Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)



Documents pareils
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Approximations variationelles des EDP Notes du Cours de M2

3 Approximation de solutions d équations

Une premiere approche des elements nis sur un exemple tres simple

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Théorème du point fixe - Théorème de l inversion locale

NOTATIONS PRÉLIMINAIRES

Cours d Analyse. Fonctions de plusieurs variables

Compte rendu des TP matlab

EXERCICES - ANALYSE GÉNÉRALE

Différentiabilité ; Fonctions de plusieurs variables réelles

Fonctions de plusieurs variables

Image d un intervalle par une fonction continue

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Continuité d une fonction de plusieurs variables

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Intégration et probabilités TD1 Espaces mesurés Corrigé

Programmation linéaire

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Commun à tous les candidats

Cours 02 : Problème général de la programmation linéaire

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Calcul différentiel sur R n Première partie

Calcul différentiel. Chapitre Différentiabilité

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Les travaux doivent être remis sous forme papier.

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

Développements limités. Notion de développement limité

Introduction à la méthode des éléments finis

Résolution d équations non linéaires

Retournement Temporel

Limites finies en un point

Cours d analyse numérique SMI-S4

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Optimisation des fonctions de plusieurs variables

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Texte Agrégation limitée par diffusion interne

Fonctions de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Cours d Analyse 3 Fonctions de plusieurs variables

Cours de Mécanique du point matériel

Intégrales doubles et triples - M

Chapitre 7 : Intégration sur un intervalle quelconque

Groupe symétrique. Chapitre II. 1 Définitions et généralités

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Intégration et probabilités TD1 Espaces mesurés

Équations non linéaires

Axiomatique de N, construction de Z

Chapitre VI Fonctions de plusieurs variables

I. Polynômes de Tchebychev

3. Conditionnement P (B)

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Géométrie dans l espace Produit scalaire et équations

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Problème 1 : applications du plan affine

Implémentation de Nouveaux Elements Finis dans Life et Applications

La fonction exponentielle

DYNAMIQUE DE FORMATION DES ÉTOILES

Amphi 3: Espaces complets - Applications linéaires continues

Continuité en un point

1 Introduction et modèle mathématique

Résolution de systèmes linéaires par des méthodes directes

Sur certaines séries entières particulières

Introduction à l analyse numérique : exemple du cloud computing

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Leçon 01 Exercices d'entraînement

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le modèle de Black et Scholes

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Complément d information concernant la fiche de concordance

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

Fonctions de deux variables. Mai 2011

CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel

TSTI 2D CH X : Exemples de lois à densité 1

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Programmes des classes préparatoires aux Grandes Ecoles

C f tracée ci- contre est la représentation graphique d une

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Mais comment on fait pour...

BACCALAURÉAT PROFESSIONNEL SUJET

OM 1 Outils mathématiques : fonction de plusieurs variables

Correction de l examen de la première session

Économetrie non paramétrique I. Estimation d une densité

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Chapitre 1 Régime transitoire dans les systèmes physiques

Structures algébriques

Problèmes de Mathématiques Filtres et ultrafiltres

Equations aux Dérivées Partielles

Transcription:

Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut ^etre utilise sans demonstration. Tous les documents sont autorises. La seconde partie est commune aux deux parcours (Paris 13 et Centrale), la premiere partie est uniquement pour la specialite MACS, mais les resultats numerotes dans la premiere partie peuvent ^etre utilises sans demonstration dans la seconde. Seuls les resultats enonces dans le texte de la premiere partie sont utilisables eventuellement dans la seconde partie. La partie 1 et la partie 2 sont a rediger sur deux copies separees, et la partie 1 sera relevee au bout de deux heures. Dans ce sujet, nous etudions l'equation d'advection-diusion. Elle intervient dans de nombreux domaines : mecanique des uides (equation de Navier-Stokes linearisee), environnement (equation des milieux poreux), mathematiques - nancieres (equation de Blaack et Scholes). 1 Partie 1 Dans cette partie, designe un domaine borne de IR d avec d = 1 ou d = 2, de frontiere susamment reguliere. Soit l'equation d'advection-diusion : " u + a ru = f u j = (1.1) On suppose f 2 L 2 (), " > et a(x) = (a 1 (x); :::; a d (x)) est un champ de vecteur dont toutes les composantes sont de classe C 1, uniformement bornees sur et tel que div(a) = en tout point de. On note kak L 1 = sup( x2 dx i=1 ja i (x)j 2 ) 1=2 et on notera u " la solution de (1.1) associee au coecient de diusion ". 1

