ELECTROMAGNETISME. Ce sont des oxydes de fer qui ont la propriété naturelle d'attirer le fer et d'autres substances,



Documents pareils
Contrôle non destructif Magnétoscopie

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

MATIE RE DU COURS DE PHYSIQUE

Chapitre 7 - Relativité du mouvement

Chapitre 2 : Caractéristiques du mouvement d un solide

Travaux dirigés de magnétisme

Electricité. Electrostatique

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Fonctions de deux variables. Mai 2011

Electrotechnique. Fabrice Sincère ; version

Résonance Magnétique Nucléaire : RMN

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Magnétisme - Electromagnétisme

1. Création d'un état Création d'un état Instantané Colonnes Création d'un état Instantané Tableau... 4

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Physique : Thermodynamique

«LES ALTERNATEURS DE VOITURES»

M HAMED EL GADDAB & MONGI SLIM

Mesurer les altitudes avec une carte

Dossier table tactile - 11/04/2010

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Démontrer qu'un point est le milieu d'un segment

Introduction : Cadkey

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Repérage d un point - Vitesse et

Nombre dérivé et tangente

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

TP : Suivi d'une réaction par spectrophotométrie

Chapitre 1 Régime transitoire dans les systèmes physiques

Michel Henry Nicolas Delorme

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

5 ème Chapitre 4 Triangles

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

À propos d ITER. 1- Principe de la fusion thermonucléaire

Les Conditions aux limites

Chapitre 6: Moment cinétique

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Calcul intégral élémentaire en plusieurs variables

1 Comment faire un document Open Office /writer de façon intelligente?

modélisation solide et dessin technique

Les cellules. Il existe différentes familles de cellules : à aimant mobile, à bobine mobile, à aimant induit, à réluctance variable

Angles orientés et trigonométrie

INSTRUCTIONS DE MONTAGE CIVIK ZINK

GLOSSAIRE DU BÉTON ARMÉ

SYSTEMES LINEAIRES DU PREMIER ORDRE

CONSTANTES DIELECTRIQUES

Chapitre 1: Facteurs d'échelle

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

F411 - Courbes Paramétrées, Polaires

La notion de temps. par Jean Kovalevsky, membre de l'institut *

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Le véhicule électrique

Chauffage par induction

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Développements limités, équivalents et calculs de limites

INSTRUCTIONS COMPLÉTES

Cours d Electromagnétisme

La simulation probabiliste avec Excel

Hot Wire CFM / CMM Thermoanémomètre

Charpente visible sous plafond et couverture isolée

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Mathématiques et petites voitures

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Voyez la réponse à cette question dans ce chapitre.

TS Physique Satellite à la recherche de sa planète Exercice résolu

Calculons avec Albert!

Ergonomie dans les services publics Expérience du service Empreva. Christophe Janssens, CP Ergonome - Empreva

CHAPITRE VIII : Les circuits avec résistances ohmiques

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Champ électromagnétique?

Whitepaper. La solution parfaite pour la mise en température d un réacteur. Système de régulation. Réacteur. de température

Défi 1 Qu est-ce que l électricité statique?

Paris et New-York sont-ils les sommets d'un carré?

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 6. Fonction réelle d une variable réelle

AU DELA DU TEST 3 vers les nages codifiées, le sauvetage, la natation synchronisée

La fonction exponentielle

Dr Berdj Haroutunian, 5, Chemin Gottret ch-1255 VEYRIER tél (0) berdj@haroutunian.ch

Navigation dans Windows

Google Drive, le cloud de Google

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Chapitre 0 Introduction à la cinématique

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

NOTICE DOUBLE DIPLÔME

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Image d un intervalle par une fonction continue

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

DOCM Solutions officielles = n 2 10.

Sujet. calculatrice: autorisée durée: 4 heures

avec des nombres entiers

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Transcription:

