Licence Science de la Mer et de l Environnement. Physique Générale
|
|
|
- César Paris
- il y a 9 ans
- Total affichages :
Transcription
1 Licence Science de la Mer et de l Enironnement Physique Générale Chaitre 3 :ransformations réersibles d un gaz arfait ransformation d un gaz arfait Par exemle, on enferme le gaz dans un cylindre de section S, dans lequel le iston a une masse négligeable, et sans frottements. a Echange de traail On ousse le iston aec une ression extérieure F= P E. S. On a : dw = Fdx=. S. dx= E E. d Si le olume asse de à, le traail échangé sera : W = E d E. La force exercée est donc Si E = = Cte alors W =.( Si < alors W >, on a fourni du traail au gaz, il y a échauffement. C est ce qui se asse aec une ome à élo. b Echange de chaleur On suose que le système est adiabatique. Le système est en équilibre si la ression du gaz est égale à celle de la ression extérieure. Nous aons u que : n = nombre de moles de gaz m = masse du gaz M = masse molaire du gaz = nr= M m R Si nous assons de l état à l état, alors : = = nr D arès la loi de Joule, la ariation d énergie interne : ΔU = W + Q Irréersibilité des transformations En rincie quand on asse de l état à l état, les étaes intermédiaires ne sont as à l équilibre. Il faut un certain tems our que la temérature s uniformise dans le gaz. La transformation est dite irréersible. On ne eut as faire de retour en arrière dans les mêmes conditions. Dans les conditions limites, c est à dire idéales et irréalisables, on eut suoser que l on effectue une suite continue d états d équilibre, et ariant continûment, et la temérature étant à chaque instant uniforme dans tout le olume.
2 A chaque instant la ression à l intérieur du cylindre est égale à la ression extérieure : = E. Dans ce cas, on eut aller en sens inerse sur la même courbe. a Réersibilité thermique On chauffe de à ' une masse gazeuse à olume constant. On met ar exemle en contact une aroi du cylindre aec le milieu à une temérature ariable ar aliers : = + Δ = + Δ 3 = + Δ.. + Δ n = n n = n +Δ= ' Paroi isolante Quand Δ la transformation deient réersible, mais éidemment le tems our l accomlir deient infiniment long. b Réersibilité mécanique Nous nous laçons dans le cas de transformations adiabatiques. Soit un gaz arfait en équilibre dans une enceinte adiabatique. On alique une ression extérieure E > du gaz. Le nouel équilibre arès uniformisation de la ression et de la temérature : ' = + Δ et '= + Δ Dans ce cas, ce n est as une transformation réersible. On eut faire une transformation adiabatique réersible en artant de l état initial,,. La ression extérieure est d abord E =, uis + d. Le iston est soumis à une force df = S. dp. Il se délace. La ression arie de + d, le olume de à + d et la temérature de à + d. On fait une transformation réersible en allant très lentement de à. Le traail est donné ar : W = d Paroi conductrice de chaleur
3 W > W< Comression adiabatique réersible Détente adiabatique réersible 3 ransformations isothermes réersibles d un gaz arfait a ransformation isotherme réersible élémentaire Soit un gaz arfait en équilibre (,,, en relation aec un thermostat à la temérature. On accroît la ression de d, le olume diminue de d. Le gaz reçoit un traail : W = d Le gaz a tendance à s échauffer uisqu il est comrimé, mais il est en contact aec le thermostat à la même temérature. Le système a donc céder dq au thermostat. On a la relation des gaz arfaits ; d = Cte, d où en faisant une dériée logarithmique : + d = On eut retrouer ce résultat en faisant la dériée : d ( = d+ d =. En diisant ar d, on retroue : + d d =, d où : = d W > W< Comression isotherme réersible Détente isotherme réersible 3
4 La temérature étant constante, l énergie interne ne arie as. C est la loi de Joule : l énergie interne d un gaz arfait ne déend que de sa temérature. dw + dq= d + dq= Donc : dq= d b ransformation isotherme réersible finie Dans une transformation isotherme, sur un grahique (, la courbe à temérature constante est une hyerbole. Dans le cas d une transformation finie, nous décrions l arc d hyerbole comris entre les oints A et A. On asse du oint A (,, au oint A (,,. On a : A = = nr = Donc : W = W = = d =.. [ ] d ln =.. ln W = nrln = ln A Le traail W ne déend que des états initial et final. Il rerésente grahiquement l aire hachurée sous la courbe Pour