1.1 Définitions Opérations élémentaires Systèmes échelonnés et triangulaires... 3

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3"

Transcription

1 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21 Méthode du pivot de Gauss 3 22 Exemples 4 23 Forme générale des solutions 7 Introduction Les systèmes linéaires sont des objets très utiles, notamment pour rechercher l inverse d une matrice (nous verrons cela dans un prochain chapitre) On étudie ici des systèmes de n équations à p inconnues x 1, x 2,, x p de la forme suivante: a 1,1 x 1 + a 1,2 x a 1,p x p = b 1 a 2,1 x 1 + a 2,2 x a 2,p x p = b 2 a n,1 x 1 + a n,2 x a n,p x p = b n où les (a i,j ) et les (b i ) sont des nombres réels L objectif est d obtenir toutes les solutions d un système donné Pour cela, on cherche à le mettre sous forme triangulaire ou échelonné en utilisant la méthode du pivot de Gauss, qui repose sur des opérations élémentaires sur les équations du système Nous présentons cette méthode et donnons la forme générale des solutions lorsque le système est impossible, de Cramer ou indéterminé Anthony Mansuy - Professeur de Mathématiques en supérieures ECE au Lycée Clemenceau (Reims)

2 Soient n et p deux entiers naturels non nuls 1 Généralités sur les systèmes linéaires 11 Définitions Définition On appelle système linéaire de n équations à p inconnues réelles x 1, x 2,, x p, un système de la forme suivante: a 1,1 x 1 + a 1,2 x a 1,p x p = b 1 a 2,1 x 1 + a 2,2 x a 2,p x p = b 2 a n,1 x 1 + a n,2 x a n,p x p = b n où les (a i,j ) et les (b i ) sont des nombres réels La i-ème équation du système est notée L i et est appelée i-ème ligne du système (S) Si n = p, on dit que le système est un système carré d ordre n On cherche à résoudre (S), c est-à-dire à trouver tous les p-uplets (x 1, x 2,, x p ) vérifiant les n équations de (S) Cas particulier Si, pour tout i [1, n], b i = 0, on dit que le système est un système homogène ou sans second membre On appelle système homogène associé à (S) le système obtenue à partir de (S), en remplaçant tous les nombres b i par 0 Définition Un système est dit compatible (ou possible) s il admet au moins une solution et incompatible (ou impossible) s il n admet pas de solutions On appelle système de Cramer tout système linéaire qui admet une unique solution Définition Soient (S) et (S ) deux systèmes linéaires à p inconnues (n ayant pas nécessairement le même nombre d équations) (S) et (S ) sont dits équivalents s ils admettent le même ensemble de solutions, c est-à-dire si: (x 1, x 2,, x p ) est solution de (S) (x 1, x 2,, x p ) est solution de (S ) 12 Opérations élémentaires La résolution d un système linéaire (S) va consister à remplacer (S) par un système (S ) équivalent et plus facile à résoudre Pour cela, on utilise des opérations élémentaires sur les lignes: Théorème 1 (Opérations élémentaires) Soit (S) un système linéaire de n équations L 1, L 2,, L n à p inconnues x 1, x 2,, x p Alors on obtient un système (S ) équivalent à (S) en effectuant les opérations suivantes, dites opérations élémentaires: Supprimer une équation nulle, c est-à-dire de la forme 0x 1 + 0x x p = 0 Échanger la i-ème ligne L i et la j-ème ligne L j On note cette opération L i L j Remplacer la i-ème ligne L i par λl i (λ 0) On note cette opération L i λl j Remplacer la i-ème ligne L i par L i + λl j On note cette opération L i L i + λl j 2

