Chapitre VIII : Amincissements
|
|
|
- Arsène Villeneuve
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre VIII : Amincissements Transformations: en "tout ou rien" amincissement épaississement Homotopie Homotopie et connexité dans le cas digital Amincissement et épaississement homotopiques
2 Transformation par tout ou rien Définition (J.Serra) : La transformation en tout ou rien η Τ (sect.ii-2) généralise à la fois érosion et dilatation, en mettant en jeu le couple d'éléments structurants disjoints T= {T',T"} η {z: c Τ (X) = {z: T"(z) X c ;; T'(z) X} X} = ε Τ ' (X) ' ε Τ '' '' (X (X c c )) T: Centre T': T":. ε Τ' (X) X: ε Τ'' (X c ) η Τ (X)
3 Amincissement - Epaississement Définition (A. Rosenfeld, J.Serra) : L'amincissement θ Τ est le résidu entre l'ensemble initial et sa transformation par tout ou rien : θ Τ (X) = X \ η Τ (X) = X \ [ε Τ ' (X) ε Τ '' (X c )] T Centre T': T": X η Τ (X) Résidu L'épaississement ξ Τ est introduit alors par dualité pour le complément ξ Τ (X) = X η Τ (X) = X [ε Τ ' (X) ε Τ '' (X c )] θ Τ (X)
4 Propriétés Theorème de représentation ( G.Banon and J.Barrera) : Tout opérateur ψ sur σ(e) qui est invariant par translation peut se représenter comme réunion de transformations en tout-ou-rien : ψ(x) = η Τ i (X) pour une famille {T i, T i } convenable, qui dépend du noyau de ψ. Dualité : L amincissement selon (T',T") est le dual pour le complément de l épaississement selon (T",T') : θ Τ ', T " (X) = [ ξ Τ ",T' (X c ) ] c En particulier, tout amincissement est anti-extensif, et tout épaississement extensif. Pour que ces opérations ne se réduisent pas à l identité, il faut que 0 Τ (amincissements) ou 0 Τ ( épaississements). Utilisation : En morphologie, ces opérations sont utilisés pour construire des transformations conservant l'homotopie, (squelettes homotopiques).
5 Homotopie pour les ensembles Définition de l'homotopie : Deux ensembles sont homotopes s'il existe une transformation bicontinue pour passer de l'un à l'autre, telle que - chaque grain contient le même nombre de pores que son transformé, - chaque pore contient le même nombre de grains que son transformé. l'homotopie décrit l'organisation des grains et des pores entre eux. Ensembles homotopes Ensembles non homotopes J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology VIII.
6 Homotopie pour les Fonctions Numériques Homotopie (J.Serra) : On introduit l'homotopie pour les fonctions à partir de leurs sections planes. Deux fonctions sont homotopes quand on peut trouver une anamorphose des niveaux de gris qui rende homotopes leurs sections de mêmes cotes. Ainsi, l' homotopie caractérise la structure des pics, des vallées, et des cols Fonctions homotopes Fonctions non homotopes 2 2 2
7 Transformations Homotopiques Définition : Une transformation est dite homotopique quand entrée et sortie sont homotopes. La seule transformation homotopique que nous ayons rencontrée jusqu' ici est le squelette euclidien. En trame digitale, cette propriété disparaît. Pour la récupérer, nous devons renoncer au squelette (digital) et le remplacer par la notion "voisine" d'amincissement. Squelette digital Squelette continu
8 Homotopie et connexité dans le le cas digital Dans le cas digital, la définition de l'homotopie dépend de la donnée d' une connexité par arcs. Or, il n'est pas trivial de définir combien de composantes la figure suivante possède : =? Il faut choisir des règles de connection portant sur les configurations diagonales. Pour que la connexité réalisée ait une structure de graphe planaire, ces règles doivent interdire les croisements figure-fond:?
