Algorithmes récursifs

Dimension: px
Commencer à balayer dès la page:

Download "Algorithmes récursifs"

Transcription

1 Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge verel 23 mars 2007

2 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément dans un tableau par dichotomie récursivement Questions principales du jour : Comment écrire ce que l on ne connait pas encore? S. Verel, M.-E. Voge

3 Plan Principe de la récursivité 1 Principe de la récursivité Decendre ou monter un escalier Couper un gâteau 2 Définition Algorithmes classiques 3 S. Verel, M.-E. Voge

4 Les puissances de a Decendre ou monter un escalier Couper un gâteau Objectif : Calculer a n en "travaillant" le moins possible on sait que a n = a a n 1... Itératif : chouette! on connaît a 0!!! Récusif : si seulement on connaissait a n 1... S. Verel, M.-E. Voge

5 L escalier & la puissance a n = a a n 1 Decendre ou monter un escalier Couper un gâteau arrivee depart arrivee depart n n 1 0 a^0 = 1 ITERATIF 1 0 a^0 = 1 RECURSIF départ : info connue monter vers résultat arêt en haut : n boucle pour départ : info cherchée descendre vers connue arêt en bas : 0 monter vers résultat comment??? S. Verel, M.-E. Voge

6 Construction de l algorithme récursif Decendre ou monter un escalier Couper un gâteau on sait : 1 monter/descendre d une marche : a n = a a n 1 2 a 0 = 1 mais : plusieurs marches... comment faire le reste du travail? Solution : appel récursif l agorithme fait une partie du travail (descendre/monter une marche) demande à un algorithme de faire le reste : lui même S. Verel, M.-E. Voge

7 Exemple d exécution Calcul de la puissance Decendre ou monter un escalier Couper un gâteau Algorithme puissance(a : réel, n : entier): : réel début si n = 0 alors retourner 1 retourner puissance(a, n-1) * a fin S. Verel, M.-E. Voge

8 Exemple d exécution Calcul de la puissance Decendre ou monter un escalier Couper un gâteau Calcul de (1.5) 3 : a = 1.5 et n = puissance(1.5, 3) 2. > puissance(1.5, 2) 3. -> puissance(1.5, 1) 4. -> puissance(1.5, 0) = > puissance(1.5, 1) = 1 * 1.5 = > puissance(1.5, 2) = 1.5 * 1.5 = puissance(1.5, 3) = 2.25 * 1.5 = S. Verel, M.-E. Voge

9 Autre problème : le PGCD Decendre ou monter un escalier Couper un gâteau monter/descendre : PGCD(a, b) = PGCD(b, a modulo b) PGCD(a, 0) = a S. Verel, M.-E. Voge

10 Exemple du calcul du pgcd Decendre ou monter un escalier Couper un gâteau Algorithme PGCD(a, b : entier): : entier début 1: si b = 0 alors 2: retourner a 3: 4: c a modulo b 5: retourner PGCD(b, c) 6: fin S. Verel, M.-E. Voge

11 Exécution de l algorithme Decendre ou monter un escalier Couper un gâteau Pour a = 72 et b = PGCD(72, 34) 2. b 0 5. c = 4 6. PGCD(34, 4) 2. b 0 5. c = 2 6. PGCD(4, 2) 2. b 0 5. c = 0 6. PGCD(2, 0) 2. b = 0 3. PGCD = 2 S. Verel, M.-E. Voge

12 Une autre vision de la récursivité Decendre ou monter un escalier Couper un gâteau Problème : manger un gâteau énorme gâteau, seulement une bouchée à la fois, on sait couper en deux tout morceau de gâteau, on le coupe en petits morceaux et on les mange! Exemple : recherche dichotomique dans un tableau trié tableau T de n cases, vérifier seulement une case à la fois, on sait réduire la taille de T (jouer sur les indices), on le coupe en petits tableaux et on cherche dans chacun! S. Verel, M.-E. Voge

13 Recherche dichotomique Recherche dans un tableau de nombres entiers ordonnés Decendre ou monter un escalier Couper un gâteau Algorithme recherche(n :entier, t :tableau d entiers, a, b : entier): : booléen variable c : entier début si a > b alors retourner Faux // il ne reste plus de cases à vérifier c (a + b)/2 // on coupe si t[c] = n alors retourner Vrai // on est tombé juste sur la bonne case si t[c] < n alors retourner recherche(n, t, c+1, b) // on cherche dans une partie retourner recherche(n, t, a, c-1) // on cherche dans l autre fin S. Verel, M.-E. Voge

