Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas conformes au cahier de charges, nous verrons dans le cours suivant comment modifier et améliorer les performances d'un système asservi en ajoutant : un correcteur. I) Rappels sur les systèmes asservis a) Intérêt de l'asservissement (rétroaction ou bouclage) Exemple : Un four doit rester à température constante, malgré l'ouverture de la porte lors du chargement ou du déchargement des pièces à chauffer. consigne perturbation Deux structures de commande sont possibles : Commande en chaîne directe Commande asservie Problèmes liés à une commande en chaîne directe : Dans le cas d'une commande en chaîne directe, le système de commande ne prend pas en compte l'ouverture de la porte, cette perturbation entraînera une baisse notable de la température. De plus, le système de commande ne s'apercevra pas du vieillissement de l'appareil (système de chauffe moins performant, fuite de chaleur plus importante. b) Structure générale d'un système asservi (avec une seule boucle). Perturbation Consigne Comparateur + - ε Correcteur Amplificateur Actionneur Système Physique Sortie Capteur 1
Remarque : En amont du comparateur, il peut y a voir un bloc supplémentaire pour adapter la consigne à la grandeur de sortie du capteur. c) Fonction de Transfert en Boucle Ouverte, et en Boucle Fermée P ε(p) + + H(p) + - M(p) R(p) On définit la FTBO et la FTBF sans tenir compte de la perturbation Fonction de transfert en boucle ouverte : FTBO(p) = H(p).R(p) = M ( p) ε( p) H ( p) Fonction de transfert en boucle fermée : FTBF(p) = 1+H ( p). R( p) = S ( p) E ( p) Remarque : Si l'on tient compte de la perturbation P, on peut déterminer la sortie en fonction des deux entrées. H ( p) S ( p)= 1+ H ( p). R( p) E ( p)+ 1 PE ( p) 1+ H ( p). R( p) d) Pôles et zéros d'une fonction de transfert On considère la fonction de transfert suivante : F ( p)= b 0+b 1. p+......b n 1. p n 1 +b n. p n N ( p) a 0 +a 1. p+......a m 1. p m 1 +a m. p m= D( p) avec (n m) Les zéros de F(p) sont les racine du polynôme N(p) Les pôles de F(p) sont les racine du polynôme D(p) Equation caractéristique : C'est l'équation D(p) = 0, l'étude de cette équation permet de déterminer les pôles de la fonction de transfert permet de déterminer l'allure des réponses aux entrées caractéristiques (Cf Annexe 1) Remarque 1 : On verra dans un complément de cours que certains pôles sont plus importants que d'autres pôles dominants, on pourra ainsi simplifier la fonction de transfert pour ne garder que les éléments les plus significatifs. Remarque 2 : Dans le cas d'un système asservi, FTBO(p) = H(p).R(p) et H ( p) FTBF ( p)= ainsi l'équation caractéristique a les mêmes solutions que : 1+ H ( p).r( p) 1+H(p).R(p) = 0 2
II) Stabilité a) Définition Un système est stable, si la réponse à une entrée bornée est elle même un signal borné. Réponse à un échelon : (unitaire) Système stable Système instable b) Condition de stabilité Condition nécessaire et suffisante de stabilité : Un système linéaire et invariant est stable si et seulement si tous ses pôles ont une partie réelle négative lieu des pôles. Cf annexes Im Zone de stabilité Zone d'instabilité Re c) Critère de Routh (Critère algébrique) Cette méthode ne permet pas de calculer précisément les pôles de la fonction de transfert, mais simplement de déterminer le nombre de pôles à partie réelle positive donc de déterminer si le système est stable ou non. Tableau de Routh Cf annexes Système étudié : N(p) / D(p) Remarque : D(p) est le dénominateur de la FTBF dans le cas d'un système asservi. 3
Traitons deux exemples : D(p) = p 3 +4p²+8p+8 D(p)= p 3-2p²-p+14 p 3 1 8 0 p 3 1-1 0 p² 4 8 0 p² -2 14 0 p 6 0 p 6 0 1 8 0 1 14 0 0 0 0 0 Pas de changement de signe dans la première colonne. Deux changements de signe dans la première colonne. Le nombre de changement de signes dans la première colonne donne le nombre de pôles à partie réelle positive. Dans le premier cas : Nous avons 3 pôles à partie réelle négative : 2, 1+ j 3, 1 j 3 système stable. Dans le second cas : Nous avons 2 pôles à partie réelle positive et un pôle à partie réelle négative: 2,2+ j 3, 2 j 3 système instable. Systèmes à gain variable : + - H(p) avec H ( p)= 1 p 3 +4p 2 +8p+8 avec > 0, calculons FTBF(p) : FTBF ( p)= p 3 +4p 2 +8p+8+ Tableau de Routh : p 3 1 8 0 Si l'on veut que le système soit stable, il faut que p² 4 8+ 0 tous les termes de la première colonne soient de mêmes signes (positifs) p (32-8-)/4 0 24 1 8+ 0 0 0 d) Critères graphiques Ces critère permettent de déterminer la stabilité en boucle fermée à partir du comportement fréquentiel en boucle ouverte (à partir de la FTBO). 4 Remarque : L'équation caractéristique à les mêmes solution que l'équation : 1+FTBO=0 point critique -1 de module 1 (0dB) et d'argument de -180
1) Règles du revers Ces règles concernent des systèmes dont la FTBO est stable. (voir complément de cours sur le critère de Nyquist pour le cas de FTBO non stables) Dans le plan de Nyquist Si en décrivant le lieu de transfert en Boucle Ouverte d'un système dans le sens des pulsations croissantes, on laisse le point critique -1 à gauche, le système sera stable en Boucle fermée. Sinon le système sera instable ne boucle fermée. Conséquences dans les diagrammes de Bode : (de la FTBO) Pour que le système soit stable en boucle fermée, Il faut que : Lorsque le gain atteint 0dB, ϕ -180 Lorsque la phase atteint -180, le gain doit être négatif. Dans le plan de Black Si en décrivant le lieu de transfert en Boucle Ouverte d'un système dans le sens des pulsations croissantes, on laisse le point critique -1 (-180, 0dB) à droite, le système sera stable en Boucle fermée. 2) Marges de stabilité Elles permettent de mettre en évidence «la distance» entre le lieu de la FTBO et le point critique. Marge de phase : C'est la différence entre la valeur de la phase lorsque le gain en db est nul et -180 Marge de gain : La marge de gain, mesurée en db, est la différence entre 0dB et la valeur du gain (en db) pour lequel la phase est égale à -180. Mesure dans les plans de Nyquist et Black Cf Annexes. Remarque : Très souvent, pour des raisons de rapidité et de stabilité, on prendra : - une marge de gain d'au moins 10dB - une marge de phase de l'ordre de 45 e) Stabilité en Boucle fermée, lorsque la FTBO est du 1 ou du 2 ordre. 1) Premier ordre H ( p)= 1+τ p ( et τ positifs) et R(p) = 1 (retour unitaire) On calcule la FTBF : FTBF ( p)= 1+ +τ p pôle : 1+ τ 0 Système stable quelle que soit la valeur de Remarque : En annexe, vous avez les diagrammes de Bode, Black et Nyquist en régime harmonique d'un premier ordre marges de stabilité : Mϕ 90 et marge de gain infinie. 5
