Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.



Documents pareils
Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Théorème du point fixe - Théorème de l inversion locale

Cours d Analyse. Fonctions de plusieurs variables

I Stabilité, Commandabilité et Observabilité Introduction Un exemple emprunté à la robotique Le plan Problème...

3 Approximation de solutions d équations

Continuité d une fonction de plusieurs variables

Fonctions de plusieurs variables

I. Polynômes de Tchebychev

3. Conditionnement P (B)

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Approximations variationelles des EDP Notes du Cours de M2

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Calcul différentiel. Chapitre Différentiabilité


Introduction à la méthode des éléments finis

Calcul différentiel sur R n Première partie

Intégration et probabilités TD1 Espaces mesurés Corrigé

Image d un intervalle par une fonction continue

Espérance conditionnelle

La méthode des éléments finis et le contrôle des calculs

Chp. 4. Minimisation d une fonction d une variable

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Programmes des classes préparatoires aux Grandes Ecoles

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Cours 02 : Problème général de la programmation linéaire

Probabilités sur un univers fini

CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel

Cours Fonctions de deux variables

Amphi 3: Espaces complets - Applications linéaires continues

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Développement décimal d un réel

Chapitre 2 Le problème de l unicité des solutions

Résolution de systèmes linéaires par des méthodes directes

Probabilités sur un univers fini

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Table des matières. Introduction Générale 5

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Différentiabilité ; Fonctions de plusieurs variables réelles

Intégration et probabilités TD1 Espaces mesurés

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Plan du cours : électricité 1

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Programmation Linéaire - Cours 1

Résolution d équations non linéaires

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

aux différences est appelé équation aux différences d ordre n en forme normale.

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Modèles et Méthodes de Réservation

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

6 Equations du première ordre

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

NOTICE DOUBLE DIPLÔME

Modélisation géostatistique des débits le long des cours d eau.

Loi binomiale Lois normales

Exercices Corrigés Premières notions sur les espaces vectoriels

Chapitre 1 : Évolution COURS

Table des matières. I Mise à niveau 11. Préface

Commun à tous les candidats

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

Programme de la classe de première année MPSI

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

Introduction à l étude des Corps Finis

Moments des variables aléatoires réelles

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Simulation de variables aléatoires

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Hervé Oudin. HAL Id: cel

Yves Debard. Université du Mans Master Modélisation Numérique et Réalité Virtuelle.

République Algérienne Démocratique et Populaire

Programmation linéaire et Optimisation. Didier Smets

FIMA, 7 juillet 2005

Une approche statique quasi-périodique de la capacité portante des groupes de micropieux

La problématique des tests. Cours V. 7 mars Comment quantifier la performance d un test? Hypothèses simples et composites

Continuité en un point

Équation de Langevin avec petites perturbations browniennes ou

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

On ne peut pas entendre la forme d un tambour

Principe de symétrisation pour la construction d un test adaptatif

Calcul intégral élémentaire en plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables

Limites finies en un point

Transcription:

Problèmes mathématiques de la mécanique/mathematical problems in Mechanics Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Cristinel Mardare Laboratoire d Analyse Numérique, Tour n 55, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75005 Paris, France. Résumé. On considère une famille de coques linéairement élastiques, ayant toutes la même surface moyenne que l on va supposer uniformément elliptique. On donne une estimation d erreur sur l écart entre la solution du modèle de Koiter et la solution du modèle membranaire de coques. La démonstration repose sur une méthode de correcteurs. Two-dimensional models of linearly elastic shells. Error estimates between their solutions. Abstract We consider a family of linearly elastic shells, all having the same middle surface which we assume to be uniformly elliptic. We give an error estimate between the solution of the Koiter s model and the solution of membrane-dominated problem of shells. The proof uses a method of correctors. 1. Le modèle de Koiter et le problème membranaire d une coque linéairement élastique A l exception de ε, les indices et exposants grecs (resp. latins) prennent leurs valeurs dans l ensemble {1,} (resp. {1,,3}). On utilise la convention de sommation sur les indices et exposants répétés. On note u v, u v et u respectivement le produit scalaire, le produit vectoriel et la norme euclidienne dans R 3. Soit un ouvert borné, connexe de R, de point courant y=(y α ) et de frontière γ lipschitzienne, étant localement d un même côté de γ. On note par ν le vecteur normal unitaire le long de γ, dirigé vers l extérieur du domaine. Posons α = / y α. Soit ϕ : R une application injective, de classe C, telle que les deux vecteurs a α = α ϕ forment une base, dite covariante, du plan tangent à la surface S=ϕ(). On note a α les vecteurs de la base contravariante correspondante, définis par a α a β = δβ α. En tout point de S, on définit le vecteur normal a 3 =a 1 a / a 1 a, les symboles de Christoffel Γ σ αβ = aσ α a β, et l élément d aire de la surface a dy, où a=dét(aαβ ). Les composantes covariantes (resp. contravariantes) du tenseur métrique sont donnés par a αβ = a α a β (resp. a αβ = a α a β ), et on définit le tenseur de courbure par ses composantes covariantes b αβ = a α β a 3, ou mixtes b β α = a βσ b σα. Pour tout ε > 0, on considère une coque élastique de surface moyenne S et d épaisseur ε, 1