LECO 1 : ELECTROMAGETME 1 - phénomènes fondamentaux 1.1 - Aimants naturels ELECTROMAGETME Ce sont des oxydes de fer qui ont la propriété naturelle d'attirer le fer et d'autres substances, 1.2 - Aimants artificiels En frottant un barreau d'acier avec un aimant naturel, on obtient un aimant artificiel, 1.3 - Propriétés magnétiques des substances ubstances paramagnétiques : faiblement attirées par un aimant (oxygène, air,...), ubstances diamagnétiques : faiblement repassés (tout les gazes, le plomb, le zinc, l'or,...), ubstances ferromagnétiques : fortement attirés (fer, acier, fonte,...), 1.4 - Actions naturelles des pôles Les pôles de mêmes noms se repoussent, Les pôles de noms contraires s'attirent, Les actions magnétiques décroissent très vite lorsque la distance croît, 1.5 - Champ de forces magnétiques Dans l'espace qui environne un aimant, tous les corps sont soumis à des forces, on dit que cet espace est le siège d'un champ de forces magnétiques, Lorsque l'action directive subie par un aimant est identique en tous les points d'un lieu, on dit que le champ est uniforme, 1.6 - pectre magnétique d'un aimant Les lignes d'induction sont dirigées : A l'extérieur : du pôle ord au pôle ud, A l'intérieur : du pôle ud au pôle ord, 2 - Champ magnétique - nduction 2.1 - Champ magnétique Le champ magnétique de l'aimant c'est l'espace autour de l'aimant et dans lequel il fait sentir son influence, Le champ est une région de l'espace ou il existe un état magnétique susceptible de manifester par des forces, Le champ magnétique se représente par le vecteur H (Henry), CHAPTRE 4 : ELECTROMAGETME 56

LECO 1 : ELECTROMAGETME 2.2 - nduction magnétique i l'on place dans un champ magnétique : - Un conducteur parcouru par un courant, - Un aimant, - Une charge électrique (exemple : un électron), Les différents composants vont subir une force qui dépendra du champ magnétique et du milieu, A chaque point d'un espace le champ magnétique sera associé un vecteur induction magnétique (vecteur champ magnétique (Tesla), Les éléments du vecteur champ magnétique en un point : - on origine est le point considéré, - a direction est tangente à la ligne de champ qui passe par le point, - on sens est celui dans lequel cette ligne de champ est orientée, - a valeur (module ou norme du vecteur) dépend de la distance du point à la source de magnétisme et des caractéristiques de celle-ci, Les forces dépendent de B : B = fonction (H, milieu) 2.3 - Perméabilité du milieu μ = μ. μr avec: μ : caractérise la perméabilité dumilieu μ μr : perméabilité del'air -7 = 4. π.1 H m (H ) m : perméabilité relatived'unmatériaupar rapportàl'air = 1 B = μ.h B ent H en A m μ enh m 2.4 - nduction crée en un point par un conducteur Le problème consiste à déterminer B dans le cas d'un conducteur dont la longueur et la forme géométrique sont parfaitement définies, 2.4.1 - Conducteur rectiligne Le champ est de révolution autour du fil, Pour trouver le sens du champ, il existe plusieurs règles pratiques : - Règle du bon homme d'ampère, - Règle de la main droite, - Règle du tire-bouchon maxwell, l suffit d'appliquer l'une des trois règles pour retrouver le sens du courant qui produit des lignes de champ dont le sens est connu, CHAPTRE 4 : ELECTROMAGETME 57

LECO 1 : ELECTROMAGETME 2.4.2 - Conducteur circulaire Formes du spectre : Vers le centre de la spire, les lignes de champ sont pratiquement des droites, En se rapprochant des points où la spire coupe le plan, les lignes se courbent de plus en plus, Autour des traversées du plan on voit des courbes fermées qui sont des cercles à peine déformés, ens des lignes de champ : Les règles 1, 2 et 3 s'appliquent directement, Faces de la spire : Pour retenir le nom d'une face, il suffit d'inscrire dans celle-ci, celles des deux lettres ou qui a les flèches dans le sens du courant, 2.4.3 - olénoïde Un solénoïde est une bobine dont la longueur est grande devant le diamètre, Formes des lignes : A l'intérieur, se sont des lignes parallèles à l'axe de la bobines sauf au voisinage des fils où ce sont des cercles (le champ intérieur est donc sensiblement uniforme), A l'extérieur, le spectre est identique à celui d'un aimant droit, ens : On le retrouve comme une spire, en particulier avec la 3 ème règle, Faces : On les différences comme une spire, 2.5 - Calcul du module du champ L oit le nombre de spires traversées par le courant, sur une ligne de champ de longueur l, le module du vecteur champ est (théorème d'ampère) : B.l = μ.. μ.. B = l en A l en m B en T La formule est la même que pour une bobine longue ou un conducteur rectiligne, R μ. μ. B = = 2. π.r l CHAPTRE 4 : ELECTROMAGETME 58