3 Remarque Les deux dernières opérations peuvent se regrouper en L i λl i + µl j pour λ 0 et i j 13 Systèmes échelonnés et triangulaires Définition Un système linéaire (S) de n équations à p inconnues x 1, x 2,, x p est un système échelonné si 2 n p et si i [1, n], j [1, p] avec i > j, a i,j = 0 Autrement dit, le système (S) est échelonné s il est de la forme: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x 3 + a 1,4 x a 1,p x p = b 1 a 2,2 x 2 + a 2,3 x 3 + a 2,4 x a 2,p x p = b 2 a 3,3 x 3 + a 3,4 x a 3,p x p = b 3 a n,n x n + + a n,p x p = b p Définition Un système linéaire (S) est un système triangulaire s il est carré et échelonné Autrement dit, le système (S) est triangulaire s il est de la forme: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x a 1,n x n = b 1 a 2,2 x 2 + a 2,3 x a 2,n x n = b 2 a 3,3 x a 3,n x n = b 3 a n,n x n = b n 2 Résolution des systèmes linéaires 21 Méthode du pivot de Gauss Le principe consiste à transformer en un nombre fini d étapes, le système initial en un système équivalent qui sera soit impossible, soit échelonné Considérons donc le système suivant (n 2): a 1,1 x 1 + a 1,2 x a 1,p x p = b 1 a 2,1 x 1 + a 2,2 x a 2,p x p = b 2 a n,1 x 1 + a n,2 x a n,p x p = b n On suppose que: Aucune équation de (S) n est nulle En effet, on se ramène à un système équivalent en supprimant toutes les équations nulles Aucune équation de (S) n est impossible Sinon la résolution de (S) est terminée et (S) est impossible Toutes les inconnues x 1, x 2,, x p apparaissent dans le système On suppose que a 1,1 0 Si ce n est pas le cas, on permute les lignes du système (ce qui donne un système équivalent) pour que l inconnue x 1 soit présente dans la première équation Le coefficient s appelle le premier pivot de l algorithme de Gauss Alors on remplace, pour tout i [2, n], la ligne L i par la ligne a 11 L i a i1 L 1 On obtient un système équivalent (S ) dans lequel les n 1 dernières lignes ne contiennent plus l inconnue x 1 : (S ) : a 1,1 x 1 + a 1,2 x a 1,p x p = b 1 (L 1) a 2,2x a 2,px p = b 2 (L 2) a n,2x a n,p x p = b n (L n) Notons (S ) le système linéaire formé des n 1 dernières lignes de (S ) (les lignes L 2, L 3,, L n) aux inconnues x 2, x 3,, x n Différents cas peuvent se présenter: 3

4 (1) (S ) est impossible Alors (S ) et donc (S) est impossible et c est terminé (2) (S ) contient une ou plusieurs équations nulles Il suffit de les supprimer (3) Après suppression éventuelle des équations nulles, on applique à (S ) le même traitement que celui que l on à fait subir à (S) En un nombre fini d étapes, on obtient un système équivalent à (S) qui est soit impossible, soit échelonné On a ainsi montré la: Propriété 2 Tout système linéaire est équivalent soit à un système impossible, soit à un système échelonné 22 Exemples Nous traitons quatre exemples illustrant les différentes situations que l on peut rencontrer Exemple 1 Résolvons le système: x + y + 2z = 5 (L 1 ) (S 1 ) : x y z = 1 (L 2 ) 2x + 2z = 6 (L 3 ) Exemple 2 Résolvons le système: 2x + y z + 2t + 2u = 1 (L 1 ) (S 2 ) : 4x y + z t + 4u = 7 (L 2 ) 4x 2y + z + 5t u = 3 (L 3 ) 4

5 Exemple 3 Résolvons le système: x + 2y z + 2t + u = 1 (L 1 ) x + 2y + z + 6t + 3u = 1 (L (S 3 ) : 2 ) 2x + 4y + 9t + 8u = 0 (L 3 ) 2x + 4y z + 6t + 3u = 1 (L 4 ) 5

6 Exemple 4 Résolvons le système: x + 2y + 2z = 2 (L 1 ) 3x + y 2z = 1 (L (S 4 ) : 2 ) 4x 3y z = 3 (L 3 ) 2x + 4y + 2z = 4 (L 4 ) 6

