreuve d Informatique 1998

Polytechnique. Épreuve d Informatique 1998 Polytechnique Épreuve d Informatique 1998 Corrigé rédigé par Martine Lannaud, Lycée Chaptal, Paris Pour toute remarque ou correction martine.lannaud@prepas.org Motifs et automates Question 1. Quelques

Plus en détail

Introduction aux Composants Logiciels

Introduction aux Composants Logiciels Introduction aux Composants Logiciels Christian Pérez LIP/INRIA Année 2010-11 Plan Introduction aux composants logiciels Pourquoi des composants logiciels Notions de composants logiciels Conclusion Survol

Plus en détail

PRIMAVERA RISK ANALYSIS

PRIMAVERA RISK ANALYSIS PRIMAVERA RISK ANALYSIS PRINCIPALES FONCTIONNALITÉS Guide d analyse des risques Vérification de planning Modélisation rapide des risques Assistant de registres de risques Registre de risques Analyse de

Plus en détail

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Normes d audit internes (Exercices + corrigés)

Normes d audit internes (Exercices + corrigés) A Exercices Normes d audit internes (Exercices + corrigés) 1 Le comité d audit est le plus susceptible de participer à l approbation A Des promotions et augmentations de salaire des auditeurs B Des observations

Plus en détail

Système D Indexation et de Recherche d Images par le contenu

Système D Indexation et de Recherche d Images par le contenu Système D Indexation et de Recherche d Images par le contenu 1 Houaria ABED, 1 Lynda ZAOUI Laboratoire : Systèmes, Signaux, Données Département Informatique, Faculté des Sciences Université des Sciences

Plus en détail

DRS. Donnez des Capacités à Votre Serveur d Impression d Entreprise. Distributeur exclusif de la gamme des logiciels Levi, Ray & Shoup, Inc.

DRS. Donnez des Capacités à Votre Serveur d Impression d Entreprise. Distributeur exclusif de la gamme des logiciels Levi, Ray & Shoup, Inc. DRS Donnez des Capacités à Votre Serveur d Impression d Entreprise Distributeur exclusif de la gamme des logiciels Levi, Ray & Shoup, Inc. Les documents les plus importants de votre entreprise sont issus

Plus en détail

ACE-PTM 2.1 Guide de l utilisateur. À l intention des utilisateurs. 2011 Hospitalis - Tous droits réservés. Version 2.4.

ACE-PTM 2.1 Guide de l utilisateur. À l intention des utilisateurs. 2011 Hospitalis - Tous droits réservés. Version 2.4. ACE-PTM 2.1 Guide de l utilisateur À l intention des utilisateurs Version 2.4 16 Septembre 2014 2011 Hospitalis - Tous droits réservés 2011 Hospitalis - Tous droits réservés 1 Table des matières 1 INTRODUCTION...

Plus en détail

Figure 3.1- Lancement du Gambit

Figure 3.1- Lancement du Gambit 3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Méthodologies de développement de logiciels de gestion

Méthodologies de développement de logiciels de gestion Méthodologies de développement de logiciels de gestion Chapitre 5 Traits caractéristiques des deux approches de méthodologie Présentation réalisée par P.-A. Sunier Professeur à la HE-Arc de Neuchâtel http://lgl.isnetne.ch

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Cours de numérisation sur Epson Perfection

Cours de numérisation sur Epson Perfection Cours de numérisation sur Epson Perfection 1- Vérifiez la propreté de la vitre, placez l original sur celle-ci. À savoir, on peut numériser des transparents avec ce scanner ; il a un capteur CCD dans le

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

Le «thread local storage» et son utilisation

Le «thread local storage» et son utilisation Résumé Les allocations mémoire sont généralement plus coûteuses que d ordinaire en environnement multi-thread. En effet, la majorité des algorithmes d allocation en usage dans les systèmes d exploitation

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Description et illustration du processus unifié

Description et illustration du processus unifié USDP Description et illustration du processus unifié Définit un enchaînement d activités Est réalisé par un ensemble de travailleurs Avec des rôles, des métiers Avec pour objectifs de passer des besoins

Plus en détail

DÉPLOIEMENT D UN ERP. Cours dispensé pour les L3 MSI Elaboré par : Mehdi M tir 2013/2014 Chapitre 3 : Modélisation des besoins

DÉPLOIEMENT D UN ERP. Cours dispensé pour les L3 MSI Elaboré par : Mehdi M tir 2013/2014 Chapitre 3 : Modélisation des besoins 1 DÉPLOIEMENT D UN ERP Cours dispensé pour les L3 MSI Elaboré par : Mehdi M tir 2013/2014 Chapitre 3 : Modélisation des besoins LA CONDUITE D UN PROJET ERP La conduite d un projet d ERP est différente

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Analyse de la démographie des objets dans les systèmes Java temps-réel

Analyse de la démographie des objets dans les systèmes Java temps-réel Analyse de la démographie des objets dans les systèmes Java temps-réel Nicolas BERTHIER Laboratoire VERIMAG Responsables du stage : Christophe RIPPERT et Guillaume SALAGNAC le 29 septembre 26 1 Introduction

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs

5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs 5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs PLAN 5.3.1 Définition et utilité 5.3.2 Détourage Hypothèses Principe Traitements automatiques/manuels Règlages

Plus en détail

API08 : Evaluation ergonomique d une IHM

API08 : Evaluation ergonomique d une IHM API08 : Evaluation d une IHM Résumé Twitter : les aspects positifs et négatifs de l interface Web par Ewan C. BURNS L objectif de ce document est de proposer une évaluation de l IHM web proposée par Twitter.

Plus en détail

Morgan Beau Nicolas Courazier

Morgan Beau Nicolas Courazier EPSI - 2010 Rapport projet IA Conception et mise en œuvre d un générateur de systèmes experts Morgan Beau Sommaire Cahier des charges 3 Présentation générale 4 Analyse et modélisation 6 Le moteur d inférence

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail