REPUBLIQUE TUNISIENNE **** Ministère de l Enseignement Supérieur, de la Recherche Scientifique **** DIRECTION GENERALE DE LA RENOVATION UNIVERSITAIRE REFORME LMD Commission Nationale Sectorielle de Mathématiques (C.N.S.M.) Avec une révision de l année (L1) Juillet 2010
PREAMBULE Ce document constitue la version révisée du schéma de la Licence en Sciences et Technologies mention Mathématiques. Les modifications apportées ont tenue compte, en particulier, des recommandations des différentes institutions Tunisiennes concernées. La Licence fondamentale de Mathématiques (LFM) dans le domaine Sciences et Technologies, est composée d une mention: Mention : Mathématiques (M) et des deux parcours Parcours: Mathématiques fondamentales (MF) Parcours: Mathématiques et applications (MA) Objectifs. La licence fondamentale en Mathématiques est le premier diplôme universitaire national sanctionnant six semestres d études en Mathématiques. L objectif de cette licence fondamentale en Mathématiques est de fournir aux étudiants des connaissances et une pratique des Mathématiques leur permettant sur le plan national qu international, soit de poursuivre leurs études avec un Master Recherche ou Professionnel, soit de s orienter vers les concours de l enseignement en particulier, et de la fonction publique en général, ou encore de s insérer dans la vie professionnelle (banques, entreprises publiques et privées, ). Conditions d accès. La licence fondamentale de Mathématiques s adresse aux bacheliers scientifiques (Mathématiques, Sciences, Techniques,.). Informations générales : Durée des études : Six semestres (un semestre est composé de quatorze semaines) Langue d enseignement : Français Compétences développées. La formation met l'accent sur deux aspects : Compétence théorique dans les aspects fondamentaux des mathématiques : algèbre linéaire, algèbre, analyse, géométrie,. Initiation aux mathématiques appliquées (analyse et probabilités, ). 2
Quelques précisions 1. L unité d enseignement optionnelle. Cette unité constitue les 25 % qui reviennent à chaque institution ; par conséquent son programme sera fixé par les départements concernés selon l horaire et les crédits mentionnés. Il est souhaitable que l unité optionnelle ne soit pas uniquement un complément du contenu des unités fondamentales. On peut citer, par exemple, les trois types suivants : Unité optionnelle d approfondissement. L unité optionnelle d approfondissement est un enseignement destiné aux étudiants pour approfondir et consolider leurs connaissances en Mathématiques. Le programme de cette unité est fixé par les départements selon leurs possibilités pédagogiques. Unité optionnelle d orientation. L unité optionnelle d orientation (qui préparent les passerelles) est un enseignement destiné aux étudiants pour renforcer un module afin qu il puisse, éventuellement, changer de licence. Le programme de cette unité est fixé par les départements d accueil selon leurs possibilités pédagogiques. Unité optionnelle d ouverture. L unité optionnelle d ouverture a pour but de permettre à l étudiant d avoir une formation pluridisciplinaire (l étudiant choisit un module parmi d autres proposés par son établissement). 2. L évaluation. L évaluation se fait de deux manières: Régime contrôle continu : La note finale est une moyenne de notes obtenus par des contrôles continus effectués au cours du semestre en question. Régime mixte : La note finale est obtenue comme une moyenne où l examen compte pour 70 % et les contrôles continus comptent pour 30 % : NF = (7E + 3C) / 10, où E est la note de l examen et où C est la note du contrôle continu. Rappelons que le CNSM souhaite que la note C soit une moyenne de trois notes (au moins) relatives à trois tests au cours du semestre. 3