1. (Etude theorique) On suppose dans cette partie que est un domaine regulier de classe C 2 de IR d. (a) Montrer que toute solution u " 2 H 2 () est aussi solution de la formulation variationnelle suivante : 8 >< >: Trouver u " 2 H 1 () 8v 2 H 1 () " ru " rv + (a ru " ) v = fv (1.2) Montrer reciproquement que toute solution u " de (1.2) qui appartient a H 2 () est aussi solution de (1.1). R (b) Montrer que la forme bilineaire b(u; v) = (a ru) v est antisymetrique sur H 1 (). En deduire que (1.2) admet une solution unique dans H 1 (). (c) Etablir l'estimation ku " k H 1 () C 1 kfk L 2 () ou l'on exprimera C 1 en fonction de la constante C P de Poincare du domaine (que l'on denira precisement sans la calculer) et de " >. (d) On rappelle que si v est la solution de la formulation variationnelle du probleme v = g dans avec condition aux limites v = sur et g 2 L 2 (), on a l'estimation de regularite kvk H 2 () C kgk L 2 () ou la constante C ne depend que du domaine. En deduire que la solution u " de (1.2) verie une estimation similaire de la forme ku " k H 2 () C 2 kfk L 2 () ou l'on exprimera C 2 en fonction de C P, C, kak L 1 et " >. (e) Montrer que les constantes C 1 et C 2 tendent vers +1 lorsque "!. 2. (Etude numerique) On supposera dans cette partie que est un domaine polyhedrique convexe de IR d et on admettra que tous les rsultats obtenus precedemment restent valables dans cette situation. On considere une suite (T h ) h> de maillages reguliers conformes de. On rappelle que { la suite h = max K2Th diam(k) tend vers. { il existe une constante C r telle que pour tout h > et K 2 T h, on a diam(k) C r (K) avec (K) rayon du cercle inscrit de K. On designe par V h l'espace d'elements nis P 1 Lagrange associe au maillage T h et on utilise la discretisation de (1.1) par la methode de Galerkin : 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ru ";h rv h + (a ru ";h ) v h = fv h (1.3) 2

(a) Montrer que (1.3) admet une solution unique u ";h qui verie l'estimation d'erreur ku " u ";h k H 1 () C 3 inf v h 2V h ku " v h k H 1 () ou l'on exprimera C 3 en fonction de C P, kak L 1 et " >. (b) Montrer que l'on a l'estimation inf v h 2V h ku " v h k H 1 () C 4 h ku " k H 2 () ou la constante C 4 ne depend que de C r. En deduire l'estimation d'erreur ku " u ";h k H 1 () C 5 h kfk L 2 () ou l'on exprimera C 5 en fonction de C 2, C 3 et C 4. (c) Montrer la constante C 5 tend vers +1 lorsque "!. Conclure. 3. (Discretisation en dimension 1) Dans cette partie, on se place en dimension 1, =]; L[ et f = a = 1, soit "u " + u " = 1 sur ]; L[ u " () = u " (L) = : (1.4) (a) Ecrire le schema obtenu par la discretisation en elements nis P 1 Lagrange sur un maillage rgulier. Montrer qu'il coincide avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence centree. Comment cela se relie-t-il intuitivement avec les problemes numeriques precedents? (b) Une solution possible a ces problemes consiste a discretiser (1.1) par une formulation variationnelles du type 8 >< >: Trouver u ";h 2 V h 8v h 2 V h " ];L[ u ";h v h + ];L[ u ";h v h + h u ";h v h = fv h ];L[ ];L[ (1.5) avec h choisi de maniere adequate. Pour preciser le choix de h, on le cherche sous la forme h = h: Pour quelle valeur de, le schema coincide-t-il avec un schema aux dierences nies ou le terme d'advection u " est discretise par une dierence decentree amont dont on connait la stabilite dans la limite " tend vers? 3