9 Connexité en maille carrée (I) En pratique, on rencontre trois cas de figure : er cas (A. Rosenfeld) : 8-connexité pour la forme, 4-connexité pour le fond. Propriétés : -Invariance par translation; -invariance par rotations de 90 degrés; -pas d' autodualité. 8-connexité pour les ensembles 4-connexité pour le fond
10 Connexité en maille carrée (II) 2 ème cas (A. Rosenfeld) : 4-connexité pour le fond, 8-connexité pour la forme. Propriétés : Par dualité, les mêmes que celles du cas précédent. Le premier cas convient quand les objets sont convexes, le second quand c'est le fond qui l'est. 4-connexité pour les ensembles 8-connexité pour le fond
11 Connexité en maille hexagonale 3 ème cas (M.J.E. Golay) : 6-connexité pour la forme; 6-connexité pour le fond. Propriétés : -Invariance par translations -Invariance par rotations de 60 degrés; -Autoduale. 6-connexité pour les ensembles 6-connexité pour le fond N.B.En pratique, la maille hexagonale est simulée algorithmiquement à partir de données expérimentales en maille carrée. J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology VIII.
12 Amincissements et épaississements homotopiques Un amincissement ou un épaississement est homotopique s'il utilise un élément structurant T=(T',T") qui préserve l' homotopie. Proposition (J. Serra): En maille hexagonale, il n existe que cinq paires (T',T") dans l hexagone unité (toutes les autres s'obtiennent à partir de ces cinq types par rotation, symétrie ou complémentation): Homotopique Homotopique et la modification du point central préserve l' homotopie si et seulement si le contour del'élément possède un unique passage de "0" a "". Cette propriété est vérifiée uniquement pour les éléments des second et du troisième types. T' T" T' o T"
13 Amincissement et Epaississement séquentiels Les amincissements et épaississements sont souvent utilisés de manière séquentielle. Par exemple, étant donné un élément structurant L=(L',L"), on procède à plusieurs amincissements avec toutes les rotations de l'élément et on répète la transformation jusqu'à idempotence. L L2 L3 L4 L5 L6 θ L =lim n (θ (θ L... (θ L5 (θ L6 ))) n Pour un n suffisamment grand, l'amincissement limite θ L est antiextensif, idempotent et préserve l'homotopie (mais il n'est pas croissant).
14 Exemple d'amincissement séquentiel J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology VIII.
15 Propriétés des Amincissements Séquentiels Le résultat n'est pas toujours mince. Par exemple, l'ensemble suivant n'est pas modifié par amincissement à l'aide des éléments structurants L i : Le choix de l'élément initial et de l'ordre de la série des éléments influent sur le résultat final. Les amincissements ne sont pas robustes : ce défaut de robustesse se traduit par de nombreuses ramifications qui dépendent fortement de l'élément structurant.
16 Liste des éléments structurants principaux, en hexagonal Elément structurant Amincissement séquentiel Epaississement séquentiel Transformation en tout ou rien L Squelette Squelette du fond M Squelette avec ramifications Epaississement à partir de points isolés Homotopiques D Marqueur homotopique Enveloppe quasi-convexe E Ebarbulage du squelette Ebarbulage du fond Points extrémaux F I Points triples Points isolés Non homotopiques
17 Références Sur la la transformation par tout ou ou rien :: La La transformation par tout ou ou rien peut être considérée comme le lecoup d envoi de de la la morphologie mathématique. Elle fut fut introduite par J.Serra en en 965{SER65a and b}, b}, et, et, indépendamment, par M.J.Golay en en 969 pour la la trame hexagonale {GOL69}. Toutefois, le le théorème majeur de de G.Banon et et J.Barrera est est sensiblement plus récent {BAN9}. Sur les les amincissements :: La Lasquelettisation digitale obtenue au au moyen d amincissements remonte à A.Rosenfeld, qui a traité le le cas de de la la trame carrée {ROS70}. On On trouve dans{ser82} un un examen plus systématique des amincissements discrets hexagonaux, ainsi que la la première étude sur surl homotopie des fonctions numériques, au au sens où où elle est est entendue ici ici (il (il en en existe d autres définitions).