LICENCE FONDAMENTALE DE MATHEMATIQUES 2010-2013 Université Tunis El Manar Etablissement Monastir F. S. Monastir Domaine / Type Mention F. S. Tunis Sc. Tech. / fondamentale Mathématiques (M) Sc. Tech. / fondamentale Mathématiques (M) Gafsa F. S. Gafsa Sc. Tech. / fondamentale Mathématiques (M) Gabes F. S. Gabes Sc. Tech. / fondamentale Mathématiques (M) 7-nov à Carthage F. S. Bizerte Sc. Tech. / fondamentale Mathématiques (M) Parcours Mathématiques fondamentales (MF) Math. et Applications (MA) Mathématiques fondamentales (MF) Math. et Applications (MA) Mathématiques fondamentales (MF) Mathématiques fondamentales (MF) Mathématiques fondamentales (MF) Math. et Applications (MA) Sfax F. S. Sfax Sc. Tech. / fondamentale Mathématiques (M) Mathématiques fondamentales (MF) Math. et Applications (MA) Kairouan I. S. M. A. I. Sc. Tech. / fondamentale Mathématiques (M) Mathématiques fondamentales (MF) Math. et Applications (MA) Sousse H. E. S. T. Sc. Tech. / fondamentale Mathématiques (M) Libre de Tunis Math. et Applications (MA) Institut polytechnique privé Sc. Tech. / fondamentale Mathématiques (M) Mathématiques fondamentales (MF) 4
5
Première Année (L1) La première année (L1) est une année d enseignement en commun (modulo les unités optionnelles) pour les deux parcours: (MF) et (MA). Premier semestre (S1) (14 semaines) N Unité d'enseignement 1 Calculus Nature et code de l'ue (*) Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD TP ECUE UE ECUE UE LFM / AF 11 4h 4h 7 5 Contrôle continu Régime mixte / Durée Examen 2 Physique 1 LFM / AF 12 Mécanique 1 1h30 1h 1h 3 2 7 Optique 1h30 1h 1h 3 2 4 3 Algorithmique et structure de données (I) LFM / AF 13 1h30 2h30 6 3 Exam2h 4 UE Transversales 5 UE optionnelles Transversale LFM / AF 14 Anglais 1h30 2 C2i 1h30 2 Droit de l Homme 1h30 2 6 2 Optionnelles LFM / AF 15 2h 4 2 Total Total / semaine 25h30 Total / semestre 357 h 30 16 6
(*) Code des unités d enseignement. Comme les deux premières années constituent un tronc commun pour les deux parcours (MA) et (MF), le code des U.E. pour les deux premières années seront : LFM / AF (AF pour Applications et s). Par exemple: Le code de l U.E. Calculus sera : LFM / AF 11. Pour la troisième année (L3), on reprendra la codification : LFM / MF pour le parcours : Mathématiques fondamentales et LFM / MA pour le parcours : Mathématiques et applications. Deuxième semestre (S2) (14 semaines) N Unité d'enseignement 1 Algèbre linéaire Nature et code de l'ue (*) Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD TP ECUE UE ECUE UE LFM / AF 21 3h 3h 7 4 Contrôle continu Régime mixte / Durée Examen 2 Analyse LFM / AF 22 3h 3h 6 4 Exam2h 3 Physique - Informatique 5 UE Transversales 6 UE optionnelles LFM / AF 23 Transversale LFM / AF 24 Electromagnétisme 1h30 1h 1h 4 Algorithmique et structure de données (II) 1h30 2h30 3 2 Anglais 1h30 2 C2i 1h30 2 Droit de l Homme 1h30 2 7 2 6 2 Optionnelles LFM / AF 25 2h 4 2 4 Total Total / semaine 26h Total / semestre 364h. 30 16 (*) Code des unités d enseignement. Comme les deux premières années constituent un tronc commun pour les deux parcours (MA) et (MF), le code des U.E. pour les deux premières années seront : LFM / AF (AF pour Applications et s). Par exemple: Le code de l U.E. Analyse sera : LFM / AF 22. Pour la troisième année (L3), on reprendra la codification : LFM / MF pour le parcours : Mathématiques fondamentales et LFM / MA pour le parcours : Mathématiques et applications. 7
Deuxième Année (L2) L année L2 est une année d enseignement en commun (modulo les unités optionnelles) pour les deux parcours: (MF) et (MA). Troisième semestre (S3) (14 semaines) N Unité d'enseignement 1 Séries et intégrales (I) Nature et code de l'ue (*) Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD ECUE UE UE LFM / AF 31 3h 4h 7 4 Contrôle continu Régime mixte / Durée Examen Examen 2h 2 Calcul différentiel dans R n LFM / AF 32 3h 4h 7 4 Examen 2h 3 Algèbre et arithmétique 4 UE Transversales 5 UE optionnelles LFM / AF 33 2h 4h 7 4 Transversale LFM / AF 34 Anglais Culture d Entreprise 1h30 1h30 2 2 4 2 Optionnelles LFM / AF 35 4h 5 3 Examen 2h Total Total / semaine 27h Total / semestre 378h 30 17 (*) Code des unités d enseignement. Comme les deux premières années constituent un tronc commun pour les deux parcours (MA) et (MF), le code des U.E. pour les deux premières années seront : LFM / AF (AF pour Applications et s). Par exemple: Le code de l U.E. Algèbre et arithmétique sera : LFM / AF 33. Pour la troisième année (L3), on reprendra la codification : LFM / MF pour le parcours : Mathématiques fondamentales et LFM / MA pour le parcours : Mathématiques et applications. 8
Quatrième semestre (S4) (14 semaines) N Unité d'enseignement Nature et code de l'ue (*) Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD ECUE UE UE Contrôle continu Régime mixte / Durée Examen 1 Séries et intégrales (II) LFM / AF 41 3h 4h 7 4 Examen 2h 2 Algèbre euclidienne LFM / AF 42 3h 4h 7 4 Examen 2h 3 Probabilité et statistiques (I) LFM / AF 43 2h 4h 7 4 Examen 2h 4 UE Transversales Transversale LFM / AF 44 Anglais 1h30 2 Culture d Entreprise 1h30 2 4 2 5 UE optionnelles Optionnelles LFM / AF 45 4h 5 3 Total Total / semaine 27h Total / semestre 378h 30 17 (*) Code des unités d enseignement. Comme les deux premières années constituent un tronc commun pour les deux parcours (MA) et (MF), le code des U.E. pour les deux premières années seront : LFM / AF (AF pour Applications et s). Par exemple : Le code de l U.E. Algèbre euclidienne sera : LFM / AF 42. Pour la troisième année (L3), on reprendra la codification : LFM / MF pour le parcours : Mathématiques fondamentales et LFM / MA pour le parcours : Mathématiques et applications. 9
Troisième Année (L3) Parcours : Mathématiques fondamentales (MF) L année L3 de la licence fondamentale de mathématiques, mention Mathématiques (M), parcours : Mathématiques fondamentale (MF), est une année de spécialisation. Cinquième semestre (S5) (14 semaines) N Unité d'enseignement 1 Calcul intégral Nature et code de l'ue Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD ECUE UE UE LFM / MF 51 3h 4h 7 4 Contrôle continu Régime mixte / Durée Examen 2 Calcul différentiel 3 Topologie LFM / MF 52 3h 4h 7 4 LFM / MF 53 2h 2h 7 4 4 UE Transversales Anglais Transversale LFM / MF 54 2h 4 2 5 UE optionnelles Optionnelles LFM / MF 55 4h 5 3 Total Total / semaine 24h Total / semestre 336h 30 17 10
Sixième semestre (S6) (14 semaines) N Unité d'enseignement 1 Algèbre générale 2 Equations différentielles Nature et code de l'ue Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD ECUE UE ECUE UE LFM / MF 61 3h 4h 7 4 LFM / MF 62 2h 3h 6 3 Contrôle continu Régime mixte / Durée Examen 3 Probabilité LFM / MF 63 2h 3h 6 3 4 Analyse numérique LFM / MF 64 2h 3h 6 3 5 UE optionnelles Optionnelles LFM / MF 65 4h 5 2 Total Total / semaine 26h Total / semestre 364h 30 15 11
Troisième Année (L3) Parcours: Mathématiques et applications (MA) L année L3 de la licence fondamentale de mathématiques, mention : Mathématiques (M), parcours : Mathématiques et applications (MA), est une année de spécialisation. Cinquième semestre (S5) (14 semaines) N Unité d'enseignement 1 Calcul différentiel Nature et code de l'ue Elément constitutif (ECUE) de l UE Volume horaire / semaine Crédits Coefficients Régime d'examen Cours TD ECUE UE UE LFM / MA 51 3h 4h 7 4 Contrôle continu Régime mixte / Durée Examen 2 Calcul scientifique LFM / MA52 3h 4h 7 4 Examen 2h 3 Calcul intégral LFM / MA 53 3h 4h 7 4 Examen 2h 4 UE Transversales Anglais Transversale LFM / MA 54 2h 4 2 5 UE optionnelles Optionnelles LFM / MA 55 4h 5 3 Total Total / semaine 27h Total / semestre 378h 30 17 12
Sixième semestre (S6) (14 semaines) N Unité d'enseignement Nature et code de l'ue Elément constitutif (ECUE) de l UE Volume horaire / semaine Cours TD ECUE UE UE Crédits Coefficients Régime d'examen Contrôle continu Régime mixte / Durée Examen 1 Probabilités et statistiques (II) LFM /MA 61 3h 4h 7 4 2 Optimisation-convexité LFM / MA 62 2h 3h 6 3 3 Equations différentielles LFM /MA 63 2h 3h 6 3 4 Transformation de Fourier LFM / MA 64 2h 3h 6 3 5 UE optionnelles Optionnelles LFM / MA 65 4h 5 2 Total Total / semaine 26h Total / semestre 364h 30 15 13
14
Premier semestre (S1) Contenu des programmes des Unités d Enseignement s de la première année (L1) Programme de l UE : Calculus Code: LFM / AF 11 Cours: 4h. TD : 4h. Crédits: 7 Coefficients: 5 Objectifs : Le but de ce cours est d introduire de façon simple et élémentaire des résultats et des techniques de mathématiques que l étudiant pourra utiliser rapidement dans d autres unités d enseignement. Il ne s agit pas de démontrer les théorèmes ou les résultats énoncés mais d expliquer leurs utilisations et leurs règles de calcul. Polynômes et fractions rationnelles. Généralités sur les polynômes à une indéterminée à coefficients réels ou complexes. Racines d un polynôme, formule de Taylor pour un polynôme. Division euclidienne dans R[], C[] ; factorisation. Généralités sur les fractions rationnelles. Décomposition en éléments simples dans R(), C(). Fonctions numériques d'une variable réelle. Fonctions trigonométriques et leurs réciproques, fonctions usuelles, fonctions hyperboliques et leurs réciproques. Formules de Taylor (admise). Développements limités. Exemples et applications. Intégration et Equations différentielles. Intégrale simple, calcul des primitives. Intégration par parties. formule de changement des variables. Applications. Equations différentielles du premier ordre, exemples et applications. Equations différentielles linéaires du second ordre à coefficients constants, méthodes de résolution, exemples et applications. Espaces euclidiens IR 2. Courbes paramétrées, courbes polaires. Calcul de la longueur d une courbe. 15
Deuxième semestre (S2) Programme de l UE: Algèbre linéaire Code: LFM / AF 21 Cours: 3h, TD: 3h. Crédits: 6 Coefficients: 4 Objectifs : L objectif de ce cours est d aider les étudiants à acquérir les concepts et les outils de base de l algèbre linéaire qui leur seront nécessaires pour la suite de leurs études. Eléments de la théorie des ensembles. Opérations sur les ensembles. Applications ensemblistes, images directes, images réciproques ; injections, surjections, bijections. Espaces vectoriels. Espaces vectoriels : définitions, propriétés et exemples. Sous-espaces vectoriels, sous-espaces supplémentaires. Systèmes générateurs, systèmes libres, bases (dimension d un espace vectoriel). Applications linéaires. Définitions, exemples. Opérations sur les applications linéaires. Rang et noyau d une application linéaire, théorème du rang. Représentation matricielle. Systèmes linéaires, méthodes de résolution par élimination. Calcul matriciel et calcul des déterminants. Programme de l UE : Analyse Code: LFM / AF 24 Cours: 3h, TD: 3h. Crédits: 5 Coefficients: 3 Objectifs : Le but de ce cours est d initier l étudiant au raisonnement mathématique en commençant à faire les démonstrations des premiers résultats d analyse sur les propriétés de R, sur les suites réelles et sur les fonctions numériques d une variable réelle. 16
Suites de nombres réels. Description de IR, borne supérieure et borne inférieure. Application : l intégrale de Riemann. Généralités sur les suites de nombres réels. Suites convergentes et critères de convergence. Suites adjacentes. Suites de Cauchy. Fonctions numériques continues. Limite d une fonction numérique. Continuité en un point et sur un intervalle. Continuité uniforme. Propriétés des fonctions continues. Fonctions numériques dérivables. Dérivabilité en un point, définition et propriétés. Dérivabilité sur un intervalle, théorèmes de Rolle et des accroissements finis. Fonctions convexes. Formules de Taylor (avec preuve). Exemples et applications. Théorème du point fixe. Troisième semestre (S3) Contenu des programmes des Unités d Enseignement s de la deuxième année (L2) Programme de l UE : Séries et intégrales (I) Code: LFM / AF 31 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Le but de ce cours est essentiellement la généralisation de quelques concepts introduits en analyse. Par exemple les intégrales impropres, les séries numériques et les séries de fonctions. Intégrales généralisées. Calcul pratique de quelques intégrales généralisées. Exemples fondamentaux. Convergence absolue. Cas des fonctions positives (comparaison et équivalence). Règle d Abel. Séries numériques. Critères de convergence des séries numériques. Comparaison d une série numérique et d une intégrale généralisée. Séries à termes positifs (comparaison et équivalence). Comparaison avec la série de Riemann. Règle de Cauchy. Critère de D Alembert. Règle de Duhamel Séries alternées. Règle d Abel. Produit de séries numériques Suites et séries de fonctions. Convergences simple et