LECO 1 : ELECTROMAGETME otons que la valeur l dépend de la ligne choisie : le champ croît quand on se rapproche du centre O, R moy B 3 B 2 B 1 3 - Flux d'induction magnétique (flux magnétique) Considérons un espace à l'intérieur duquel une induction magnétique est uniformément distribuée, On appelle flux du vecteur constant, à travers une surface plane qui lui est perpendiculaire, le produit du module par l'air de la surface : φ = B. B en T 2 en m φ en Wb (Webers) Une surface oblique doit être remplacée par sa projection sur un plan perpendiculaire aux lignes de champ, oit α l(angle de la surface et de sa projection, cet angle est aussi celui de et de la norme r (ou perpendiculaire) à la surface. Le flux est alors : r φ = B..cos α = B.' ' α α Remarque : i α =, cosα = 1 et nous retrouve le cas précédent où : φ = B. i α = 9, cosα = et φ =, le flux est nul. Ce qui s'exprime facilement le fait que la surface n'est traversée par aucune ligne de champ. r CHAPTRE 4 : ELECTROMAGETME 59

LECO 1 : ELECTROMAGETME 4 - Lois fondamentales de l'électromagnétisme 4.1 - ntroduction L'électromagnétisme c'est l'étude des phénomènes magnétiques crées par les charges électriques plus interaction entre champ magnétique et courant électrique, Expérience fondamentale : R K E Lorsqu'on ferme l'interrupteur K un courant passe dans le circuit et l'aiguille aimantée placée à proximité du fil conducteur s'oriente vers une direction déterminée, Conclusion : Un courant électrique crée un champ magnétique. 4.2 - Loi de Laplace Un conducteur traversé par un courant électrique et placé dans un champ magnétique est soumis à une force électromagnétique ou force de Laplace, v B v F r Rh E 4.2.1 - Caractéristiques de la force électromagnétique Point d'application : La longueur qui est placée dans le champ magnétique est appelée longueur active. C'est elle qui participe à la création de la force électromagnétique. Le point d'application de F est donc au milieu de la longueur active, Direction : La direction est perpendiculaire à B et (c'est-à-dire à l) donc au plan (B, ), ens : Le sens de F est donné par l'une des règles suivantes : La règle des trois doigts de la main droite : Faisons correspondre les trois premiers doigt et les trois grandeurs, force (sens du déplacement), intensité et le champ de la façon suivante : Pouce Force ndex ntensité Majeur Champ ce Pous sse dex n tensité jeur Ma gnétisme La règle de Bon homme d'ampère : Le bon homme d'ampère couché sur le fil, le courant lui entrant par les pieds et sortant par la tête. l regarde fuir les lignes de champs alors sa gauche indique le sens de F, CHAPTRE 4 : ELECTROMAGETME 6

LECO 1 : ELECTROMAGETME 4.2.2 - Formule i le conducteur de longueur active l est rectiligne et placé dans un champ uniforme B on aura : F B F = B..L.sinα Cas particulier : Le fil et le vecteur sont perpendiculaires : α = 9 F = B..L Le vecteur champ est parallèle au fil : α = F = 4.3 - Loi de Faraday B en T en A l en m F en Expérience Cette expérience nécessite un aimant, une bobine et un galvanomètre (appareil qui mesure de très faible intensité de courant), Aimant immobile il ne se passe rien Aimant mobile : - Lorsqu'on déplace l'aimant, l'aiguille du galvanomètre se déplace indiquant l'existence du courant, - Ce courant est appelé courant induit, la f.e.m crée dans le circuit est appelée aussi f.e.m induite, Cette f.e.m est crée par la variation du flux magnétique à travers la bobine (crée par le déplacement de l'aimant) d'où la loi de Faraday, Loi de Faraday : Toute variation de flux à travers un circuit électrique fermé donne naissance à un courant induit, l'existence du courant coïncide avec celle de la variation de flux, si le circuit est ouvert, il y a force électromotrice induite, 4.4 - Loi de Lenz Lorsqu'on approche l'aimant, l'aiguille se déplace dans le sens indiqué dans la figure, Le courant induit crée un flux qui s'oppose au flux extérieur lorsqu'on approche le pôle ord da la bobine, Δφ = φ f - φ i > CHAPTRE 4 : ELECTROMAGETME 61

LECO 1 : ELECTROMAGETME Lorsqu'on éloigne l'aimant l'aiguille se déplace dans l'autre sens, Le courant induit crée un flux qui a le même sens que le flux extérieur lorsqu'on éloigne le pôle ord de l'aimant, Δφ = φ f - φ i > Conclusion : Dans ces deux cas le flux crée par le courant induit s'oppose à la variation du flux extérieur d'ou la loi de Lenz, Loi de Lenz : Le courant induit est tel que par ses effets s'oppose à la cause qui lui a donné naissance : dφ e = dt CHAPTRE 4 : ELECTROMAGETME 62