2 Partie 2 Soit f 2 L 2 ([; L]). On considere l'equation dierentielle ordinaire qui est (1.1) en dimension 1, a etant une constante donc de divergence nulle(l > ) : "u + au = f(x); x 2]; L[; u 2 H 1 ([; L]) (2.6) (elle est donc munie des conditions aux limites u() = u(l) =. 1. (Generalites) On considere une fonctionnelle J(u) deux fois derivable sur H 1 ([; L]). R 1 (a) Calculer (J (tu); u)dt pour tout u. (b) On introduit c(u; v) = R L ( "u + au f)(x)v(x)dx. Montrer que u 2 H 1 ([; L]) solution de (2.6) si et seulement si 8v 2 H 1 ([; L]); c(u; v) = : (c) Calculer c(u; v) + c(v; u) pour tous u; v dans H 1 ([; L]). (d) On suppose qu'il existe J qui verie 8u; v 2 H 1 ([; 1]); (J (u); v) = c(u; v): Determiner J(u) pour tout u en utilisant deux questions precedentes et en deduire que J n'existe pas. Existe-t-il un probleme de minimisation sans contraintes sur H 1 ([; L]) tel que (2.6) soit l'equation d'euler associee? 2. Se ramener a un probleme quadratique. Dans ce paragraphe, on montre que, dans certaines conditions, l'equation avec un terme antisymetrique peut se ramener a une equation associee a un probleme symetrique. C'est cette analyse qui permet d'obtenir des resultats (en homogeneisation) sur la diusion moleculaire. (a) Trouver le changement de variable lineaire, et le changement de fonction inconnue et de terme source tels que (2.6) est equivalente a (1.4) sur un nouvel intervalle [; ~ L]. Cette relation ne sera pas utilisee par la suite. (b) Montrer que (2.6) est equivalente a "U + a2 4" U = f(x)e a 2" x = F (x) (2.7) ou on exprimera U en fonction de u. (c) Demontrer que U est solution du probleme de minimisation suivant sur H 1 ([; L]) : infj (U) ou J (V ) = 1 2 L ["(V ) 2 + a2 4" V 2 ]dx L F (x)v (x)dx: Montrer que ce probleme admet une unique solution U. 4

(d) Montrer que la fonctionnelle J est convexe sur H 1 ([; L]) et donner la meilleure constante ("; a). (e) Montrer que la fonctionnelle J est M Lipschitzienne et donner la meilleure constante M("; a). (f) Identier les limites lorsque " tend vers des deux constantes. (g) Montrer l'inegalite inf("; a2 4" )jju jj H 1 jjf jj L 2: Quelle est la limite lorsque " tend vers de la norme jju jj H 1? Quelle est la limite lorsque " tend vers de la norme jju jj L 2 (on pourra utiliser une inegalite celebre). 3. On considere dans cette section la fonctionnelle J. (a) Est-ce une fonctionnelle quadratique? (b) Montrer l'egalite J (V ) = J (U ) + 1 2 a(v U ; V U ) R ou ~a(v; W ) = (J L (U)V; W ) = ("V W + a2 4" V W )dx. Est ce que ~a depend de U? Comment appelle-t-on de telles fonctionnelles? (c) Montrer l'existence d'un unique K(V ) tel que 8w 2 H 1 ([; L]); ~a(v; W ) = (K(V ); W ) H 1 ou (:; :) H 1 designe le produit scalaire sur H 1. Montrer que K est un operateur lineaire. (d) Montrer l'egalite J(V ) = K(V U ): (e) Algorithme de gradient a pas optimal? 4. On considere maintenant un champ a(x; y); b(x; y) non constant veriant : il existe (x; y) de classe C 2 telle que a(x; y) = @ x (x; y), b(x; y) = @ y (x; y) et =. (a) Dans le cas ou (x; y) = x 2 y 2, montrer que ces hypotheses sont veriees (b) Montrer que ces hypotheses sont aussi veriees lorsque (x; y) = Re(x + iy) N. (c) Soit un ouvert borne regulier. On considere l'equation aux derivees partielles, pour f 2 L 2 () " u + (a(x; y)@ x u + b(x; y)@ y u) = f(x; y); u 2 H 1 () (2.8) ou a; b verie les hypotheses enoncees au debut de cette section. Montrer, en utilisant point par point les elements de 1, qu'il n'existe pas de fonctionnelle J(u) telle que (2.8) soit l'equation d'euler associee a J(u). 5