14 Exécution de l algorithme Decendre ou monter un escalier Couper un gâteau t : recherche(6, t, 0, 6) c = 3 1. t[3] > 6 2. > recherche(6, t, 0, 2) c = 1 2. t[1] < > recherche(6, t, 2, 2) c = 2 3. t[2] = > recherche(6, t, 2, 2) = Vrai 4. > recherche(6, t, 0, 2) = Vrai 5. recherche(6, t, 0, 6) = Vrai S. Verel, M.-E. Voge

15 Points communs et IMPORTANTS Decendre ou monter un escalier Couper un gâteau 1 appel récursif UNIQUEMENT sur données plus petites marche du dessous : n 1 au lieu de n, (b,a mod b) au lieu de (a,b), demi-morceau de gâteau : demi-tableau, 2 faire le travail pour passer à des données plus petites monter/descendre une marche : n en fonction de n 1, couper le gˆteau, 3 identifier les cas à résoudre sans appel récursif : première marche : n = 0, (a, 0), bouchée de gâteau : une case de tableau, 4 s arrêter à temps, plus de sens : dernière marche : n < 0, plus que des bouchées : a > b : pas de case, S. Verel, M.-E. Voge

16 Decendre ou monter un escalier Couper un gâteau Structure de ces algorithmes : exemple du PGCD Base : où on s arrête, pas d appel récursif si b = 0 alors retourner a... Hérédité : calcul à partir de paramètres plus "petits" si b = 0 alors retourner PGCD(b, c) fin S. Verel, M.-E. Voge

17 Définition (informelle) Définition Algorithmes classiques Un algorithme récursif est un algorithme qui fait appel à lui-même dans le corps de sa propre définition. Il existe deux types d algorithmes récursifs : les algorithmes récursifs qui se terminent : au bout d un nombre fini d opérations, l algorithme s arrête. les algorithmes récursifs qui ne se terminent pas : on peut imaginer que l algorithme continue "éternellement" de calculer. S. Verel, M.-E. Voge

18 Exemples Principe de la récursivité Définition Algorithmes classiques Algorithme calcul1(n : entier): : réel début si n = 0 alors retourner 2 retourner 1 2 (n 1) + 2 fin calcul1 n est pas un algorithme résursif S. Verel, M.-E. Voge

19 Exemples Principe de la récursivité Définition Algorithmes classiques Algorithme calcul2(n : entier): : réel début si n = 0 alors retourner 2 retourner 1 2 calcul2(n-1) +2 fin calcul2 est un algorithme résursif qui se termine S. Verel, M.-E. Voge

20 Exemples Principe de la récursivité Définition Algorithmes classiques Algorithme calcul3(n : entier): : réel début si n = 0 alors retourner 2 retourner 1 2 calcul3(n-2)+2 fin calcul3(n) est un algorithme résursif : si n est pair, calcul3 se termine si n est impair, calcul3 ne se termine pas S. Verel, M.-E. Voge

21 A méditier Calcul de la puissance Principe de la récursivité Définition Algorithmes classiques Algorithme puissanceterminale(a : réel, n : entier, acc : réel): : réel début si n = 0 alors retourner acc retourner puissanceterminale(a, n 1, acc a) fin Comment s exécute cet algorithme? puissanceterminale(1.5, 3, 1) récursivité terminale : équivalent à une itération résultat final donné par appel récursif condition de "base" = condition arêt boucle tantque S. Verel, M.-E. Voge

22 Intérêts Principe de la récursivité Définition Algorithmes classiques bien adapté à la résolution de certains problèmes (et pas seulement mathématiques!) algorithmes souvent moins "laborieux" à écrire : moins de variables, beaucoups moins de boucles. une résolution par algorithme récursif nécessite souvent de prendre du recul pour résoudre le problème (avantage!) S. Verel, M.-E. Voge

