Apprentissage Statistique
|
|
|
- Carole Piché
- il y a 10 ans
- Total affichages :
Transcription
1 Apprentissage Statistique Master DAC - Université Paris 6, [email protected], Année Partie 1
2 Introduction
3 Apprentissage Automatique Problématique : Nous souhaitons avoir des ordinateurs intelligents adaptatifs avec un comportement robuste Programmer de tels comportement est souvent impossible Par exemple : Intelligence artificielle dans les jeux (scripts) Solution : Faire un ordinateur capable de se programmer lui-m^eme a partir d'exemples (apprentissage classique / par imitation) a partir de son "experience" (apprentissage par renforcement) 3
4 Exemple 4
5 Exemple 5
6 Exemple 6
7 Exemple 7
8 Exemple 8
9 Exemple 9
10 Exemple 10
11 Quand utiliser l apprentissage Il n'y a pas d'expert humain L'utilisation d'un expert humain est trop couteuse ou trop peu performante La quantité de données est telle qu'une analyse manuelle est impossible Les données évoluent rapidement dans le temps Les modelés doivent être adaptes a l'utilisateur Les systèmes doivent s'adapter facilement a des conditions opérationnelles différentes 11
12 Apprentissage à partir d'exemples 3 ingrédients de base Données {z 1,..., z N } Machine F θ Critère C (apprentissage et évaluation) But Extraire de l'information à partir des données Information pertinente pour la tâche étudiée pour d'autres données du même type Utilisation Inférence sur de nouvelles données Type d'apprentissage : Supervisé Non supervisé Semi supervisé Renforcement 12
13 Exemples - problèmes d'apprentissage Parole / Ecriture Données : (signal, (transcription)) But : reconnaître signal Critère : # mots correctement reconnus Conduite véhicule autonome Données : (images routes, (commande volant)) e.g. S. Thrun Darpa Challenge + Google car But : suivre route Critère : distance parcourue Recherche d'information textuelle Données : (texte + requête, (information pertinente)) corpus d apprentissage But : extraire l'information correspondant à la requête Critère : Rappel / Précision Diagnostic dans systèmes complexes Données : (état capteurs + alarmes, (diagnostic)) But : diagnostic correct Critère :? 13
14 Exemples - problèmes d'apprentissage Modélisation d'utilisateur Données : (Traces utilisateur) But : analyser/ modéliser le comportement de l'utilisateur Exemples : ciblage clientèle, aide navigation, publicité, recommandation, assistants personnels e.g. Google now Critère :? Evaluation :? Example Google Now Google Now keeps track of searches, calendar events, locations, and travel patterns. It then synthesizes all that info and alerts you either through notifications in the menu bar or cards on the search screen of transit alerts for your commute, box scores for your favorite sports team, nearby watering holes, and more. You can assume it will someday suggesta lot more. 14
15 Exemples - problèmes d'apprentissage Plus difficile : Traduction Extraction d information (e.g. Never-Ending Language/ Image Learning) Compréhension de texte / scène visuelle extraction de sens Découverte dans bases de données ou bases de connaissances... Données : i.e. représenter l'information?? But?? Critère?? Evaluation?? 15
16 Données : diversité 16
17 Données: quantités Yahoo! Data A league of its own U. Fayyad KDD 07 Millions of Events Processed Per Day Terrabytes of Warehoused Data 14,000 5, , ,000 SABRE VISA NYSE Y! Panama Y! Data Highway Amazon Korea Telecom AT&T Y! LiveStor Y! Panama Warehouse Walmart Y! Main warehouse GRAND CHALLENGE PROBLEMS OF DATA PROCESSING TRAVEL, CREDIT CARD PROCESSING, STOCK EXCHANGE, RETAIL, INTERNET Y! PROBLEM EXCEEDS OTHERS BY 2 ORDERS OF MAGNITUDE 17
18 Données: quantités Petabytes(10^15) (chiffres 2012) Google processes about 24 petabytes of data per day Google Street View Has Snapped 20 Petabytes of Street Photos Telecoms: AT&T transfers about 30 petabytes of data through its networks each day Physics: The experiments in the Large Hadron Collider produce about 15 petabytes of data per year Neurology: It is estimated that the human brain's ability to store memories is equivalent to about 2.5 petabytes of binary data 18