dont la configuration de référence est Φ(Ω ε ), où Ω ε = ] ε, ε[, Φ : Ω ε R étant définie par Φ(x ε ) = ϕ(y) + x ε 3 a3 (y) pour tout x ε = (y, x ε 3 ) Ωε. On définit les vecteurs g ε i = ε i Φ, qui, pour ε suffisament petit, forment une une base (dite covariante) en chaque point de la coque. On se place en élasticité linéarisée et on étudie le problème où la coque est encastrée sur toute sa surface latérale, et est soumise à l action de forces de volume, dont la densité élémentaire est f=f i,ε g i,ε avec f i,ε L (Ω ε ). On suppose de plus qu il existe des fonctions f i L ( ] 1, 1[) tels que f i,ε (y, x ε 3 ) = f i (y, x ε 3 /ε). Les points de la coque subissent alors un déplacement de vecteur u ε i gi,ε, u ε i : Ω ε R. Les inconnues u ε i résolvent dans ce modèle un problème tri-dimensionnel posé sur Ω ε (voir Ciarlet []). On suppose que les constantes de Lamé λ > 0 et µ > 0 du matériau élastique constituant la coque sont indépendantes de ε. Puisque l épaisseur est très petite par rapport aux autres dimensions de la coque, on a besoin en pratique de modèles bi-dimensionnels dont les solutions soient de bonnes approximations du vrai déplacement u ε. Le modèle de Koiter énoncé ci-dessous est un de ceux-là: ζ(ε) V K () déf = H 1 0(Ω) H 1 0(Ω) H 0(Ω), (1) B K (ζ(ε), η) = p i η i a dy pour tout η = (ηi ) V K (), où, pour tout (ζ, η) [ H 1 () H 1 () H () ], on a: () B K (ζ, η) = a αβστ γ στ (ζ)γ αβ (η) a dy + ε a αβστ ρ στ (ζ)ρ αβ (η) a dy 3 a αβστ = 4λµ 1 λ + µ aαβ a στ + µ(a ασ a βτ + a ατ a βσ ) et p i = f i (y, x 3 ) dx 3, γ αβ (η) = 1 ( αη β + β η α ) Γ σ αβ η σ b αβ η 3 1 pour tout η V(), ρ αβ (η) = αβ η 3 Γ σ αβ ση 3 c αβ η 3 +b σ β αη σ +b σ α β η σ +( β b σ α Γ γ αβ bσ γ Γ σ αγb γ β )η σ, les γ αβ (η) représentant les composantes covariantes du tenseur linéarisé des déformations de la surface S et les ρ αβ (η) désignant les composantes covariantes du tenseur linéarisé de changement de courbure. On sait que ce problème admet une unique solution ζ(ε) V K () (voir Bernadou, Ciarlet et Miara [1]), et ce sans aucune hypothèse supplémentaire sur la surface S; toutefois, ce modèle n est justifié, c est-à-dire que ζ(ε) n approche correctement le vrai déplacement u ε que pour certaines types de surface moyennes S (voir Ciarlet et Lods [4]). Maintenant, si on suppose que la surface S est uniformément elliptique, c est-à-dire qu il existe une constante b > 0 telle que b αβ (y)ξ α ξ β b ξ pour tout y et ξ = (ξ α ) R, on trouve, par l analyse asymptotique, un autre modèle de coques linéairement élastiques, appelé problème membranaire : ζ V() déf = H 1 0() H 1 0() L (), (3) a αβστ γ στ (ζ)γ αβ (η) a dy = p i η i a dy pour tout η V(),

où les a αβστ, p i et γ αβ (η) sont définis comme ci-dessus. Le problème (3) est bien posé (voir Ciarlet []). On sait de plus que ζ approche le déplacement u ε une fois mis à l echelle, en norme H 1 (Ω) H 1 (Ω) L (Ω) (voir Ciarlet et Lods [3]).. L estimation d écart entre ζ(ε) et ζ Avant d ennoncer le résultat principal de cette note, on donne un Lemme général, qui est en fait une généralisation du Lemme 5-1 de J-L. Lions (voir [6]), et qui va nous servir dans la suite: Lemme 1 Soit u H m (Ω), m N, où Ω R N, N N, est un ouvert borné à frontière Γ régulière (de classe C par exemple), et a > 0. Alors, pour chaque ε > 0, il existe u(ε) H m (Ω) tel que: (4) u(ε) u H m 0 (Ω), i. e. k ν u(ε) = k ν (u) sur Γ, pour tout k = 0, 1,..., m 1, (5) u(ε) L (Ω) Cεa u L (Ω), (6) u(ε) Hk(Ω) Cε ak u Hk(Ω) pour tout k = 1,..., m, où C est une constante qui dépend uniquement de Ω. Démonstration du Lemme 1 (esquisse) On se ramène d abord au cas où Ω = R N R +. On cherche u(ε) sous la forme suivante: u(ε)(y, x N ) = m c k u(y, 1 ε k x N), y = (x 1, x,..., x N 1 ), k=1 où les coefficients c k restent à choisir afin de vérifier la condition (7). On trouve ainsi: c s = ε s(s 1) ( 1) s 1 (1 + O(ε)) pour tout s = 1,,..., m, ce qui nous permet, moyennant un changement de variables, d établir les estimations (5)-(6) en norme H k (Ω) pour tout k allant de 0 à m. On est désormais en mesure de montrer le résultat suivant, qui est le résultat principal de cette Note: Théorème 1 On suppose que la frontière γ de est de classe C, que ϕ est analytique dans un ouvert contenant, et que p α H 1 () et p 3 H (). On suppose de plus que la surface S est uniformément elliptique. Alors, pour ε suffisament petit on a l estimation suivante: (7) ζ(ε) ζ H 1 () H 1 () L () Cε 1/5, où la constante C dépend seulement de ϕ, γ, p α H 1 () et p3 H () et où ζ(ε) est la solution du modèle de Koiter (1) et ζ est la solution du problème membranaire. La démonstration est en trois étapes, que nous décrivons brièvement ci-dessous: Étape 1. Sous les hypothèses du Théorème 1, la solution du problème membranaire est en 3