uniforme des suites de fonctions. Continuité des limites uniformes des suites de fonctions. Dérivabilité des limites des suites de fonctions. Intégration des limites des suites de fonctions. Applications aux séries de fonctions. Convergence normale des séries de fonctions. Règle d Abel pour la convergence uniforme des séries de fonctions. Séries de Fourier. Séries trigonométriques. Coefficients de Fourier. Théorème de Dirichlet. Théorème de Parseval Séries entières. Rayon de convergence. Somme et produit de séries entières. Dérivation et intégration des séries entières. Développement en séries entières des fonctions usuelles. 17
Programme de l UE : Calcul différentiel dans R n Code: LFM / AF 32 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Ce cours introduit la topologie de R n et les fonctions de plusieurs variables, il mettra en évidence les différences avec la topologie de R et l étude des fonctions d une variable. Eléments de topologie de R n. Normes usuelles sur R n. Comparaison de ces normes. Boules, voisinages, ouverts, fermés, adhérence, frontière. Suites dans R n (limite, valeurs d adhérence d une suite). Compacité dans R n (définition avec les suites). Fonctions sur R n, limites, continuité, continuité uniforme. Connexité dans R n, les connexes de R, connexité par arcs. Fonctions de plusieurs variables réelles. Dérivées partielles, fonctions de classe C 1, matrice jacobienne, différentiabilité, dérivées partielles d ordre deux, fonctions de classe C 2, formule de Taylor d ordre deux, extremum local. Continuité et dérivabilité d une fonction définie par une intégrale sur un intervalle borné de R. Programme de l UE : Algèbre et arithmétique Code: LFM / AF 33 Cours: 2h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : L objectif de ce cours est d introduire les concepts de base en algèbre et en arithmétique élémentaire. Un effort particulier sera fait pour l organisation de travaux pratiques assistés par ordinateur. Groupes. Généralités sur les groupes, exemples (groupe symétrique, groupe diédral,..). Sous groupes. Ordre d un élément. Groupe quotient. Groupes cycliques finis. Générateurs. Le groupe (Z/nZ,+). Théorème de Lagrange. Indicatrice d Euler. Arithmétique dans Z.. Anneau Z. Division euclidienne. Idéaux de Z. Divisibilité, PGCD, PPCM. Théorème de Bezout. Congruences. Anneau Z/nZ. Groupe multiplicatif des éléments inversibles de l anneau Z/nZ. Nombres premiers. Théorèmes classiques (Fermat, Euler, Wilson, théorème chinois). Travaux assistés par ordinateur. Procédure de calcul du p.g.c.d. Procédure de calcul des couples de Bezout. Procédure de résolution des congruences simultanées. Procédure de l exponentiation rapide. Le Logarithme discret. 18
Quatrième semestre (S4) Programme de l UE : Séries et intégrales (II) Code: LFM / AF 41 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Le but de ce cours est d introduire d une part les intégrales dépendant d un paramètre et d autre part les fonctions holomorphes ainsi que les premiers résultats d analyse complexe. Intégrales dépendant d un paramètre. Intégrales définies dépendant d un paramètre. Continuité, dérivabilité et intégration. Intégrales généralisées dépendant d un paramètre. Convergence uniforme et normale. Continuité, dérivabilité et intégration des intégrales généralisées dépendant d un paramètre. Règle d Abel. Fonctions holomorphes. Définitions. Egalités de Cauchy-Riemann. Développement en série d une fonction holomorphe sur une couronne. Théorème de D Alembert et théorème de Louiville. Théorème de Cauchy. Théorème de Résidus. Points singuliers isolés. Notion et calcul des résidus. Théorème des résidus. Applications au calcul intégral. Programme de l UE : Algèbre euclidienne Code: LFM / AF 42 Cours: 3h. TD : 4h. Crédits : 7 Coefficients : 4 Objectifs : Le but de ce cours est de consolider les thèmes fondamentaux étudiés en algèbre linéaire et d introduire de nouveaux concepts comme la réduction des endomorphismes, les espaces euclidiens et l étude des formes bilinéaires et des formes quadratiques. Retour sur les espaces vectoriels. Systèmes générateurs, bases, théorème de la base incomplète. Espaces supplémentaires, somme directe. Rang d une application linéaire, matrices, formules de changement de bases. Déterminants, calculs pratiques. 19