Chapitre VI. Connexions et fonctions numériques
Chapitre VI Connexions et fonctions numériques Concepts : -> Extension aux fonctions -> Opérateurs connexes -> Géodésie numérique -> Nivellements et auto-dualité Applications : -> Etude des extrema ->
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
CARTE DE VOEUX À L ASSOCIAEDRE
CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert
Axe " Génie des Procédés", centre SPIN, Ecole des Mines de Saint-Etienne ECOLE DES MINES SAINT-ETIENNE ANALYSE D IMAGE
ANALYSE D IMAGE 1. PRESENTATION DE L ANALYSE D IMAGE. 4 1.1. OJECTIF ET BUT DE L ANALYSE D IMAGE 4 1.2. PRINCIPE 4 1.2.1. FORMATION DE L IMAGE NUMERIQUE 4 1.2.2. TRANSFORMATION DE L IMAGE NUMERIQUE EN
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
SERIE 1 Statistique descriptive - Graphiques
Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE
CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE 2 ème partie : REQUÊTES Sommaire 1. Les REQUÊTES...2 1.1 Créer une requête simple...2 1.1.1 Requête de création de listage ouvrages...2 1.1.2 Procédure de
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
1 Comment faire un document Open Office /writer de façon intelligente?
1 Comment faire un document Open Office /writer de façon intelligente? 1.1 Comment fonctionne un traitement de texte?: les balises. Un fichier de traitement de texte (WRITER ou WORD) comporte en plus du
DOSSIER D'ACTIVITES SUR TUXPAINT Dessiner avec Tuxpaint. Objectifs :
DOSSIER D'ACTIVITES SUR TUXPAINT Dessiner avec Tuxpaint Objectifs : Apprendre à l apprenant à connaître l'ordinateur Apprendre à l'apprenant à allumer l'ordinateur Faire découvrir à l'apprenant Linux Faire
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Eléments mobiles du moteur Moteur 1/9
Eléments mobiles du moteur Moteur 1/9 I Diagnostic des anomalies - Perte de compression ( par les segment ou par le piston ). - Consommation d huile ( remontée d huile dans la chambre ). - Bruits de fonctionnement
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
Ekoconstruct / Catalogue 2014. ek construct
Ekoconstruct / Catalogue 2014 ek construct 1 Nos engagements Nos engagements Une entreprise familiale avec un savoir faire Une société tournée vers le développement durable Une construction rapide et personnalisée
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Info0804. Cours 6. Optimisation combinatoire : Applications et compléments
Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Devenez intuitif DEVENEZ INTUITIF. Un guide pratique pour réveiller Votre intuition et les capacités de votre Esprit CHRISTOPHER NOGALA ~ 1 ~
DEVENEZ INTUITIF Un guide pratique pour réveiller Votre intuition et les capacités de votre Esprit CHRISTOPHER NOGALA ~ 1 ~ Extraits du livre «Devenez Intuitif» ~ 2 ~ Table des matières Introduction...
N. Paparoditis, Laboratoire MATIS
N. Paparoditis, Laboratoire MATIS Contexte: Diffusion de données et services locaux STEREOPOLIS II Un véhicule de numérisation mobile terrestre Lasers Caméras Système de navigation/positionnement STEREOPOLIS
Géométrie Algorithmique Plan du cours
Plan du cours Introduction Triangulation de polygones Recherche/localisation Diagrammes de Voronoï Triangulation de Delaunay Arbres de partition binaire 1 Intersection de segments de droite Intersection
Math 5 Dallage Tâche d évaluation
Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.