fait dans l espace [H 3 () H 3 () H ()] [H 1 0() H 1 0() L()] (voir Genevey [5]). introduit alors un correcteur θ(ε) H 1 0() H 1 0() H () tel que { (θ(ε) ζ) V K () déf = H 1 0() H 1 0() H (8) 0(), B K (θ(ε), η) = 0 pour tout η V K (). On Étape. Afin de pouvoir estimer θ(ε) dans la norme H 1 () H 1 () L (), on écrit θ(ε) = θ(ε) + θ(ε), où θ 1 (ε) = θ (ε) = 0 et θ 3 (ε) est donné par le Lemme 1, avec θ 3 (ε) ζ 3 H 0(); de plus, les estimations (5)-(6) peuvent être obtenues pour un choix de a qui est précisé plus loin. Alors θ(ε) est la solution du problème: { θ(ε) V K (), (9) B K ( θ(ε), η) = B K ( θ(ε), η) pour tout η V K (). On trouve ainsi: (10) ( γ αβ (θ(ε)) ) 1 C(ε α ζ L () 3 L () + ε1 4α ζ 3 H () ). Étape 3. - Puisque ζ(ε) = ζ(ε) ζ + θ(ε) est un élément de V K (), on l utilise comme fonction test dans les relations (1)(3) et (8). On trouve ainsi l inégalité: (11) ( γ αβ (ζ(ε) L () ) 1 Cε ζ H 1 () H 1 () H (). La coercivité de la forme bilinéaire B M (, ) dans l espace H 1 0 () H1 0 () L () nous permet d obtenir de (10) et de (11) l inégalité annoncée dans le Théorème 1, avec le choix a = 1/5. Corollaire Sous les hypothèses du Théorème 1, pour tout s [0, /5[, on a également l estimation d erreur suivante: (1) ζ(ε) ζ H 1 () H 1 () H s () Cε 1/5 s/, où la constante C dépend de ϕ, γ, p α H 1 () et p3 H (). La démonstration utilise un argument d interpolation entre les espaces H 1 () H 1 () L () et H 1 () H 1 () H () ainsi que l inégalité suivante, valable pour tout η H 1 0 () H1 0 () H 0 () (voir Bernadou, Ciarlet et Miara [1]): (13) [ γ αβ (η) L () + ρ αβ (η) L () ] 1 C η H 1 () H 1 () H (). 3.Commentaire L inégalité (7) ne peut avoir lieu lorsque l exposant sur ε est trop grand (> 4/15), même pour des fonctions f très régulières. On montre ceci en utilisant le même argument d interpolation et le fait que ζ 3 (ε) ne peut converger vers ζ3 0 dans Hs (Ω) si s > 1/ dès que 4

ζ 0 3 γ 0. Ce travail fait partie du Programe Capital Humain et Mobilité Shells: Mathematical Modeling and Analysis, Scientific Computing de la Commision des Communautés Européennes(Contrat n 0 ERBCHRXCT 940536). Références bibliographiques [1] M. Bernadou, P.G. Ciarlet et B. Miara, Existence theorems for two-dimensional linear shell theories, Journal of Elasticity, 1994. [] P.G. Ciarlet, Mathematical Elasticity, Vol. II, (à paraître). [3] P.G. Ciarlet et V. Lods, Asymptotic analysis of linearly elastic shells. I: Justification of membrane shell equations, Arch. Rational Mech. Anal. (à paraître). [4] P.G. Ciarlet et V. Lods, Asymptotic analysis of linearly elastic shells. III: A justification of Koiter s shell equations, Arch. Rational Mech. Anal. (à paraître). [5] K. Genevey, C. R. Acad. Sci. Paris, 30, Série I, p. 1153-1156, 1995. [6] J-L. Lions, Perturbations singulières dans les Problèmes aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin, 1973. 5