Réductions des endomorphismes. Position du problème, exemples et propriétés. Vecteurs propres et valeurs propres. Polynôme caractéristique, diagonalisation, trigonalisation. Théorème de Cayley-Hamilton, polynôme minimal. Exponentielle de matrice (cas des matrices diagonale et de la forme (D+N). Applications aux systèmes différentiels linéaires à coefficients constants. Formes bilinéaires et formes quadratiques. Formes quadratiques, exemples et propriétés. Forme polaire d une forme quadratique. Base orthogonale, rang, méthode de Gauss, signature. Applications. Espaces euclidiens. Formes bilinéaires : définitions, exemples et propriétés. Matrice d une forme bilinéaire, formule de changement de bases. Produit scalaire. Norme, distance et angles. Bases orthonormées, orthogonalité et endomorphismes d un espace euclidien. Le groupe orthogonal. Etude précise en dimension 2 et 3. Programme de l UE: Probabilité et statistique (I) Code: LFM / AF 43 Cours: 2h. TD: 4h. Crédits: 7 Coefficients: 4 Objectif : Le but de ce cours est d initier l étudiant à la modélisation mathématique de problèmes concrets dont la résolution s appuie sur le calcul des probabilités effectué notamment dans des ensembles dénombrables. L initiation à la statistique mathématique des échantillons est articulée autour de la problématique d estimation et de tests paramétriques pour une proportion ou une moyenne. Eléments d analyse combinatoire. Espaces de Probabilités. Probabilités conditionnelles et évènements indépendants. Variables aléatoires discrètes et lois usuelles. Calculs de moments et de lois pour des variables aléatoires à densité. Initiation à la statistique des échantillons d une loi. 20
Cinquième semestre (S5) Contenu des programmes des Unités d Enseignement fondamentales de la troisième année (L3) Parcours : Mathématiques fondamentales (MF) Programme de l UE : Calcul intégral Code: LFM / MF 51 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Le but de ce cours est d'initier les étudiants à la théorie d'intégration à la Lebesgue. Tribus, fonctions mesurables, approximation par fonctions étagées. Mesures. Intégrale d une fonction mesurable par rapport à une mesure. Théorèmes de convergence, intégrales à paramètre. Espaces L p et dualité. Théorèmes d unicité et applications. Tribus et mesures produit, théorème de Fubini. Formule de changement de variables pour la mesure de Lebesgue. Programme de l UE : Calcul différentiel Code: LFM / MF 52 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : On entrevoit dans ce cours des méthodes et des applications fondamentales du calcul différentiel. 21
Introduction aux espaces de Banach. Applications différentiables sur un espace de Banach. Différentielles d'applications particulières. Règles de calcul. Applications produit. Théorème des accroissements finis et applications. Différentielles d'ordre supérieur : différentielle seconde, théorème de Schwarz. Règles de calcul. Formules de Taylor. Théorème d'inversion locale, théorème des fonctions implicites. Applications. Extrema des fonctions réelles. Programme de l UE : Topologie Code: LFM / MF 53 Cours: 2h. TD: 2h. Crédits: 7 Coefficients: 4 Objectifs : L objectif de ce cours est l'introduction des espaces métriques, l'étude des espaces métriques compacts, complets et connexes et la démonstration du théorème du point fixe. Distances et espaces métriques. Topologie d'un espace métrique. Sous espaces métriques, espaces métriques produits. Notions de limite. Continuité. Espaces métriques compacts. Espaces métriques complets. Complétion. Théorème du point fixe et applications. Connexité. Sixième semestre (S6) Programme de l UE : Algèbre générale Code: LFM / MF 61 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : L objectif de ce cours est de consolider les concepts de base acquis dans l U.E. Algèbre et arithmétique et d introduire et d étudier ensuite les notions fondamentales de la théorie des groupes et des anneaux. Groupes. Généralités. Sous groupes distingués. Sous groupes engendré par une partie. Groupes quotients. Théorème d'isomorphisme. Groupe opérant sur un ensemble. Equation des classes. Théorème de Burnside et applications. Théorèmes de Sylow. Structure des groupes finis. 22