LA MITOSE CUEEP - USTL DÉPARTEMENT SCIENCES BAHIJA DELATTRE
Biologie LA MITOSE CUEEP - USTL DÉPARTEMENT SCIENCES BAHIJA DELATTRE Février 2006 I. L'INTRODUCTION Chaque cellule d'un organisme supérieur provient de la multiplication d'une cellule préexistante (cellule
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO
Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont
Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par
Urbanisation de système d'information. PLM 3 (Product Lifecycle Management) Élaborations, versions, variantes, configurations
Urbanisation de système d'information PLM 3 (Product Lifecycle Management) Élaborations, versions, variantes, configurations 1 Mise en gestes L'existence de tout produit, et de tout service commence par
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Merise. Introduction
Merise Introduction MERISE:= Méthode d Etude et de Réalisation Informatique pour les Systèmes d Entreprise Méthode d Analyse et de Conception : Analyse: Etude du problème Etudier le système existant Comprendre
Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1)
1 Que signifient AON et AOA? Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) Sommaire 1. Concepts... 2 2. Méthode PCM appliquée
- Tente de réception louée complète (structure, bâches de toit et cotés, piquets)
Location tente de réception 5x10 état neuf gris clair et blanc La tente de réception est conçue pour une utilisation lors des fêtes et autres événements est, en tant que tels, uniquement destiné à un montage
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
par Méthodes topologiques en dynamique des surfaces École d été, Grenoble, Juin 2006
POINTS FIXES DES HOMÉOMORPHISMES DE SURFACES par Frédéric Le Roux Méthodes topologiques en dynamique des surfaces École d été, Grenoble, Juin 2006 La fibration de Hopf. Dessin de Benoît Kloeckner, http
ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE
ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
quelque quelque(s) quel(s) que/quelle(s) que quel(s) / quelle(s) qu elle(s)
GRAMMATICAUX DE CATÉGORIES DIFFÉRENTES QUELQUE HOMOPHONES QUELQUE(S) QUEL(S) QUE/QUELLE(S) QUE QUEL(S)/QUELLE(S) QU ELLE(S) 1 Homophones grammaticaux de catégories différentes quelque quelque(s) quel(s)
Fig. 1 Le détecteur de LHCb. En bas à gauche : schématiquement ; En bas à droite: «Event Display» développé au LAL.
LHCb est l'une des expériences installées sur le LHC. Elle recherche la physique au-delà du Modèle standard en étudiant les mésons Beaux et Charmés. L accent est mis entre autres sur l étude de la violation
Introduction au maillage pour le calcul scientifique
Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel [email protected] Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,
Chapitre 1 : Introduction aux bases de données
Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
CAUTIONNEMENT ET SUBORDINATION DE CRÉANCES. (Prêts aux particuliers)
CAUTIONNEMENT ET SUBORDINATION DE CRÉANCES DEST. : BANQUE ROYALE DU CANADA DÉFINITIONS (Prêts aux particuliers) Les mots dont les définitions apparaissent ci-dessous sont utilisés tout au long de ce document.
Partie 7 : Gestion de la mémoire
INF3600+INF2610 Automne 2006 Partie 7 : Gestion de la mémoire Exercice 1 : Considérez un système disposant de 16 MO de mémoire physique réservée aux processus utilisateur. La mémoire est composée de cases
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Guide d utilisation de fonctionnalités avancées de Beyond 20/20 (application à des données départementales issues de Sit@del2)
Guide d utilisation de fonctionnalités avancées de Beyond 20/20 (application à des données départementales issues de Sit@del2) Les indications ci-dessous ont pour objectif de guider la personnalisation
REGLEMENT DES PARIS GENYBET.FR
REGLEMENT DES PARIS GENYBET.FR Copyright 2015 GENYinfos, tous droits réservés Sommaire 1 DEFINITIONS 6 2 ARTICLES RELATIFS AU REGLEMENT DU PARI MUTUEL EN LIGNE 7 3 ENREGISTREMENT DES PARIS 8 4 RESULTAT
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Synthèse SYNTHESE - 1 - DIRECTION GENERALE DE L ENERGIE ET DU CLIMAT. Service du climat et de l efficacité énergétique
DIRECTION GENERALE DE L ENERGIE ET DU CLIMAT Service du climat et de l efficacité énergétique Observatoire national sur les effets du réchauffement climatique Synthèse SYNTHESE Prise en compte de l'élévation
GAMME GESTION TEMPS & PRÉSENCE ZX-HP LA MAIN MISE SUR LE TEMPS
GAMME GESTION TEMPS & PRÉSENCE ZX-HP LA MAIN MISE SUR LE TEMPS LE SYSTÈME ZX-HP GESTION TEMPS ET PRÉSENCE LA RECONNAISSANCE DE LA MAIN EN 3D SÉCURITÉ MAXIMUM FIABILITÉ RAPIDITÉ ET FACILITÉ D UTILISATION
Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?
Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.
Destinataires d'exécution
Information Direction générale de la performance économique et environnementale des entreprises Service Gouvernance et gestion de la PAC Sous-direction Gestion des aides de la PAC Bureau des Soutiens Directs
Fins, réguliers, diam ext 31mm Épais, grossiers, diam 36 mm
Sabres de cavalerie légère, dits à la chasseur. Différence entre les Modèles de l'an IX & An XI Introduction : Faisant suite à la période agitée de la révolution, le directoire, puis le consulat vont tenter
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée Responsable du Master Informatique : Marc Zipstein Responsable de
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes Pages 4 à 48 barèmes 4 à 48 donnes Condensé en une page: Page 2 barèmes 4 à 32 ( nombre pair de donnes ) Page 3 Tous les autres barèmes ( PV de
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Programmation Objet - Cours II
Programmation Objet - Cours II - Exercices - Page 1 Programmation Objet - Cours II Exercices Auteur : E.Thirion - Dernière mise à jour : 05/07/2015 Les exercices suivants sont en majorité des projets à
Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique
Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique Mémoire Maxime Latulippe Maîtrise en informatique Maître ès sciences (M.Sc.) Québec, Canada Maxime
Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme
TFE Ingénieur Civil Mathématiques Appliquées 24 juin 2010 Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme Auteur Christophe Pochet Promoteur Pierre Devolder Comment garantir la
Figure 1 : représentation des différents écarts
ulletin officiel spécial n 9 du 30 septembre 2010 Annexe SIENES DE L INGÉNIEUR YLE TERMINAL DE LA SÉRIE SIENTIFIQUE I - Objectifs généraux Notre société devra relever de nombreux défis dans les prochaines
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Les monte escaliers de MediTek La solution pour votre mobilité à votre domicile
Les monte escaliers de MediTek La solution pour votre mobilité à votre domicile VOTRE INDEPENDANCE REGAGNEE PAR L EXCELLENCE DU NOUVEAU MONTE ESCALIER DE MEDITEK. Autrefois, quand monter un escalier était
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML
basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML http://olivier-augereau.com Sommaire Introduction I) Les bases II) Les diagrammes
Anne Tasso. Java. Le livre de. premier langage. 10 e édition. Avec 109 exercices corrigés. Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2
Anne Tasso Java Le livre de premier langage 10 e édition Avec 109 exercices corrigés Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2 Table des matières Avant-propos Organisation de l ouvrage..............................
Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)
Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Le nombre d or et Fibonacci
Août 2004, Bordeaux Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole
AU DELA DU TEST 3 vers les nages codifiées, le sauvetage, la natation synchronisée
AU DELA DU TEST 3 vers les nages codifiées, le sauvetage, la natation synchronisée Pour aborder ce travail, les élèves doivent avoir acquis au minimum le test N 3 départemental Possibilité de travailler
TP 3 Réseaux : Subnetting IP et Firewall
TP 3 Réseaux : Subnetting IP et Firewall Durée approximative du temps à passer sur chaque partie: I) 1h II-A) 1h II-B) 1h II-C) 45 mn II-D) 15 mn Important Il est nécessaire de ne pas avoir de services
INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE
Partie 1, Chapitre 4 INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE Constat : à l'exception des jumeaux, chaque individu est unique. Ses caractères héréditaires dependent des info génétiques (allèles) portées
La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM
La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
Thermodynamique (Échange thermique)
Thermodynamique (Échange thermique) Introduction : Cette activité est mise en ligne sur le site du CNRMAO avec l autorisation de la société ERM Automatismes Industriels, détentrice des droits de publication