2) Second ordre H ( p)= (, z et τ 1+2z τ n p+τ 2 n p 2 n positifs) et R(p) = 1 (retour unitaire) On calcule la FTBF : H ( p)= 1+ +2z τ n p+τ 2 n p 2 Tableau de Routh : p² τ n ² 1+ La première colonne ne présente pas de changement de signes p 2zτ n 0 Système stable quel que soit la valeur de 1 1+ 0 0 0 Remarque : En annexe, vous avez les diagrammes de Bode, Black et Nyquist en régime harmonique d'un second ordre marges de stabilité : Mϕ varie de 0 à 180 (suivant la valeur de z) et la marge de gain est infinie. III) Précision Un asservissement est réalisé pour que la variable contrôlée s(t) suive «au plus près «la valeur de la consigne e(t). On mesure la précision d'un système en calculant la valeur de l'erreur e r (t) = e(t) -s(t) Remarque : le système est d'autant plus précis que l'erreur est proche de 0. On peut également utiliser l'erreur relative : e r % = e(t ) s(t).100 e(t ) a) Précision statique On appelle erreur statique, la valeur asymptotique (lorsque t tend vers l'infini) de l'erreur pour une consigne de type échelon unitaire. (cela revient à utiliser l'erreur relative) On appelle erreur de traînage, la valeur asymptotique (lorsque t tend vers l'infini) de l'erreur pour une consigne de type rampe unitaire. b) Influence de la classe de la FTBO sur la précision Les systèmes asservis dont l'entrée et la sortie sont directement comparables (et notamment de même nature) peuvent se mettre sous la forme ci-dessous : + - H(p) (Retour unitaire) 6
Avec : H ( p)= p α 1+b 1 p+...+b n p n Gain avec α+m n m 1+a 1 p+...+a m p classe Déterminons l'erreur statique et de traînage de cet asservissement : E r ( p)=e ( p) S ( p)=e ( p) H ( p) 1+ H ( p) E ( p)= 1 1+ H ( p) E ( p) Ce qui donne : E r ( p)= p α (1+a 1 p+...+a m p m ) p α (1+a 1 p +...+a m p m )+ (1+b 1 p+...+b n p n ) E ( p) Si E ( p)= 1 p lim t e r (t)=lim p 0 p α + p α (échelon unitaire et théorème de la valeur finale) Si E ( p)= 1 p² lim t e r (t)=lim p 0 p α + p α 1 p (rampe unitaire et théorème de la valeur finale) Tableau récapitulatif (à apprendre par cœur) Classe de la FTBO Erreur statique Erreur de traînage Classe 0 1/(1+) Classe 1 0 1/ Classe 2 0 0 Remarque 1 : La présence d'intégrateur permet d'améliorer l'erreur statique (voire de l'annuler) Remarque 2 : En l'absence d'intégrateurs, la précision statique s'améliore lorsque augmente. c) Notion d'écart statique et de traînage + - ε(p) H(p) M(p) R(p) Lorsque l'entrée et la sortie ne sont pas directement comparables (par exemple, si ils ne sont pas de même nature), on peut quantifier la précision en utilisant la notion d'écart ε(t). (l'écart se mesure directement à la sortie du comparateur) FTBO H ( p). R( p) ε( p)=e ( p) R( p). S ( p)=e ( p) 1+ H ( p). R( p) E ( p)= 1 1+ H ( p). R ( p) E ( p) 7
On écrit la FTBO sous la forme : FTBO ( p)= p α 1+b 1 p+...+b n p n Alors ε( p)= p α (1+a 1 p+...+a m p m ) p α (1+a 1 p+...+a m p m )+ (1+b 1 p+...+b n p n ) E ( p) avec α+m n m 1+a 1 p+...+a m p Ecart statique : valeur finale) E ( p)= 1 p lim t e r (t)=lim p 0 p α + p α (échelon unitaire et théorème de la Ecart de traînage : E ( p)= 1 p² lim t e r (t)=lim p 0 valeur finale) p α + p α 1 p (rampe unitaire et théorème de la Tableau de synthèse : (identique au tableau précédent) Classe de la FTBO Ecart statique Ecart de traînage Classe 0 1/(1+) Classe 1 0 1/ Classe 2 0 0 8