(d) Trouver une fonction U(x; y) = (x; y; a; ")u(x; y) telle que U(x; y) soit solution de l'equation aux derivees partielles " U + 1 4" jr j2 U = F (2.9) ou F sera a determiner en fonction de f et de. (e) Determiner la forme quadratique J 1 (U) dont l'equation d'euler associee est (2.9). On admet dans ce qui suit que est un ouvert borne regulier sur lequel l'inegalite de Poincare U 2 dx C ~ P (ru) 2 dx est vraie pour U 2 H 1 (). (f) Demontrer que J 1 admet un unique point de minimum, note U 1 sur H 1 (), muni de la norme ((u; u)) = R (ru)2 dx. 5. Analyse abstraite de l'algorithme de gradient optimal. Dans cette question, on etudie l'algorithme de gradient a pas optimal en dimension innie. On considere pour cela J (U) = 1 " (ru) 2 dx + 1 V (x)u 2 dx 2 2 ou V (x) = 1 4" jr j2 est continue bornee sur. On utilisera en permanence pour f et g dans H 1 () les identites de Green : f gdx = rf:rgdx = f gdx: (a) Montrer sans calculs que l'algorithme de gradient a pas optimal pour J 1 avec valeur initiale est le m^eme que l'algorithme de gradient a pas optimal pour J avec comme valeur initiale U 1, ou U 1 est l'unique solution de (2.9) dans H 1 (). (b) Montrer que 8W 2 H 1 (); (J (U); W ) = ((R; W )) ou R est l'unique solution dans H 1 () de R = " U + V (x)u: (c) En deduire que U! R = KU est un operateur bijectif de H 1 () sur H 1 (). (d) Montrer que J (U) = 1((KU; U)) = 1 ((R; U)). 2 2 (e) On introduit R 1 = KR. En rappelant le theoreme du polycopie (numero, et page) donner le pas n de l'etape n de l'algorithme de gradient a pas optimal 6

(f) Montrer les egalites ((KU; KU)) = ((R; KU)) = ((R; R)) = R Rdx ((KU; KU)) = " 2 (ru) 2 dx + " V (x)u 2 dx + V (x)rudx ((K 2 U; KU)) = ((R 1 ; R)) = " 2 (ru) 2 dx+" 3 V (x)u 2 +" 2 V (x)rudx+" V (x)r 2 : En utilisant l'egalite V (x) = 1 4" jr j2, montrer l'egalite (K 2 U; KU) = " 2 (KU; KU) + 1 4 jr j 2 R 2 dx: Donner le pas optimal. Estimer sa valeur en fonction de ". (g) Expliquer pourquoi, dans ce cas, calculer une etape de l'algorithme de gradient a pas optimal ou de gradient a pas constant est exactement de la m^eme diculte que de calculer la solution du probleme. 6. Discretisation du probleme sur des splines. On considere dans toute cette section que l'intervalle [; L] est decompose en segments de taille egale L N en nombre N. On admet l'existence de fonctions, appellees splines, de classe C 1 sur IR, ayant les proprietes suivantes : pour 1 j N 1, N j a pour support [ j 1 j+1 N L; N L], N j est de degre 2 au plus sur [ j 1 N L; j N L] et sur [ j j+1 N L; N L]. On note S N = f X j N j ; 1 j N 1g; SN = f X j N j e x 2" ; 1 j N 1g (a) Montrer que S N et S N sont inclus dans H 1 ([; L]). (b) Determiner les coecients de la matrice de masse a jp et les coecients du terme source b p tels que la solution de inf V 2S N J (V ) P soit l'element de S N donne par j N j tel que X 8j; a pj j = b p : (c) On reecrit, sur S N, la formulation variationnelle (1.5) de la premiere partie, dont on admettra qu'elle existe et que sa solution est unique. Montrer que si on note A jp = L ["( N j ) ( N p ) + 1 2 N j ( N p ) + 1 2 N p ( N j ) + 1 4" (N j N p )+( N j ) N p + 1 2" N j N p ]e x " dx 7

le probleme est equivalent a L 8v 2 S N ; ("u v + u v)dx = 8j; X p A jp p = L L f(x)e x 2" dx = b j : fvdx (2.1) On note A la matrice des A jp et A la matrice des a jp. Est ce que les systemes A~ = ~ b et A ~ = ~ b sont identiques? Equivalents? (d) Proposez une methode qui permettrait d'avoir a partir de (2.1) le systeme A~ = ~ b. 7. Solution explicite dans le cas 1d : En posant u(x) = A(x)e a " x + B(x), ou B (x) + A (x)e a " x =, determiner l'unique solution de (2.6). 8