Anneaux et corps. Définitions, calcul dans les anneaux, sous anneaux, unités, idéaux, opérations sur les idéaux, idéaux premiers et maximaux. Anneaux quotients, corps, exemples (l'anneau Z/nZ, l anneau de polynômes A[], ). Corps de fractions d'un anneau intègre commutatif. Corps finis. Exemples. Anneaux euclidiens, anneaux principaux, anneaux factoriels. Exemples. Programme de l UE : Equations différentielles Code: LFM / MF 62 Cours: 2h. TD: 3h. Crédits: 7 Coefficients: 4 Objectifs : On entrevoit dans ce cours des méthodes et des applications fondamentales du calcul différentiel. Théorème de Cauchy-Lipschitz, solutions maximales, dépendance des conditions initiales et des paramètres. Intégrales premières. Equations différentielles linéaires. Résolvante. Wronskien. Méthode de variation des constantes. Equations à coefficients constants. Stabilité et méthode directe de Lyapounov. Systèmes dynamiques. Programme de l UE : Probabilité Code: LFM / MF 63 Cours: 2 h. TD : 3 h. Crédits: 6 Coefficients: 3 Objectifs : L objectif de ce cours est double. D une part, consolider les acquis de l UE 42 et d autre part, effectuer une étude élémentaire des lois continues, discrètes ou à densité. Espaces de probabilités. Tribus d'événements. Probabilité. Probabilité conditionnelle. Variables aléatoires. Loi d'une variable aléatoire. Exemples de lois de probabilités. Indépendance. Indépendance des événements. Variables aléatoires indépendantes. Convolution des lois. Espérance. Espérances conditionnelles. Fonctions caractéristiques et vecteurs gaussiens. Convergence des suites de variables aléatoires. Convergence presque sûre. Convergence en probabilité. Convergence en loi. Lois des grands nombres et Théorème de la limite centrale. Programme de l UE : Analyse numérique 23
Code: LFM / MF 64 Cours: 2 h. TD : 3 h. Crédits: 6 Coefficients: 3 Objectifs : Ce cours introduira des méthodes et des applications fondamentales de l analyse numérique. Rappels et compléments sur les matrices : Exemple modèle de système linéaire. Espaces hermitiens. Réduction des matrices. Spectre d une matrice, théorème de Gershgorin-Hadamard. Normes matricielles : Exemples de normes matricielles particulières. Comparaison entre norme et rayon spectral. Conditionnement d une matrice. Méthodes de résolution des systèmes linéaires (Gauss, Cholesky, Householder). Approximation dans un espace préhilbertien : Polynômes orthogonaux. Méthode des moindres carrés. Intégration numérique (méthode des trapèzes, Simpson ) 24
Cinquième semestre (S5) Contenu des programmes des Unités d Enseignement fondamentales de la troisième année (L3) Parcours : Mathématiques et Applications (MA) Programme de l UE : Calcul différentiel Code: LFM / MA 51 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : On entrevoit dans ce cours des méthodes et des applications fondamentales du calcul différentiel. Introduction aux espaces de Banach. Applications différentiables sur un espace de Banach. Différentielles d'applications particulières. Règles de calcul. Applications produit. Théorème des accroissements finis et applications. Différentielles d'ordre supérieur : différentielle seconde, théorème de Schwarz. Règles de calcul. Formules de Taylor. Théorème d'inversion locale, théorème des fonctions implicites. Applications. Structure locale des applications différentiables : théorème du rang. Extrema des fonctions réelles. Programme de l UE : Calcul scientifique Code: LFM / MA 52 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Dans ce cours l'étudiant apprendra plusieurs méthodes de résolution des grands systèmes linéaires. 25