19 BigData: Volume, Velocity, Variety, and Veracity Volume: terabytes, petabytes Turn 12 terabytes of Tweets created each day into improved product sentiment analysis Convert 350 billion annual meter readings to better predict power consumption Velocity: streams Scrutinize 5 million trade events created each day to identify potential fraud Analyze 500 million daily call detail records in real-time to predict customer churn faster Variety: Big data is any type of data - structured and unstructured data such as text, sensor data, audio, video, click streams, log files and more. New insights are found when analyzing these data types together. Monitor 100 s of live video feeds from surveillance cameras to target points of interest Exploit the 80% data growth in images, video and documents to improve customer satisfaction Veracity: Establishing trust in big data presents a huge challenge as the variety and number of sources grows. 19
20 Gartner Hype Cycle: Big Data 20
21 21
22 Data science (Wikipedia 2013) Data science incorporates varying elements and builds on techniques and theories from many fields, including mathematics,statistics,data engineering,pattern recognition and learning,advanced computing,visualization,uncertainty modeling,data warehousing, and high performance computing with the goal of extracting meaning from data and creating data products...data science seeks to use all available and relevant data to effectively tell a story. Data science is the practice of deriving valuable insights from data. Data science is emerging to meet the challenges of processing very large data sets i.e. "Big Data" consisting of structured, unstructured or semistructured data that large enterprises produce. A domain at center stage of data science is the explosion of new data generated from smart devices, web, mobile and social media. data scientists rely heavily upon elements of statistics, machine learning, text retrieval and natural language processing to analyze data and interpret results. 22
23 Place de l apprentissage L apprentissage constitue une brique dans le processus de fouille / traitement de données qui arrive souvent à la fin du processus qui est intégré dans une application ou dans le SI de l entreprise Les différentes étapes de l analyse des données Collecte des données / stockage Prétraitement des données, étiquetage éventuel Analyses des données par des techniques exploratoires Mise au point et test de différents modèles d apprentissage Evaluation 23
24 Domaines d application en Data Mining Exemples Web recherche d'information, filtrage d'information extraction d'information textuelle : e.g. recherche, bibliothèques virtuelles, veille technologique, Question Answering,... Multi-média image + son, vidéo Données d entreprise infos produits, infos clients, ciblage clientèle... Analyse comportement e.g. telecoms : serveurs web, accès services commerciaux, internet - intranet, aide accès information, publicité Distribué Mobiles : personnalisation, accès information Capteurs distribués, objets connectés Biologie - analyse de séquences, de structures Automobile... 24
25 Challenges de l apprentissage Passage à l échelle Quantité de données, taille données Dynamicité Flux Distribué Complexité des données et des problèmes Données structurées standards (XML, RDF, SMIL, ), taxonomies Web2.0 : découverte / analyse de relations!! Nouveaux problèmes, nouveaux usages Adaptation rapide outils existants et création de nouveaux outils 25
26 Plan du cours Introduction/Perceptron Cadre formel de l apprentissage => Deep Learning Méthodes à noyaux Apprentissage non supervisé et EM Apprentissage semi-supervisé et modèles de graphes Apprentissage de représentations Apprentissage séquentiel (bandit et renforcement) Théorie de l apprentissage 26
27 4 Familles d algorithmes 27
28 Données dans la pratique de l apprentissage Distinguer les ensembles d apprentissage Mettre au point le modèle de test Evaluer les performances du modèle appris de validation Apprentissage de méta-paramètres Remarque On fera en général l hypothèse que toutes les données sont générées suivant une même loi 28
29 Apprentissage supervisé Ensemble d'apprentissage Constitué de couples (entrée, sortie désirée),,,, But Au moyen d'un algorithme d'apprentissage, découvrir l association = () En utilisant les données d appprentissage Qui offre une bonne généralisation i.e. = () si hors de l'ensemble d'apprentissage mais généré par le même phénomène Utilisation discrimination, identification, prévision, approximation 29
30 Apprentissage non supervisé Ensemble d'apprentissage Uniquement des données d entrée,, But Regrouper les données similaires Modéliser les données Découvrir des relations non spécifiées à l avance entre les données Utilisation estimation de densité, extraction de similarités 30
31 Apprentissage semi supervisé Ensemble d apprentisage étiquetés faible quantité,,,, non étiquetés grande quantité,, But Extraire l information des exemples non étiquetés utile pour l étiquetage Apprendre conjointement à partir des deux ensembles d exemples Utilisation grandes masses de données où l étiquetage est possible mais trop coûteux données qui évoluent implémentation rapide de systèmes génériques pour différentes instances d un problème 31
32 Apprentissage par Renforcement Ensemble d'apprentissage Couples (entrée, sortie désirée qualitative),,,, Les x i peuvent être des séquences (temporal credit assignment), les d i sont des réponses qualitatives (e.g. 0,1), déterministes ou stochastiques. But Apprendre des actions optimales Utilisation commande, décision séquentielle, robotique, jeux, programmation dynamique, applications web ou sociales,... 32
33 Exemple introductif : Perceptron 33
34 Un exemple : Perceptron (1960 Rosenblatt) (image from Perceptrons, Minsky and Papert 1969) Cellules d association Cellule de décision Le perceptron est utilisé pour la discrimination La cellule de décision calcule une fonction à seuil : = ( + ) = ( ) avec = 1 Classe 1 : { = +1} Classe 2 : { = 1} 34
35 L'algorithme du perceptron (2 classes) Données Output base d apprentissage (, # ), $ = 1.. &, (, # 1,1 classifieur ) (, décision = ( ) Initialiser w (0) Répeter (t) choisir un exemple, ( *, #(*)) Si #(*) ) *. * 0 alors ) * + 1 = ) * + 1#(*). * Jusqu'à convergence C'est un algorithme à correction d'erreur si ε est constant : règle à incrément fixe si ε est fonction du temps : règle à incrément variable 35
36 Fonction discriminante linéaire = ). + = avec = 1 Surface de décision: hyperplan F(x) = 0 Quelques propriétés : w est le vecteur normal de l'hyperplan, il défini son orientation distance de x à H : 2 = ()/ ) w0 = 0 : H passe par l'origine 36
37 Géométrie de la discrimination linéaire F(x) > 0 ( x F(x) = 0 F ) w W F(x) < 0 37
38 Le perceptron effectue une descente de gradient Fonction de coût 4 =, ::é ).. # gradient 2<# ) 4 = => => B =>,, avec = =? A =?, ::é. # C Règle d apprentissage ) = ) 1 2<# ) 4 Demo 38
BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation
BIG DATA : une vraie révolution industrielle (1) Les fortes évolutions liées à la digitalisation - définition - étapes - impacts La révolution en cours du big data - essai de définition - acteurs - priorités
Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group
1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
TRAVAUX DE RECHERCHE DANS LE
TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT
Bigdata et Web sémantique. les données + l intelligence= la solution
Bigdata et Web sémantique les données + l intelligence= la solution 131214 1 big data et Web sémantique deux notions bien différentes et pourtant... (sable et silicium). «bigdata» ce n est pas que des
Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information
Darren Cooper Information Management Consultant, IBM Software Group 1st December, 2011 Le MDM (Master Data Management) Pierre angulaire d'une bonne stratégie de management de l'information Information
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Les datas = le fuel du 21ième sicècle
Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
The new consumables catalogue from Medisoft is now updated. Please discover this full overview of all our consumables available to you.
General information 120426_CCD_EN_FR Dear Partner, The new consumables catalogue from Medisoft is now updated. Please discover this full overview of all our consumables available to you. To assist navigation
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
Big Data -Comment exploiter les données et les transformer en prise de décisions?
IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?
Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.
Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.
Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Eléments de statistique
Eléments de statistique L. Wehenkel Cours du 9/12/2014 Méthodes multivariées; applications & recherche Quelques méthodes d analyse multivariée NB: illustration sur base de la BD résultats de probas en
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
RAPID 3.34 - Prenez le contrôle sur vos données
RAPID 3.34 - Prenez le contrôle sur vos données Parmi les fonctions les plus demandées par nos utilisateurs, la navigation au clavier et la possibilité de disposer de champs supplémentaires arrivent aux
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 HFFv2 1. OBJET L accroissement de la taille de code sur la version 2.0.00 a nécessité une évolution du mapping de la flash. La conséquence de ce
Data Mining, Data Scien-st, Data Analy-cs, CRM, Modélisa-on et ou-ls mathéma-ques Eclairages et principes
Data Mining, Data Scien-st, Data Analy-cs, CRM, Modélisa-on et ou-ls mathéma-ques Eclairages et principes Michel Béra Professeur du Cnam (Chaire de Modélisa-on sta-s-que du risque) Cours STA201 Comment
Atelier Progress Rollbase
Atelier Progress Rollbase Laurent KIEFFER : [email protected] 11 Février 2014 Demonstration Application 10 Min Atelier Progress Rollbase Introduction à Rollbase 1 Rollbase avec OpenEdge 6 2 Créer l
Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation
Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications
lundi 3 août 2009 Choose your language What is Document Connection for Mac? Communautés Numériques L informatique à la portée du Grand Public
Communautés Numériques L informatique à la portée du Grand Public Initiation et perfectionnement à l utilisation de la micro-informatique Microsoft Document Connection pour Mac. Microsoft Document Connection
Objectif et contexte business : piliers du traitement efficace des données -l exemple de RANK- Khalid MEHL Jean-François WASSONG 10 mars 2015
Objectif et contexte business : piliers du traitement efficace des données -l exemple de RANK- Khalid MEHL Jean-François WASSONG 10 mars 2015 1. fifty-five : présentation 2. Objectifs de Rank 3. Une approche
Spécificités, Applications et Outils
Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala [email protected] http://chirouble.univ-lyon2.fr/~ricco/data-mining
Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013
Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer [email protected] Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine
Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar [email protected]
Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar [email protected] Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines
1-Introduction 2. 2-Installation de JBPM 3. 2-JBPM en action.7
Sommaire 1-Introduction 2 1-1- BPM (Business Process Management)..2 1-2 J-Boss JBPM 2 2-Installation de JBPM 3 2-1 Architecture de JOBSS JBPM 3 2-2 Installation du moteur JBoss JBPM et le serveur d application
MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15
MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué
Quatre axes au service de la performance et des mutations Four lines serve the performance and changes
Le Centre d Innovation des Technologies sans Contact-EuraRFID (CITC EuraRFID) est un acteur clé en matière de l Internet des Objets et de l Intelligence Ambiante. C est un centre de ressources, d expérimentations
Instructions Mozilla Thunderbird Page 1
Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Ce manuel est écrit pour les utilisateurs qui font déjà configurer un compte de courrier électronique dans Mozilla Thunderbird et
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités
Contrôle d'accès Access control. Notice technique / Technical Manual
p.1/18 Contrôle d'accès Access control INFX V2-AI Notice technique / Technical Manual p.2/18 Sommaire / Contents Remerciements... 3 Informations et recommandations... 4 Caractéristiques techniques... 5
EN UNE PAGE PLAN STRATÉGIQUE
EN UNE PAGE PLAN STRATÉGIQUE PLAN STRATÉGIQUE EN UNE PAGE Nom de l entreprise Votre nom Date VALEUR PRINCIPALES/CROYANCES (Devrait/Devrait pas) RAISON (Pourquoi) OBJECTIFS (- AN) (Où) BUT ( AN) (Quoi)
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL
SEMINAIRE SAS VISUAL ANALYTICS LAUSANNE, MARCH 18 : JÉRÔME BERTHIER VALERIE AMEEL AGENDA 14:15-14:30 Bienvenue & Introduction Jérôme Berthier et Manuel Fucinos 14:30-14:45 Le concept de la Data Viz et
De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA
De l Etudiant à SBA à l Enseignant Chercheur à l ENSMA Ladjel BELLATRECHE [email protected] http://www.lias lab.fr/members/bellatreche Les déterminants de la motivation selon Rolland Viau Perception
Institut français des sciences et technologies des transports, de l aménagement
Institut français des sciences et technologies des transports, de l aménagement et des réseaux Session 3 Big Data and IT in Transport: Applications, Implications, Limitations Jacques Ehrlich/IFSTTAR h/ifsttar
Moteurs de recherche: origines, évolution et perspectives Aissam Mezhoud, Search Advertising Lead, Microsoft
Moteurs de recherche: origines, évolution et perspectives Aissam Mezhoud, Search Advertising Lead, Microsoft Internet fixe * (hors tablettes) Internet mobile ** (hors tablettes) Télévision connectée ***
WEB page builder and server for SCADA applications usable from a WEB navigator
Générateur de pages WEB et serveur pour supervision accessible à partir d un navigateur WEB WEB page builder and server for SCADA applications usable from a WEB navigator opyright 2007 IRAI Manual Manuel
Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2
Big Data: au delà du Buzz Yves de Montcheuil @ydemontcheuil Il y a tellement de hype autour du big data que Gartner étudie un nouveau modèle ;-) Talend 2012 2 Hype Cycle Gartner Talend 2012 3 Big Data
Anticiper et prédire les sinistres avec une approche Big Data
Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO [email protected] @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél
calls.paris-neuroscience.fr Tutoriel pour Candidatures en ligne *** Online Applications Tutorial
calls.paris-neuroscience.fr Tutoriel pour Candidatures en ligne Online Applications Tutorial 1/4 Pour postuler aux Appels d Offres de l ENP, vous devez aller sur la plateforme : calls.parisneuroscience.fr.