une comréhension isotherme : W > Pour une détente isotherme : W< La temérature étant restée constante, l énergie interne n a as arié : ΔU = W + Q= Donc : W = Q Dans une transformation isotherme réersible finie, traail et chaleur sont égaux et de signe oosés. Le traail fourni ar la comression est erdu en chaleur. Exercice On comrime isothermiquement 3 m d air de à atm. On suose que l air se comorte comme un gaz arfait. Calculer le traail de comression, et la quantité de chaleur exrimée en kilocalori es cédé ar le gaz au milieu extérieur. W = ln aec 5 = Nm 5 =. Nm et 3 = m Donc : W = 5 ln ln = 5, 3 D où W = 5,3.5J et Q= 7kcal Le olume final sera :,5m3 = = = 5l 4
5 4 ransformation adiabatique réersible d un gaz arfait La transformation étant adiabatique, il n y a as d échange de chaleur aec le système. Donc dq =. La relation des gaz arfaits s alique : = nr, où n est le nombre de moles. a ransformation adiabatique réersible élémentaire On asse de (,, à ( + d, + d, + d d Si on fait la dériée logarithmique de = nr, on obtient : + d = d On eut retrouer ce résultat en dériant = nr : d + d= nrd. On diise le terme de gauche ar, et celui de droite ar nr. d On obtient alors + d = d. La transformation étant adiabatique, dq =, donc du = dw = d Or our les gaz arfaits, l énergie interne U ne déend que de la temérature. Donc : du = dw = d = nc d Comme = nr, et C = R Alors : nr d = nr d D où d + ( d = d Or + d = d d Donc : + d + ( d = d Finalement : + d = Relation entre et C est l équation différentielle d une adiabatique en coordonnées de Claeyron. On eut aussi écrire : d d d d = or = d Donc : d = d + d et Relation entre et. On a d d = D où Relation entre et. d = ( d d d =. 5
6 b ransformation adiabatique réersible finie En artant du oint A (,, on a ers A (,, d Or : + d = On eut ré-écrire cette équation : d(ln + d(ln = d(ln( = En intégrant l équation ci-dessus, on obtient : ln( =Cte Ou encore : C est l équation de Lalace. =. = Cte=.. Aec cette équation, on a suosé que et C étaient constant. Ceci est rai our les gaz arfaits. Les deux autres relations donnent : d + ( d = Donc = Cte d d. = Donc = Cte On a : = = = Cte Donc : De même : = = On eut donc écrire : = Cte Donc = =.... ln = ( ln. = ln c Calcul du traail et de la ariation d énergie interne dans une transformation adiabatique Nous saons que dw = d Dans une transformation adiabatique : D où :. On en déduit : =. dw =.. d d( Or d = On eut écrire : = dw d( En intégrant chaque membre, on obtient : W = ( = ( d =.. 6
7 W ( = ( = Or : = donc : = = La ariation d énergie interne est donc : nr( ΔU = W = ( = = nc ( Pour un gaz monoatomique (argon : Donc dans ce cas : 5/3 = Cte C = 3R et = 5 3 W = 3nR( 3 = (.. Pour un gaz diatomique : C = 5R et = 7 5 Donc dans ce cas : 7/5 = Cte W = 5nR( 5 = (.. 5 Pentes de l adiabatique et de l isotherme On eut comarer les entes des courbes adiabatiques et isothermes. Pour cela du oint A, on fait asser une isotherme d équation = Cte, et une adiabatique d équation =Cte. Sur l axe des olumes, on se délace de d i = da autour du oint A. Les délacements corresondant sur l isotherme seront d et sur l adiabatique i d a. Sur l isotherme on a les délacements : + d, + d ( i i di Et on a + di = di La ente au oint A, sera = di Sur l adiabatique on a les délacements : ( + da, + da da Et on a + da = da On en déduit la ente au oint A : = da La ente de l adiabatique est fois lus grande que celle de l isotherme. da d i A d i = da isotherme : = Cte adiabatiqu e: = Cte 7
8 Cycle de Carnot Il se comose de deux isothermes et de deux adiabatiques. adiabatiques isothermes 6 Proagation du son dans les gaz La itesse du son est donnée ar Aec χ=.. c = χρ (sans démonstration coefficient de comressibilité Et ρ masse olumique du gaz Les ibrations du son sont raides, donc adiabatiques : d d =... a D où χ= D où finalement : c= ρ On eut ré-écrire l équation des gaz arfaits : = R de la manière suiante : = R ρ M Donc c= R M Pour l air à t= C, =, 4, R =8, 3 et M = 8,8g. mole c= 33m. s 8
Premier principe : bilans d énergie
MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Module : réponse d un système linéaire
BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée
1 Thermodynamique: première loi
1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction
L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).
CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur
SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES
SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES ----------------------------------------------------------------------------------------------------------------- LES SIGNAUX NUMERIQUES Un signal numérique
Physique 1 TEMPÉRATURE, CHALEUR
hysique EMÉRAURE, CHALEUR rof. André errenoud Edition mai 8 Andre.errenoud (at) heig-vd.ch HEIG-D / AD A B L E D E S M A I E R E S AGE. INRODUCION.... NOIONS DE EMÉRAURE E DE CHALEUR.... LES ÉCHANGES
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
Physique : Thermodynamique
Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une
S2I 1. quartz circuit de commande. Figure 1. Engrenage
TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
THERMODYNAMIQUE: LIQUEFACTION D UN GAZ
THERMODYNAMIQUE: LIQUEFACTION D UN GAZ B. AMANA et J.-L. LEMAIRE 2 LIQUEFACTION D'UN GAZ Cette expérience permet d'étudier la compressibilité et la liquéfaction d'un fluide en fonction des variables P,
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
Intérêts. Administration Économique et Sociale. Mathématiques XA100M
Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique
TP : Outils de simulation. March 13, 2015
TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.
Chapitre 4 Le deuxième principe de la thermodynamique
Chapitre 4 Le deuxième principe de la thermodynamique 43 4.1. Evolutions réversibles et irréversibles 4.1.1. Exemples 4.1.1.1. Exemple 1 Reprenons l exemple 1 du chapitre précédent. Une masse est placée
À propos d ITER. 1- Principe de la fusion thermonucléaire
À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
TP 3 diffusion à travers une membrane
TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier
Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES
Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES Entropie de mélange. - Evolution adiabatique. - Autres évolutions réversibles et irréversibles. L ensemble de ce chapitre
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
Etudier le diagramme température-pression, en particulier le point triple de l azote.