23 Définition Algorithmes classiques Parallèle entre principe de récurrence et algorithme récursif définition mathématique par récurrence très proche définition d un algorithme récursif (cf. puissance) Modes de calcul proches : a 3 = a.a 2 = a.a.a 1 = a.a.a Souvent, définition mathématique valide lorsque algorithme récursif associé se termine. S. Verel, M.-E. Voge

24 Définition Algorithmes classiques Parallèle entre principe de récurrence et algorithme récursif Base : initialisation de la récurrence si b = 0 alors retourner a... Hérédité : calcul à partir de paramètres plus "petits" si b = 0 alors retourner PGCD(b, c) fin S. Verel, M.-E. Voge

25 Calcul de la factorielle Définition Algorithmes classiques Factorielle { 1, si n = 0 n! = n.(n 1)!, Algorithme factorielle(n : entier): : entier début si n = 0 alors retourner 1 retourner n * factorielle(n-1) fin S. Verel, M.-E. Voge

26 Exécution de l algorithme Définition Algorithmes classiques Calcul de 3!. 1. factorielle(3) = 3 * factorielle(2) 2. > factorielle(2) = 2 * factorielle(1) 3. -> factorielle(1) = 1 * factorielle(0) 4. -> factorielle(0) = > factorielle(1) = 1 * 1 = 1 6. > factorielle(2) = 2 * 1 = 2 7. factorielle(3) = 3 * 2 = 6 S. Verel, M.-E. Voge

27 Recherche dichotomique Recherche d un mot dans un dictionnaire Définition Algorithmes classiques début pages de recherche <- dictionnaire tant que mot lu n est pas le mot recherché faire lire mot médian des pages de recherche si le mot lu est plus petit que mot recherché alors pages de recherche <- pages à droite du mot lu pages de recherche <- pages à gauche du mot lu fin tant que retourner (mot lu) fin S. Verel, M.-E. Voge

28 Recherche dichotomique Recherche d un mot dans un dictionnaire Définition Algorithmes classiques Algorithme recherche(m : mot, l : liste): : booléen variable lu : mot début lu median(l) si lu = m alors retourner Vrai si lu < m alors retourner recherche( liste à droite de lu) retourner recherche( liste à gauche de lu) fin Incomplet (jamais Faux)!! S. Verel, M.-E. Voge

29 Recherche dichotomique Recherche d un mot dans un dictionnaire Définition Algorithmes classiques Algorithme recherche(m : mot, l : liste): : booléen variable lu : mot début si l est vide alors retourner Faux lu median(l) si lu = m alors retourner Vrai si lu < m alors retourner recherche( liste à droite de lu) retourner recherche( liste à gauche de lu) S. Verel, M.-E. Voge

30 Quand utiliser un algorithme récursif? Est-ce que le problème dépend d un (ou plusieurs) paramètre(s)? Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"? Est-il possible de résoudre le problème à l aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre? Si oui, oui, oui alors la résolution par un algorithme récursif est à envisager. S. Verel, M.-E. Voge

31 Tours de Hanoï (Édouard Lucas ) Le problème des tours de Hanoï consiste à déplacer N disques de diamètres différents d une tour de départ à une tour d arrivée en passant par une tour intermédiaire et ceci en un minimum de coups, tout en respectant les règles suivantes : on ne peut déplacer plus d un disque à la fois, on ne peut placer un disque que sur un autre disque plus grand que lui ou sur un emplacement vide. S. Verel, M.-E. Voge

32 Comment résoudre ce problème? Est-ce que le problème dépend d un (ou plusieurs) paramètre(s)? Oui le nombre de disques. Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"? Oui lorsque le nombre de disque est 1. Est-il possible de résoudre le problème à l aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre? Oui... S. Verel, M.-E. Voge

33 Algorithme récursif Algorithme hanoi(n : entier, A : caractère, B : caractère, C : caractère ): : rien début si n = 1 alors écrire("déplacer ", A, " vers ", C) hanoi(n-1, A, C, B) ; écrire("déplacer ", A, " vers ", C) hanoi(n-1, B, A, C) ; fin S. Verel, M.-E. Voge

34 Exécution de l algorithme Hanoi(2, a, b, c ) Hanoi(3, a, b, c ) Hanoi(4, a, b, c ) Quel est le nombre de déplacements en fonction de n? Pour tout entier n 1, C n = 2 n 1. A démontrer par récurrence... Pour n = 64, les moines d Hanoi y sont encore... S. Verel, M.-E. Voge