Bienvenue. #TwitterMobile
Bienvenue #TwitterMobile #TwitterMobile Mobile App Promotion Agenda Panorama MAP Etudes de Cas Q&A 86 % du temps passé sur mobile se passe dans une app SOURCE Flurry Analytics, 2014 2M+ apps dans l'app
RFID: Middleware et intégration avec le système d'information Olivier Liechti
RFID: Middleware et intégration avec le système d'information Olivier Liechti Sun Microsystems, Inc. Agenda Introduction > Vision et architecture Le rôle du middleware RFID > Gestion des données > Administration
How to Login to Career Page
How to Login to Career Page BASF Canada July 2013 To view this instruction manual in French, please scroll down to page 16 1 Job Postings How to Login/Create your Profile/Sign Up for Job Posting Notifications
WiFi Security Camera Quick Start Guide. Guide de départ rapide Caméra de surveillance Wi-Fi (P5)
#45 #46 WiFi Security Camera Quick Start Guide Guide de départ rapide Caméra de surveillance Wi-Fi (P5) #47 Start Here 1 Is this you? TECH SUPPORT CTRL ALT DEL 2 If yes, turn to page three 1 3 If not,
DOCUMENTATION - FRANCAIS... 2
DOCUMENTATION MODULE CATEGORIESTOPMENU MODULE CREE PAR PRESTACREA INDEX : DOCUMENTATION - FRANCAIS... 2 INSTALLATION... 2 CONFIGURATION... 2 LICENCE ET COPYRIGHT... 3 SUPPORT TECHNIQUE ET MISES A JOUR...
AUDIT COMMITTEE: TERMS OF REFERENCE
AUDIT COMMITTEE: TERMS OF REFERENCE PURPOSE The Audit Committee (the Committee), assists the Board of Trustees to fulfill its oversight responsibilities to the Crown, as shareholder, for the following
L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence
L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant
Editing and managing Systems engineering processes at Snecma
Editing and managing Systems engineering processes at Snecma Atego workshop 2014-04-03 Ce document et les informations qu il contient sont la propriété de Ils ne doivent pas être copiés ni communiqués
Surmonter les 5 défis opérationnels du Big Data
Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications
Face Recognition Performance: Man vs. Machine
1 Face Recognition Performance: Man vs. Machine Andy Adler Systems and Computer Engineering Carleton University, Ottawa, Canada Are these the same person? 2 3 Same person? Yes I have just demonstrated
Get Instant Access to ebook Cest Maintenant PDF at Our Huge Library CEST MAINTENANT PDF. ==> Download: CEST MAINTENANT PDF
CEST MAINTENANT PDF ==> Download: CEST MAINTENANT PDF CEST MAINTENANT PDF - Are you searching for Cest Maintenant Books? Now, you will be happy that at this time Cest Maintenant PDF is available at our
Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON [email protected]
Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON [email protected] Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par
Provide supervision and mentorship, on an ongoing basis, to staff and student interns.
Manager, McGill Office of Sustainability, MR7256 Position Summary: McGill University seeks a Sustainability Manager to lead the McGill Office of Sustainability (MOOS). The Sustainability Manager will play
Cedric Dumoulin (C) The Java EE 7 Tutorial http://docs.oracle.com/javaee/7/tutorial/doc/
Cedric Dumoulin (C) The Java EE 7 Tutorial http://docs.oracle.com/javaee/7/tutorial/doc/ Webographie The Java EE 7 Tutorial http://docs.oracle.com/javaee/7/tutorial/doc/ Les slides de cette présentation
Paxton. ins-20605. Net2 desktop reader USB
Paxton ins-20605 Net2 desktop reader USB 1 3 2 4 1 2 Desktop Reader The desktop reader is designed to sit next to the PC. It is used for adding tokens to a Net2 system and also for identifying lost cards.