K4. Point triple de l azote I. BUT DE LA MANIPULATION Etudier le diagramme température-pression, en particulier le point triple de l azote. II. BASES THEORIQUES Etats de la matière La matière est constituée
COURS DE MACHINES FRIGORIFIQUES
I.U.. de Saint-Omer Dunkerque Département Génie hermique et énergie COURS DE MACHINES FRIGORIFIQUES Olivier ERRO 200-20 2 Avertissement : Ce cours de machines frigorifiques propose d aborder le principe
Etude d un séchoir solaire fonctionnant en mode direct et indirect
Reue des Energies Renouelables SMSTS 08 Alger (2008) 117 126 Etude d un séchoir solaire fonctionnant en mode direct et indirect N. Chalal 1, A. Bellhamri 1* et L. Bennamoun 2 1 Département de Génie Climatique,
Qu est-ce qui cause ces taches à la surface du Soleil? www.bbc.co.uk/science/space/solarsystem/solar_system_highlights/solar_cycle
Qu est-ce qui cause ces taches à la surface du Soleil? www.bbc.co.uk/science/space/solarsystem/solar_system_highlights/solar_cycle Voyez la réponse à cette question dans ce chapitre. Durant la vie de l
Catalogue 3 Chaine sur Mesure
Catalogue 3 Chaine sur Mesure SUBAKI Les Chaines 2009 CAALGUE 3 Classification chaine sur mesure sériés de chaîne ye de chaîne subaki Caractéristiques RUNNER BS Performance suérieure Général Chaînes à
prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1
3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on
Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :
Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire : 1. Prélever ml de la solution mère à la pipette jaugée. Est-ce que je sais : Mettre une propipette sur une pipette
Exercice 1. Exercice n 1 : Déséquilibre mécanique
Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction
L énergie sous toutes ses formes : définitions
L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,
Chapitre 5. Le ressort. F ext. F ressort
Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que
COURS DE THERMODYNAMIQUE
I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie COURS DE THERMODYNAMIQUE eme Semestre Olivier PERROT 010-011 1 Avertissement : Ce cours de thermodynamique présente quelques applications
Enquête de satisfaction CARCEL Prévoyance synthèse
Enquête de satisfaction CARCEL Préoyance synthèse Juin 2010 La méthodologie de l enquête de satisfaction CARCEL Préoyance Enoi d un questionnaire en Aril et Mai 2010 à l ensemble des adhérents. De nombreux
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
Risques et enjeux des places de marchés e-commerce : exemple du BTP
Risques et enjeux des places de marchés e-commerce : exemple du BTP Patrice COLOMB CFPIM - Directeur général eu-supply.com, e-commerce in construction eu-supply.com (www.eu-supply.com) est une place de
Accès optiques : la nouvelle montée en débit
Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies
Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France
CMP Bois n 19-12 avril - mai 2010 P.25 Carrefour du Bois P.34 cm La revue de l activité Bois en France Bois Saturateurs P.31 Usinage fenêtres P.37 Bardages Tout our l usinage du bois massif. Tout d un
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
8 Ensemble grand-canonique
Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,
Plan du chapitre «Milieux diélectriques»
Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
Précis de thermodynamique
M. Hubert N. Vandewalle Précis de thermodynamique Année académique 2013-2014 PHYS2010-1 Thermodynamique 2 Ce précis a été créé dans le but d offrir à l étudiant une base solide pour l apprentissage de
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Chapitre 11: Réactions nucléaires, radioactivité et fission
1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
CATALOGUE 2. Chaine avec attachements
CAALGUE 2 Chaine avec attachements SUBAKI LES CAIES 2010 CAALGUE 2 CAIE AVEC AACEMES Anti-corrosion Classification Sériés de ye de SUBAKI Caractéristiques RUER BS Performance suérieure Général Chaînes
Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques
Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100
Un modèle de composition automatique et distribuée de services web par planification
Un modèle de comosition automatique et distribuée de services web ar lanification Damien Pellier * Humbert Fiorino ** * Centre de Recherche en Informatique de Paris 5 Université Paris Descartes 45, rue
AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES
Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation
En vue de l'obtention du. Présentée et soutenue par Philippe NERISSON Le 5 février 2009
THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré ar l Institut National Polytechnique de Toulouse Disciline ou sécialité : Dynamique des Fluides Présentée et soutenue ar Philie
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
Mesures calorimétriques
TP N 11 Mesures calorimétriques - page 51 - - T.P. N 11 - Ce document rassemble plusieurs mesures qui vont faire l'objet de quatre séances de travaux pratiques. La quasi totalité de ces manipulations utilisent
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par
Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6
Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
MESURE DE LA TEMPERATURE
145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
SERIE C Technologie Mouvex
Y H A D S FCH TCHQ 1001-001 F SCTO : 1001 n vigueur : Janvier 2009 Remplace : Mars 2005 SR C Technologie Mouvex ompes à piston excentré as de garniture mécanique Sans garniture signifie sans fuite. Conçues
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
IBM Tivoli Monitoring. Guide d utilisation. Version 5.1.2 SH11-1285-03
IBM Tioli Monitoring Guide d utilisation Version 5.1.2 SH11-1285-03 IBM Tioli Monitoring Guide d utilisation Version 5.1.2 SH11-1285-03 Important Aant d utiliser le présent document et le produit associé,
Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique
Problème 6 Amplificateur à deux étages : gains, résistances "ues", droites de charges, distorsion harmonique Le circuit analysé dans ce problème est un exemple représentatif d'amplificateur réalisé à composants
Variantes du cycle à compression de vapeur
Variantes du cycle à compression de vapeur Froid indirect : circuit à frigoporteur Cycle mono étagé et alimentation par regorgement Cycle bi-étagé en cascade Froid direct et froid indirect Froid direct
Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon
Cours de Physique Statistique Éric Brunet, Jérôme Beugnon 7 octobre 2014 On sait en quoi consiste ce mouvement brownien. Quand on observe au microscope une particule inanimée quelconque au sein d un fluide
Les rayons X. Olivier Ernst
Les rayons X Olivier Ernst Lille La physique pour les nuls 1 Une onde est caractérisée par : Sa fréquence F en Hertz (Hz) : nombre de cycle par seconde Sa longueur λ : distance entre 2 maximum Sa vitesse
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Premier ordre Expression de la fonction de transfert : H(p) = K
Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Cours de turbomachine à fluide compressible
Cours de turbomachine à fluide compressible Xavier OAVY CNRS UMR 5509 Laboratoire de Mécanique des Fluides et d Acoustique à l École Centrale de Lyon Plan du cours Cours de turbomachine Xavier Ottavy (CNRS
U-31 CHIMIE-PHYSIQUE INDUSTRIELLES
Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie
Chapitre 11 Bilans thermiques
DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................
.NET remoting. Plan. Principes de.net Remoting
Plan.NET remoting Clémentine Nebut LIRMM / Université de Montellier 2 de.net Remoting côté serveur côté client.net Remoting en ratique Les canaux de communication L'activation L'invocation Les aramètres
Rappels sur les couples oxydantsréducteurs
CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation
4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température
Vitesse d une réaction chimique
Chimie chapitre itesse d une réaction chimique A. Avancement d un mobile et vitesse de déplacement Soit un mobile supposé ponctuel P se déplaçant le long d un axe x [Doc. ] : sa position instantanée est
Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.
Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement
DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
Ecole Nationale des Ponts et Chaussées Laboratoire Paris-Jourdan Sciences Economiques DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
véhicule hybride (première
La motorisation d un véhicule hybride (première HERVÉ DISCOURS [1] La cherté et la raréfaction du pétrole ainsi que la sensibilisation du public à l impact de son exploitation sur l environnement conduisent
PHYSIQUE Discipline fondamentale
Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et
NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1
Juin 2009 NFE107 Urbanisation et architecture des systèmes d information CNAM Lille «La virtualisation» Auditeur BAULE.L 1 Plan INTRODUCTION I. PRINCIPES DE LA VIRTUALISATION II. DIFFÉRENTES TECHNIQUES
Mesure de la dépense énergétique
Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée P. Schaumann, T. Trautmann University of Hannover Institute for Steel Construction, Hannover, Germany 1 OBJECTIF
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY
T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................
Mesures du coefficient adiabatique γ de l air
Mesures du oeffiient adiabatique γ de l air Introdution : γ est le rapport des apaités alorifiques massiques d un gaz : γ = p v Le gaz étudié est l air. La mesure de la haleur massique à pression onstante
Correction ex feuille Etoiles-Spectres.
Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800
BTS BAT 1 Notions élémentaires de chimie 1
BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on
Compression scalable d'images vidéo par ondelettes 2D+t
Comression scalable d'images vidéo ar ondelettes 2D+t Madji Samia, Serir Amina et Ouanane Abdelhak Université des Sciences et de la Technologie Houari Boumediene, Laboratoire de traitement d images et