Systèmes linéaires. Rappels sur la méthode de Gauss. Motivations pour la résolution de grands systèmes linéaires. Méthodes directes. Méthodes itératives. Notion de conditionnement. Problèmes spectraux. Motivations. Méthode de la puissance. Équations non linéaires. Méthode de la sécante. Méthode de Newton. Calculs d'erreurs. Équations différentielles. Éléments de théorie et de modélisation. Résolution approchée du problème de Cauchy: méthodes explicites ; méthodes implicites. Étude générale des méthodes à un pas (méthode d'euler). Transformée de Fourier discrète. Motivations. Algorithme de Cooley-Tuckey (FFT). Programme de l UE: Calcul intégral Code: LFM / MA 53 Cours: 3h, TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : Nécessité de mesurer des ensembles et d'intégrer des fonctions pour un mathématicien. L'intégration à la Lebesgue. Théorèmes de convergence en calcul intégral. Intégration sur un produit d'espaces ; intégration par changement de variables. Espaces de Lebesgue des fonctions de puissance p-ème intégrable : définition et propriétés, caractère complet, premiers résultats de dualité, comparaison des modes de convergence. Convolution, régularisation, approximation de fonctions intégrables. Sixième semestre (S6) Programme de l UE : Probabilité et statistique (II) Code: LFM / MA 61 Cours: 3h. TD: 4h. Crédits: 7 Coefficients: 4 Objectifs : L objectif de ce cours est double. D une part, consolider les acquis de l UE 42 et d autre part, effectuer une étude élémentaire des lois continues, discrètes ou à densité. Enfin, ce cours établira des liens entre certaines lois dans le cadre des approximations et des convergences, ainsi que des liens entre probabilités et statistique dans le cadre de l estimation. 26
Probabilités. Espaces de probabilités. Tribus d'événements. Probabilité. Probabilité conditionnelle. Variables aléatoires. Loi d'une variable aléatoire. Exemples de lois de probabilités. Indépendance. Indépendance des événements. Variables aléatoires indépendantes. Convolution des lois. Espérance. Espérances conditionnelles. Fonctions caractéristiques et vecteurs gaussiens. Convergence des suites de variables aléatoires. Convergence presque sûre. Convergence en probabilité. Convergence en loi. Lois des grands nombres et Théorème de la limite centrale. Statistique. Généralités sur les modèles statistiques. Estimation des paramètres d une loi. Tests statistiques usuels. Programme de l UE : Convexité et optimisation Code: LFM / MA 62 Cours: 2h. TD: 3h. Crédits: 6 Coefficients: 3 Objectifs : L'objectif de ce cours est l'introduction des ensembles convexes, des fonctions convexes et leurs applications à la théorie de l'optimisation. Eléments de topologie d un espace vectoriel normé. Convergence d une suite et continuité, applications linéaires et multilinéaires continues, compacité, théorème de Riesz, théorème d existence de solutions pour un problème de minimisation (suite minimisante). Optimisation. Problème de minimisation avec contraintes et liaisons, hypothèses de qualification des contraintes, conditions de Kuhn et Tucker. Algorithmes d optimisation. Algorithme du gradient, du gradient conjugué, du gradient projeté et d Uzawa. Programme de l UE : Equations différentielles Code: LFM / MA 63 Cours: 2h. TD: 3h. Crédits: 6 Coefficients: 3 Objectifs : On entrevoit dans ce cours des méthodes et des applications fondamentales du calcul différentiel. Théorème de Cauchy-Lipschitz, solutions maximales, dépendance des conditions initiales et des paramètres. Intégrales premières. Equations différentielles linéaires. Résolvante. Wronskien. Méthode de variation des constantes. Equations à coefficients constants. Stabilité et méthode directe de Lyapounov. Systèmes dynamiques. 27
Programme de l UE: Analyse de Fourier Code: LFM / MA 64 Cours: 2h. TD: 3h. Crédits: 6 Coefficients: 3 Objectifs : Dans ce cours on introduit les éléments de base de l analyse de Fourier. Transformée de Fourier de fonctions intégrables : définition et premières propriétés, exemples de transformées de Fourier, transformée de Fourier inverse. Espace des fonctions à décroissance rapide à l'infini. Transformation de Fourier dans l'espace des fonctions de carré intégrable. Programmes des unités d enseignement optionnelles Les programmes des unités d enseignement optionnelles seront fixés par les départements concernés dans la limite des possibilités pédagogiques 28