35 Somme des cubes Calculer S(n) = n 3 Est-ce que le problème dépend d un (ou plusieurs) paramètre(s)? Oui n. Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"? Oui pour n = 0 ou n = 1 Est-il possible de résoudre le problème à l aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre? Oui, S(n) = S(n 1) + n 3 S. Verel, M.-E. Voge

36 Somme des cubes Algorithme Algorithme sommecube(n : entier): : entier début si n = 0 alors retourner 0 retourner sommecube(n-1) +n 3 fin S. Verel, M.-E. Voge

37 Exécution de l algorithme Calcul de S(3) 1. sommecube(3) 2. > sommecube(2) 3. -> sommecube(1) 4. -> sommecube(0) = > sommecube(1) = = 1 6. > sommecube(2) = = 9 7. sommecube(3) = = 18 S. Verel, M.-E. Voge

38 Régionnement du plan Etant donné un nombre n de droites, calculer le nombre R n maximum de régions du plan obtenus Est-ce que le problème dépend d un (ou plusieurs) paramètre(s)? Oui le nombre n de droites. Est-il possible de résoudre le problème lorsque la (les) valeur(s) du paramètre est "petite(s)"? Oui pour n = 0 ou n = 1 Est-il possible de résoudre le problème à l aide de la résolution du problème portant sur une (des) "plus petite(s)" valeur(s) du paramètre? Oui, en comptant le nombre régions ajoutées lorsqu on ajoute une droite à n 1 droites : une région supplémentaire par droite coupée, plus une dernière région. S. Verel, M.-E. Voge

39 Régionnement du plan Algorithme Algorithme region(n : entier): : entier début si n = 0 alors retourner 1 retourner region(n-1) +n fin S. Verel, M.-E. Voge

40 Objectifs de la séance 3 écrire des algorithmes récursifs comme par exemple celui calculant la factorielle et recherchant un élément par dichotomie Questions principales du jour : Comment écrire ce que l on ne connait pas encore? S. Verel, M.-E. Voge

41 Travail de documentation Trouver de la documentation en rapport avec l ensemble de l enseignement. Quels sont vos premières références? S. Verel, M.-E. Voge

Initiation à l algorithmique

Initiation à l algorithmique Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -

Plus en détail

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

STAGE IREM 0- Premiers pas en Python

STAGE IREM 0- Premiers pas en Python Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer

Plus en détail

Algorithmique et structures de données I

Algorithmique et structures de données I Algorithmique et structures de données I Riadh Ben Messaoud Université 7 novembre à Carthage Faculté des Sciences Économiques et de Gestion de Nabeul 1ère année Licence Fondamentale IAG 1ère année Licence

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles) 1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d

Plus en détail

4. Les structures de données statiques

4. Les structures de données statiques 4. Les structures de données statiques 4.1 Tableaux à une dimension 4.1.1 Introduction Imaginons que dans un programme, nous ayons besoin simultanément de 25 valeurs (par exemple, des notes pour calculer

Plus en détail

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul

Plus en détail

Algorithmique Travaux Dirigés

Algorithmique Travaux Dirigés Algorithmique Travaux Dirigés Master Technologie et Handicap : Intensifs 1 Corrigé Exercice 1 Affectations 1. Considérons les algorithmes ci-dessous. (a) Quel sera le contenu des variables a, b et éventuellement

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Algorithmique et Programmation, IMA

Algorithmique et Programmation, IMA Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

Quelques algorithmes simples dont l analyse n est pas si simple

Quelques algorithmes simples dont l analyse n est pas si simple Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib habib@liafa.jussieu.fr http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire

Plus en détail

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle Cours 3 : Instructions qui changent l ordre d exécution séquentiel 1 Cours 3 Instructions qui changent l ordre d exécution séquentiel La conditionnelle: instructions si et selon Les boucles Comment raisonner

Plus en détail

CORRECTION EXERCICES ALGORITHME 1

CORRECTION EXERCICES ALGORITHME 1 CORRECTION 1 Mr KHATORY (GIM 1 A) 1 Ecrire un algorithme permettant de résoudre une équation du second degré. Afficher les solutions! 2 2 b b 4ac ax bx c 0; solution: x 2a Solution: ALGORITHME seconddegré

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

LES ALGORITHMES ARITHMETIQUES

LES ALGORITHMES ARITHMETIQUES LES ALGORITHMES ARITHMETIQUES I- Introduction Dans ce chapitre nous allons étudier quelques algorithmes relatifs à l arithmétique qui est une branche des mathématiques qui étudie les relations entre les

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Licence Bio Informatique Année 2004-2005. Premiers pas. Exercice 1 Hello World parce qu il faut bien commencer par quelque chose...