Introduction à MapReduce/Hadoop et Spark
1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -
Big Data & Analytics Leviers de transformation Métier. Retours d expérience. Laurence CHRETIEN Valérie PERHIRIN Mars 2015
Leviers de transformation Métier Retours d expérience Laurence CHRETIEN Valérie PERHIRIN Mars 2015 BIG DATA & ANALYTICS, UN VRAI LEVIER DE TRANSFORMATION BUSINESS? RETOURS D EXPERIENCE CAPGEMINI Valérie
Fiche produit ifinance v4
Fiche produit ifinance v4 2005-2015, Synium Software GmbH Traduction française 2003-2015, SARL Mac V.F. Philippe Bonnaure http://www.macvf.fr [email protected] Version 4 du 25/06/2015 Identification du
Programme de formation
INSCRIVEZ VOUS Formations sélectionnées et financées par le FAFIEC Programme de formation mardi 16 septembre 2014 Les Métiers du Test Module 5.2 - Automatisation des tests fonctionnels : HP Unified Functional
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
MANUEL MARKETING ET SURVIE PDF
MANUEL MARKETING ET SURVIE PDF ==> Download: MANUEL MARKETING ET SURVIE PDF MANUEL MARKETING ET SURVIE PDF - Are you searching for Manuel Marketing Et Survie Books? Now, you will be happy that at this
CEST POUR MIEUX PLACER MES PDF
CEST POUR MIEUX PLACER MES PDF ==> Download: CEST POUR MIEUX PLACER MES PDF CEST POUR MIEUX PLACER MES PDF - Are you searching for Cest Pour Mieux Placer Mes Books? Now, you will be happy that at this
ADHEFILM : tronçonnage. ADHEFILM : cutting off. ADHECAL : fabrication. ADHECAL : manufacturing.
LA MAÎTRISE D UN MÉTIER Depuis plus de 20 ans, ADHETEC construit sa réputation sur la qualité de ses films adhésifs. Par la maîtrise de notre métier, nous apportons à vos applications la force d une offre
SAP SNC (Supply Network Collaboration) Web Package. (Français / English) language. Edition 2013 Mars
SAP SNC (Supply Network Collaboration) Web Package (Français / English) language Edition 2013 Mars Direction des Achats [email protected] Date: 28/03/13 Sagemcom portal Content of presentation
Monitor LRD. Table des matières
Folio :1/6 Table des matières 1.Installation du logiciel... 3 2.Utilisation du logiciel... 3 2.1.Description de la fenêtre de commande... 3 2.1.1.Réglage des paramètres de communication... 4 2.1.2.Boutons
Small Businesses support Senator Ringuette s bill to limit credit card acceptance fees
For Immediate Release October 10, 2014 Small Businesses support Senator Ringuette s bill to limit credit card acceptance fees The Senate Standing Committee on Banking, Trade, and Commerce resumed hearings
THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.
École Doctorale d Informatique, Télécommunications et Électronique de Paris THÈSE présentée à TÉLÉCOM PARISTECH pour obtenir le grade de DOCTEUR de TÉLÉCOM PARISTECH Mention Informatique et Réseaux par
Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013
Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,
Monitoring elderly People by Means of Cameras
Nuadu project Technologies for Personal Hearth Seminar, June 4th, 2009 Monitoring elderly People by Means of Cameras Laurent LUCAT Laboratory of Embedded Vision Systems CEA LIST, Saclay, France 1 Summary
Entreprise et Big Data
Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP
Spécialité IAD. Master de Sciences et technologie de l UPMC. Mention informatique. Partenaires : ENST, ENSTA. Responsables : T. Artières, C.
Master de Sciences et technologie de l UPMC Mention informatique Spécialité IAD Partenaires : ENST, ENSTA Responsables : T. Artières, C. Gonzales Secrétariat : N. Nardy LES THÉMATIQUES ABORDÉES Les thématiques
Compléter le formulaire «Demande de participation» et l envoyer aux bureaux de SGC* à l adresse suivante :
FOIRE AUX QUESTIONS COMMENT ADHÉRER? Compléter le formulaire «Demande de participation» et l envoyer aux bureaux de SGC* à l adresse suivante : 275, boul des Braves Bureau 310 Terrebonne (Qc) J6W 3H6 La
SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics. Pierre Combe, Enterprise Analytics Juin, 2015
SAP Runs SAP Reporting Opérationnel & BI avec HANA et SAP Analytics Pierre Combe, Enterprise Analytics Juin, 2015 Agenda SAP Enterprise Analytics qui sommes-nous? Acteur clé de l innovation à SAP Présentation
POSITION DESCRIPTION DESCRIPTION DE TRAVAIL
Supervisor Titre du poste de la superviseure ou du superviseur : Coordinator, Communications & Political Action & Campaigns Coordonnatrice ou coordonnateur de la Section des communications et de l action
Once the installation is complete, you can delete the temporary Zip files..