7 23 Forme générale des solutions Cas d un système avec second membre Théorème 3 (Solutions d un système triangulaire) Soit n un entier 2 et (S) le système triangulaire suivant: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x a 1,n x n = b 1 a 2,2 x 2 + a 2,3 x a 2,n x n = b 2 a 3,3 x a 3,n x n = b 3 a n,n x n = b n Si les coefficients a i,i sont tous non nuls, alors le système (S) admet une unique solution Autrement dit, (S) est un système de Cramer Preuve Puisque a n,n est non nul, x n est uniquement déterminé par la n-ème équation Ensuite, puisque a n 1,n 1 est non nul, la n 1-ème équation détermine de manière unique x n 1 et ainsi de proche en proche, on détermine de manière unique x n 2, x n 3,, x 2, x 1, ce qui montre que (S) admet une unique solution et est donc un système de Cramer Définition On considère un système échelonné (S) à n équations et p inconnues x 1, x 2,, x p de la forme suivante: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x 3 + a 1,4 x a 1,p x p = b 1 a 2,j2 x j2 + + a 2,p x p = b 2 a 3,j3 x j3 + + a 3,p x p = b 3 a n,jn x jn + + a n,p x p = b p avec 1 < j 2 < j 3 < < j n p et a 1,1 0, a 2,j2 0,, a n,jn 0 Les inconnues x 1, x j2,, x jn figurant en tête de chaque équation s appelle les inconnues principales de (S) et si n < p, les autres inconnues s appellent les inconnues secondaires Théorème 4 (Solutions d un système échelonné) Soit n et p deux entiers tels que 2 n < p et (S) le système échelonné suivant: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x 3 + a 1,4 x a 1,p x p = b 1 a 2,j2 x j2 + + a 2,p x p = b 2 a 3,j3 x j3 + + a 3,p x p = b 3 a n,jn x jn + + a n,p x p = b p avec 1 < j 2 < j 3 < < j n p et a 1,1 0, a 2,j2 0,, a n,jn 0 Si on donne aux inconnues secondaires des valeurs arbitraires, les n inconnues principales x 1, x j2,, x jn sont déterminées de manière unique par un système échelonné de Cramer de n équations à n inconnues (S) admet donc des solutions dépendant des p n inconnues secondaires On dit dans ce cas que le système est indéterminé et plus précisément qu il admet une indétermination d ordre p n 7

8 Ainsi, pour un système linéaire avec second membre, trois cas sont possibles: il admet zéro solution (le système est impossible), il admet une unique solution (le système est de Cramer), il admet une infinité de solutions (le système est indéterminé) Cas d un système sans second membre Un système sans second membre à p inconnues possède au moins une solution, le p-uplet (0, 0,, 0) Il y a donc seulement deux cas possibles ici: il admet une unique solution égale à (0, 0,, 0) (le système est de Cramer), il admet une infinité de solutions (le système est indéterminé) Propriété 5 (Structure des solutions d un système sans second membre) L ensemble des solutions d un système homogène forme un espace vectoriel, c est-à-dire qu il est stable par combinaison linéaire: la somme de deux solutions ou le produit par un scalaire d une solution est encore une solution Exemple Résoudre le système homogène suivant: x + 2y + 3u = 0 (S 5 ) : z + 3u = 0 t 2u = 0 On explicitera l ensemble des solutions sous la forme d une combinaison linéaire de vecteurs et on donnera une famille génératrice de l ensemble des solutions 8

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Cours de mathématiques M22 Algèbre linéaire

Cours de mathématiques M22 Algèbre linéaire Cours de mathématiques M22 Algèbre linéaire λ u u + v u v u Exo7 Sommaire Systèmes linéaires 3 Introduction aux systèmes d équations linéaires 3 2 Théorie des systèmes linéaires 7 3 Résolution par la méthode

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes de Hamming et les codes cycliques - Chapitre 6 (suite et fin)- Les codes de Hamming Principe La distance minimale d un code linéaire L est le plus petit nombre

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

1 Comptage de solutions et escaliers

1 Comptage de solutions et escaliers Licence Informatique Systèmes polynomiaux, que signifie : résoudre? Feuille de TD numéro 11 1 Comptage de solutions et escaliers Question 1. On considère le système suivant p1 := 2*x*y^2 + 3*x^2-5*y^3

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs Ch01 : Matrice Les matrices ont été introduites récemment au programme des lycées. Il s agit d outils puissants au service de la résolution de problèmes spécifiques à nos classes, en particulier les problèmes

Plus en détail

Introduction des nombres complexes en TS

Introduction des nombres complexes en TS Introduction des nombres complexes en TS 1 À la découverte de nouveaux nombres Résoudre : dans, puis dans, l équation 5 + x = 0 ; dans, puis dans, l équation 3x + 2 = 0 ; dans, puis dans, l équation x

Plus en détail

Trigonométrie Résolution d équation trigonométrique Exercices corrigés

Trigonométrie Résolution d équation trigonométrique Exercices corrigés Trigonométrie Résolution d équation trigonométrique Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : résolution d équation trigonométrique dans en utilisant les valeurs remarquables du cosinus

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail