Jean Dieudonne. Panorama des mathématiques pures. Le choix bourbachique. gaultiierviuars
|
|
|
- Alphonse Mathieu
- il y a 9 ans
- Total affichages :
Transcription
1 Jean Dieudonne Panorama des mathématiques pures Le choix bourbachique gaultiierviuars
2 Table des matières INTRODUCTION xi A I : Topologie algébrique et différentielle 1 1. Les techniques. L'homotopie. Groupes d'homotopie. Homotopie et cohomologie. Homologie et cohomologie. Anneaux de cohomologie et d'homologie. Fibrations 1 2. Les résultats. Les différentes sortes de «variétés». La conjecture de Poincaré. Le cobordisme. Immersions, plongements et théorie des nœuds. Points fixes ; espaces où opère un groupe Rapports avec les sciences de la nature Les initiateurs 17 A II : Variétés différentielles; géométrie différentielle La théorie générale. Singularités des applications, différentiables. Champs de vecteurs sur les variétés différentielles Les G-structures. Les variétés riemanniennes La topologie des variétés différentielles Variétés différentielles de dimension infinie Rapports avec les sciences de la nature Les initiateurs 29 A III : Équations différentielles La théorie algébrique Les équations différentielles dans le domaine complexe L'étude qualitative des équations différentielles Le problème de classification Problèmes aux limites Rapports avec les sciences de la nature Les initiateurs 38 A IV : Théorie ergodique Le théorème ergodique Les problèmes de classification Rapports avec les sciences de la nature Les initiateurs 45
3 VI PANORAMA DES MATHÉMATIQUES PURES A V : Équations aux dérivées partielles L'étude locale des systèmes différentiels Systèmes complètement intégrables et feuilletages Équations aux dérivées partielles linéaires; théorie générale. Les techniques. Les résultats Équations à coefficients constants. Opérateurs invariants sur les espaces homogènes Problèmes aux limites pour les équations linéaires : I. Théorie générale Problèmes aux limites pour les équations linéaires : II. Théorie spectrale des opérateurs elliptiques. Opérateurs elliptiques du second ordre et théorie du potentiel Problèmes aux limites pour les équations linéaires : III. Les équations d'évolution. Équations strictement hyperboliques. Équations paraboliques Opérateurs pseudo-différentiels sur les variétés compactes Équations aux dérivées partielles non linéaires Rapports avec les sciences de la nature Les initiateurs 70 A VI : Analyse harmonique non commutative Les cas élémentaires : groupes compacts et groupes commutatifs Les problèmes fondamentaux L'analyse harmonique sur les groupes de Lie réductifs réels L'analyse harmonique sur les groupes réductifs p-adiques L'analyse harmonique sur les groupes de Lie nilpotents ou résolubles Représentations linéaires des extensions de groupes Rapports avec les sciences de la nature Les initiateurs 84 A VII : Formes automorphes et formes modulaires L'aspect analytique L'intervention des groupes de Lie L'intervention des groupes adéliques Applications à la théorie des nombres : a) Extensions de la théorie du corps de classes abélien. b) Courbes elliptiques et formes modulaires, c) La conjecture de Ramanujan-Petersson. d) Congruences et formes modulaires Formes automorphes, variétés abéliennes et corps de classes Relations avec la théorie arithmétique des formes quadratiques Rapports avec les sciences de la nature Les initiateurs 95
4 TABLE DES MATIERES VII A VIII : Géométrie analytique Fonctions de plusieurs variables complexes et espaces analytiques. Domaines d'holomorphie et variétés de Stein. Sous-espaces analytiques et faisceaux cohérents. Problèmes de globalisation. Problèmes de prolongement. Propriétés des morphismes et des automorphismes. Singularités des espaces analytiques. Singularités des fonctions analytiques ; résidus Espaces analytiques compacts; variétés kahleriennes. Les problèmes de classification Variations de structures complexes et variétés de dimension infinie Espaces analytiques réels et p-adiques Rapports avec les sciences de la nature Les initiateurs 114 A IX : Géométrie algébrique Le cadre moderne de la Géométrie algébrique Les notions fondamentales de la théorie des schémas. A) Propriétés locales et propriétés globales. B) Modules quasi-cohérents et sousschémas. C) Relativisation et changement de base. D) Les divers types de morphismes. E) Techniques de construction et fondeurs représentables L'étude des singularités La théorie «transcendante» des variétés algébriques. La monodromie. Topologie des sous-variétés. Cycles algébriques. Diviseurs et variétés abéliennes. Diviseurs et fibres vectoriels. Diviseurs amples et plongements projectifs La cohomologie des schémas. Les diverses cohomologies. Multiplicité d'intersection et homologie. Groupe fondamental et monodromie Problèmes de classification. Les problèmes des «modules» Groupes algébriques. Variétés abéliennes. Groupes algébriques linéaires. Théorie des invariants Schémas formels et groupes formels Rapports avec les sciences de la nature Les initiateurs 149 A X : Théorie des nombres Le point de vue moderne en Théorie des nombres. Corps locaux, adèles et idèles. Fonctions zêta et fonctions L. Corps locaux et corps globaux " La théorie du corps de classes. Corps de classes particuliers. Extensions galoisiennes de corps locaux et globaux A p p r o x i m a t i o n s d i o p h a n t i e n n e s e t n o m b r e s t r a n s c e n d a n t s Géométrie diophantienne. Géométrie diophantienne sur un corps fini. Variétés abéliennes définies sur des corps locaux ou globaux. Géométrie diophantienne sur un anneau d'entiers algébriques.. 164
5 VIII PANORAMA DES MATHÉMATIQUES PURES 5. Groupes linéaires arithmétiques. La théorie arithmétique des formes quadratiques Rapports avec les sciences de la nature Les initiateurs 170 B I : Algèbre homologique Foncteurs dérivés dans les catégories abéliennes. Exemples de foncteurs dérivés Cohomologie des groupes. Variantes. Cohomologie galoisienne Cohomologie des algèbres associatives Cohomologie des algèbres de Lie Structures simpliciales La K-théorie Rapports avec les sciences de la nature Les initiateurs 188 B II : Groupes de Lie Les théorèmes de structure Groupes de Lie et groupes de transformations Topologie des groupes de Lie et des espaces homogènes Rapports avec les sciences de la nature Les initiateurs 197 B III. Groupes abstraits Générateurs et relations Groupes de Chevalley et systèmes de Tits Représentations linéaires et caractères. La théorie classique. La théorie modulaire. Caractères de groupes particuliers La recherche des groupes simples finis Rapports avec les sciences de la nature Les initiateurs 207 B IV : Analyse harmonique commutative Les problèmes de convergence Algèbres normées de l'analyse harmonique. Homomorphismes et mesures idempotentes. Ensembles d'unicité et pseudofonctions. Algèbres A(E) et synthèse harmonique. Fonctions opérant dans les algèbres Ensembles parfaits symétriques en Analyse harmonique : relations avec l'arithmétique Fonctions presque périodiques et fonctions moyenne-périodiques Applications de l'analyse harmonique commutative Rapports avec les sciences de la nature Les initiateurs. 218 B V : Algèbres de von Neumann La théorie de Tomita et les invariants de Connes 223
6 TABLE DES MATIÈRES IX 2. Applications aux algèbres stellaires Rapports avec les sciences de la nature Les initiateurs 225 B VI : Logique mathématique Non contradiction et indécidabilité Procédés effectifs uniformes et relations récursives La technique des ultraproduits Rapports avec les sciences de la nature Les initiateurs 232 B VII : Calcul des probabilités Fluctuations dans les suites de variables aléatoires indépendantes Inégalités sur les martingales Trajectoires des processus Processus généralisés Variables aléatoires à valeurs dans les groupes localement compacts Rapports avec les sciences de la nature Les initiateurs 239 C I : Catégories et faisceaux Catégories et foncteurs. Catégories opposées; foncteurs contravariants. Morphismes fonctoriels Foncteurs représentables. Exemples : objet final, produits, noyaux, limites projectives. Notions duales. Foncteurs adjoints. Structures algébriques sur les catégories Catégories abéliennes Faisceaux et espaces annelés. Images directes et images réciproques de faisceaux. Morphismes d'espaces annelés Sites et topos Rapports avec les sciences de la nature Les initiateurs 258 C II : Algèbre commutative Les principales notions. Localisation et globalisation. Conditions de finitude. Algèbre linéaire sur les anneaux. Graduations et filtrations. Topologies et complétions. Dimension. Clôture intégrale. Anneaux excellents. Anneaux henséliens. Valuations et valeurs absolues. Structure des anneaux locaux nœthériens complets Problèmes de la théorie des corps. Corps quasi-algébriquement clos. Les sous-extensions d'une extension transcendante pure. Le 14 e problème de Hilbert Rapports avec les sciences de la nature Les initiateurs 272
7 X PANORAMA DES MATHEMATIQUES PURES C III : Théorie spectrale des opérateurs La théorie de Riesz-Fredholm. Raffinements et généralisations Algèbres de Banach La théorie spectrale de Hilbert-von Neumann Rapports avec les sciences de la nature Les initiateurs 287 BIBLIOGRAPHIE 288 INDEX 299
L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues
Préambule.................................... xv Bibliographie... xxi I L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Introduction...................................
Maîtrise universitaire ès sciences en mathématiques 2012-2013
1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Master of Science en mathématiques 2013-2014
Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique
Master of Science en mathématiques 2015-2016
Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique
RAPHAËL ROUQUIER. 1. Introduction
CATÉGORIES DÉRIVÉES ET GÉOMÉTRIE ALGÉBRIQUE Trois exposés à la semaine «Géométrie algébrique complexe» au CIRM, Luminy, décembre 2003 1. Introduction On étudie dans un premier temps les propriétés internes
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
RAPPORT CONSEIL. Mandat 2010-2014. CATRAIN, DISDIER, Jean-Marc. s ), Christian. , Sandro VAIENTI. siècle par. Bảo Châu. Connes en
CONSEIL SCIENTIFIQUE DE L'INSTITUT NATIONAL DES SCIENCES MATHÉMATIQUES ET DE LEURS INTERACTIONS Mandat 2010-2014 Composition du Conseil scientifique au 1 er juin 2014 Nalini ANANTHARAMAN, Colette ANNÉ,
Master de Recherche première année. Programme de cours 2008-2011
Master de Recherche première année Mention : Mathématiques et Applications Spécialité : Mathématiques fondamentales et appliquées Responsable : Xue Ping WANG Programme de cours 2008-2011 Module M1 : Analyse
Contents. (Entries in square brackets refer to the bibliography on pp. 863 874) Preface...v. Curriculum Vitae...xiv
(Entries in square brackets refer to the bibliography on pp. 863 874) Preface...v Curriculum Vitae...xiv A Belgian mathematician: Jacques Tits by Francis Buekenhout...xvi Quelques coups de projecteurs
F1C1/ Analyse. El Hadji Malick DIA
F1C1/ Analyse Présenté par : El Hadji Malick DIA [email protected] Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
FEUILLETAGES PAR VARIÉTÉS COMPLEXES ET PROBLÈMES D UNIFORMISATION LAURENT MEERSSEMAN
FEUILLETAGES PAR VARIÉTÉS COMPLEXES ET PROBLÈMES D UNIFORMISATION LAURENT MEERSSEMAN Abstract. Ce texte est une introduction aux feuilletages par variétés complexes et aux problèmes d uniformisation de
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
Master 1 Mention mathématique et informatique UFR de Mathématiques Université Paris-Diderot
Master 1 Mention mathématique et informatique UFR de Mathématiques Université Paris-Diderot Parcours mathématiques fondamentales Parcours modélisation aléatoire Parcours logique mathématique et fondements
ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA
ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX
Temps et thermodynamique quantique
Temps et thermodynamique quantique Journée Ludwig Boltzmann 1 Ensemble Canonique Distribution de Maxwell-Boltzmann, Ensemble canonique ϕ(a) = Z 1 tr(a e β H ) Z = tr(e β H ) 2 La condition KMS ϕ(x x) 0
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
C algèbre d un certain groupe de Lie nilpotent.
Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble
FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique
NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
SUR LES FONCTIONS DE PLUSIEURS VARIABLES COMPLEXES: LES ESPACES ANALYTIQUES
33 SUR LES FONCTIONS DE PLUSIEURS VARIABLES COMPLEXES: LES ESPACES ANALYTIQUES Par HENRI GARTAN Je voudrais résumer ici quelques résultats obtenus depuis trois ou quatre ans dans la théorie des espaces
VARIÉTÉS CR POLARISÉES ET G-POLARISÉES, PARTIE I LAURENT MEERSSEMAN. À la mémoire de Marco Brunella
VARIÉTÉS CR POLARISÉES ET G-POLARISÉES, PARTIE I LAURENT MEERSSEMAN À la mémoire de Marco Brunella Abstract. Polarized and G-polarized CR manifolds are smooth manifolds endowed with a double structure:
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
M2 de Mathématiques fondamentales
Université Pierre et Marie Curie (Paris vi) Master Sciences et Technologie Mention Mathématiques et Applications M2 de Mathématiques fondamentales Année universitaire 2014 2015 Responsables : Jean-François
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
UNIVERSITÉ PARIS VI. Géométrie analytique et analyse semi-classique
UNIVERSITÉ PARIS VI Mémoire en vue d obtenir l habilitation à diriger des recherches en Mathématiques Géométrie analytique et analyse semi-classique Mauricio D. Garay Soutenance le Mercredi 10 Décembre
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
Annexe : programme du master de mathématiques : Spécialité Mathématiques fondamentales et appliquées. Programme de cours de première année
Annexe : programme du master de mathématiques : Spécialité Mathématiques fondamentales et appliquées Programme de cours de première année Module M1 : Analyse fonctionnelle (9 ECTS, UEF, 1er semestre, Cours
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Curriculum Vitæ. Hervé OYONO-OYONO, Né le 01/10/68 à Lusignan (86). Situation actuelle : Cursus Professionnel :
Curriculum Vitæ Hervé OYONO-OYONO, Né le 01/10/68 à Lusignan (86). Laboratoire de Mathématiques et Applications de Metz Université Paul Verlaine et CNRS (UMR 7122) Bât. A, Ile du Saulcy 57045 Cedex 1 Téléphone
ESQUISSE D UN PROGRAMME. par Alexandre Grothendieck
ESQUISSE D UN PROGRAMME par Alexandre Grothendieck Sommaire: 1. Envoi. 2. Un jeu de Lego-Teichmüller et le groupe de Galois de Q sur Q. 3. Corps de nombres associés à un dessin d enfant. 4. Polyèdres réguliers
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP20-9717 Pointe-à-Pitre Cedex CONTRAT 2010-201 LE MASTER NOM DU DOMAINE STS Mention : Mathématiques Implantation : Guadeloupe FICHES DESCRIPTIVES
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail
Quelques propriétés globales des variétés différentiables
Quelques propriétés globales des variétés différentiables Par RENÉ THOM, Strasbourg Introduction Le présent article donne la démonstration des résultats que j'ai annoncés dans quatre Notes aux Comptes-Rendus
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
On ne peut pas entendre la forme d un tambour
On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :
11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
1 Première section: La construction générale
AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Né le 13/06/1984 Russe Célibataire Langues : Russe, Anglais,
Alexey Zykin Université d Etat Ecole des Hautes Etudes en Sciences Economiques Adresse : 7, Vavilova rue, Moscou, Russie Courriel : [email protected] Page personnelle : http://www.mccme.ru/poncelet/pers/zykin.html
La Longue Marche à travers la théorie de Galois, Part Ib, 26-37
La Longue Marche à travers la théorie de Galois, Part Ib, 26-37 26. Groupes de Teichmüller profinis (Discrétification et prédiscrétification) Soit π un groupe profini à lacets de type g, ν, T le Ẑ-module
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB)
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) FICHE D IDENTITE DE LA FORMATION Domaine de formation : Sciences, Technologies, Santé Intitulé : Licence Sciences, Technologies,
Rétablissement d un réseau cellulaire après un désastre
Rétablissement d un réseau cellulaire après un désastre Anaïs Vergne avec Laurent Decreusefond, Ian Flint, et Philippe Martins Journées MAS 2014 29 août 2014 Rétablissement d un réseau cellulaire après
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Physique quantique et physique statistique
Physique quantique et physique statistique 7 blocs 11 blocs Manuel Joffre Jean-Philippe Bouchaud, Gilles Montambaux et Rémi Monasson nist.gov Crédits : J. Bobroff, F. Bouquet, J. Quilliam www.orolia.com
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
par Rochdi Ben Charrada & Aziz El Kacimi Alaoui (Version Juin 2013)
OHOMOLOGIE DE DOLBEAULT EUILLETÉE DU EUILLETAGE OMPLEXE AINE DE REEB par Rochdi Ben harrada & Aziz El Kacimi Alaoui (Version Juin 2013) Résumé. Soit le feuilletage complexe affine de Reeb de dimension
AOT 13. et Application au Contrôle Géométrique
AOT 13 Géométrie Différentielle et Application au Contrôle Géométrique Frédéric Jean Notes de cours Édition 2011/2012 ii Table des matières 1 Variétés différentiables 1 1.1 Variétés différentiables............................
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Approximation diophantienne uniforme et dimension de Hausdorff
Approximation diophantienne uniforme et dimension de Hausdorff Lingmin LIAO Travaux en collaboration avec Yann Bugeaud, Dong Han Kim et Micha l Rams Université Paris-Est Créteil Séminaire de Probabilités
Espace II. Algèbres d opérateurs et Géométrie non commutative.
Chapitre 2 Espace II. Algèbres d opérateurs et Géométrie non commutative. Dans le formalisme de la mécanique quantique, les observables ne sont plus des grandeurs ou fonctions numériques, que l on peut
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
LA THÉORIE DES POINTS FIXES ET SES APPLICATIONS EN ANALYSE
LA THÉORIE DES POINTS FIXES ET SES APPLICATIONS EN ANALYSE JEAN LERAY Â la mémoire du profond mathématicien polonais JULES SCHAUDER, victime des massacres de 1940. I. INTRODUCTION 1. Soit (x) une application
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Méthode des éléments-finis par l exemple
par l exemple Daniel Choï 1 LMNO Groupe Mécanique Modélisation Mathématique et Numérique Université de Caen, Bld Maréchal Juin, 14032 Caen Cedex, France Version Avril 2010 1. [email protected] Ce
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques
Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100
Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...
III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel
CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES par Jean-Pierre Puel 1. Introduction Pourquoi équations aux dérivées partielles et pourquoi contrôle? Les équations aux dérivées partielles, associées à certaines
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Notes de cours M2 Équations aux dérivées partielles elliptiques. Hervé Le Dret
Notes de cours M2 Équations aux dérivées partielles elliptiques Hervé Le Dret 4 mars 2010 2 Table des matières 1 Rappels en tous genres 7 1.1 Les théorèmes de convergence de Lebesgue............ 7 1.2
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Introduction à la relativité générale
Introduction à la relativité générale Bartolomé Coll Systèmes de référence relativistes SYRTE - CNRS Observatoire de Paris Introduction à la Relativité Générale Préliminaires Caractère théorique (formation)
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Dérivées et différentielles des fonctions de plusieurs variables
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 6 : Dérivées et différentielles des fonctions de plusieurs variables Christelle MELODELIMA Année
par Denis-Charles Cisinski & Georges Maltsiniotis
LA CATÉGORIE Θ DE JOYAL EST UNE CATÉGORIE TEST par Denis-Charles Cisinski & Georges Maltsiniotis Résumé. Le but principal de cet article est de prouver que la catégorie cellulaire Θ de Joyal est une catégorie
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