Sommaire Installation... 2 After the download... 2 From a CD... 2 Access codes... 2 DirectX Compatibility... 2 Using the program... 2 Structure... 4 Lier une structure à une autre... 4 Personnaliser une
UML : Unified Modeling Language
UML : Unified Modeling Language Recommended: UML distilled A brief guide to the standard Object Modeling Language Addison Wesley based on Frank Maurer lecture, Univ. of Calgary in french : uml.free.fr/index.html
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence
La rencontre du Big Data et du Cloud
La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur
Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique
Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai
QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data
QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business
ELCA Forum 2014 BIG DATA
ELCA Forum 2014 BIG DATA Jérôme Berthier, Head of Division Christian Nançoz, BI Consultant September 2014 SPEAKER Jérôme Berthier Head of Division Topics: Business Intelligence Data Warehouse Big Data
Empowering small farmers and their organizations through economic intelligence
Empowering small farmers and their organizations through economic intelligence Soutenir les petits agriculteurs et leurs organisations grâce à l intelligence économique XOF / kg RONGEAD has been supporting
Les défis statistiques du Big Data
Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur
Township of Russell: Recreation Master Plan Canton de Russell: Plan directeur de loisirs
Township of Russell: Recreation Master Plan Canton de Russell: Plan directeur de loisirs Project Introduction and Stakeholder Consultation Introduction du projet et consultations publiques Agenda/Aperçu
RÉSUMÉ DE THÈSE. L implantation des systèmes d'information (SI) organisationnels demeure une tâche difficile
RÉSUMÉ DE THÈSE L implantation des systèmes d'information (SI) organisationnels demeure une tâche difficile avec des estimations de deux projets sur trois peinent à donner un résultat satisfaisant (Nelson,
Gestion de la relation Client (CRM)
Gestion de la relation Client (CRM) Les meilleures pratiques pour gérer vos équipes de vente et marketing Claude Rose, président de Gestisoft Ordre du jour de la présentation Objectif d une solution CRM?
Utiliser une WebCam. Micro-ordinateurs, informations, idées, trucs et astuces
Micro-ordinateurs, informations, idées, trucs et astuces Utiliser une WebCam Auteur : François CHAUSSON Date : 8 février 2008 Référence : utiliser une WebCam.doc Préambule Voici quelques informations utiles
IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21
IODAA de l 1nf0rmation à la Décision par l Analyse et l Apprentissage IODAA Informations générales 2 Un monde nouveau Des données numériques partout en croissance prodigieuse Comment en extraire des connaissances
Nouveautés printemps 2013
» English Se désinscrire de la liste Nouveautés printemps 2013 19 mars 2013 Dans ce Flash Info, vous trouverez une description des nouveautés et mises à jour des produits La Capitale pour le printemps
Stratégie DataCenters Société Générale Enjeux, objectifs et rôle d un partenaire comme Data4
Stratégie DataCenters Société Générale Enjeux, objectifs et rôle d un partenaire comme Data4 Stéphane MARCHINI Responsable Global des services DataCenters Espace Grande Arche Paris La Défense SG figures
THE EVOLUTION OF CONTENT CONSUMPTION ON MOBILE AND TABLETS
THE EVOLUTION OF CONTENT CONSUMPTION ON MOBILE AND TABLETS OPPA investigated in March 2013 its members, in order to design a clear picture of the traffic on all devices, browsers and apps. One year later
Le nouveau visage de la Dataviz dans MicroStrategy 10
Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités
SOCIAL INTELLIGENCE BUSINESS RESULTS
SOCIAL INTELLIGENCE BUSINESS RESULTS Faire de l écoute et de l analyse des réseaux sociaux un outil stratégique pour une marque Intervention 28/11/2014 Les marques et Internet Perspective sur 20 ans 1995
Apprentissage statistique dans les graphes et les réseaux sociaux
Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique
Polar. Nouveautés Polar
Polar Nouveautés Polar POLAR ELECTRO Fondé en 1977 Premier moniteur de fréquence cardiaque sans fil au monde Travail en collaboration avec les plus grands instituts sportifs & universités Reconnu comme