Licence Bio Informatique Année 2004-2005. Premiers pas. Exercice 1 Hello World parce qu il faut bien commencer par quelque chose... Université Paris 7 Programmation Objet Licence Bio Informatique Année 2004-2005 TD n 1 - Correction Premiers pas Exercice 1 Hello World parce qu il faut bien commencer par quelque chose... 1. Enregistrez

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr U2 MATHÉMATIQUES POUR L INFORMATIQUE Dans ce document, on trouve toutes les notions que le référentiel du BTS SIO impose pour l epreuve U22. Les éléments en rouge sont des rappels concernant la notion

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental

Plus en détail

Algorithmes et mathématiques. 1. Premiers pas avec Python. Exo7. 1.1. Hello world!

Algorithmes et mathématiques. 1. Premiers pas avec Python. Exo7. 1.1. Hello world! Exo7 Algorithmes et mathématiques Vidéo partie 1. Premiers pas avec Python Vidéo partie 2. Ecriture des entiers Vidéo partie 3. Calculs de sinus, cosinus, tangente Vidéo partie 4. Les réels Vidéo partie

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Programmation fonctionnelle avec OCaml

Programmation fonctionnelle avec OCaml Programmation fonctionnelle avec OCaml 1ère séance, 19 février 2015 6 séances de 1h30 de cours et 3h de TP 3 projets avec soutenance D autres transparents sont disponibles avec vidéo (intranet) Samuel

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

Algorithmique dans les nouveaux programmes de Première

Algorithmique dans les nouveaux programmes de Première Algorithmique dans les nouveaux programmes de Première Journée de présentation des nouveaux programmes de Première académie de Nice Les nouveaux programmes de Première 2011 1 I. Introduction 1. Acquis

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique - IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Initiation à LabView : Les exemples d applications :

Initiation à LabView : Les exemples d applications : Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple

Plus en détail

MODULE INF112 TD 2 2012 2013 2012-2013 INF112 - TD2 1

MODULE INF112 TD 2 2012 2013 2012-2013 INF112 - TD2 1 MODULE INF112 TD 2 2012 2013 2012-2013 INF112 - TD2 1 Plan 1. Algorithme vs Programme 2. Introduction à l algorithmique 3. Exercices 2012-2013 INF112 - TD2 2 1. Algorithme vs programme Motivations (rappel)

Plus en détail

LES PUISSANCES EN 4 E. Parcours d études et de recherche autour des puissances en classe de 4 e

LES PUISSANCES EN 4 E. Parcours d études et de recherche autour des puissances en classe de 4 e LES PUISSANCES EN 4 E Parcours d études et de recherche autour des puissances en classe de 4 e PARCOURS SUR LES PUISSANCES : 2 ACTIVITÉS Situation sur les bactéries issue de la SVT Travail en 2 parties

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

Initiation à la programmation en Python

Initiation à la programmation en Python I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de

Plus en détail

Représentation des fonctions booléennes

Représentation des fonctions booléennes Représentation des fonctions booléennes Épreuve pratique d algorithmique et de programmation Juillet 2003 Ce problème est consacré à l étude de deux représentations des fonctions booléennes de N variables

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 3. Le langage Java

Info0101 Intro. à l'algorithmique et à la programmation. Cours 3. Le langage Java Info0101 Intro. à l'algorithmique et à la programmation Cours 3 Le langage Java Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique

Plus en détail

Programmation impérative et éléments d algorithmique

Programmation impérative et éléments d algorithmique Cours/UPMC/LI102/2 Programmation impérative et éléments d algorithmique Compléments de cours 2005-2006 Anne Brygoo Titou Durand Maryse Pelletier Michèle Soria PARACAMPLUS Déjà paru : UPMC/LI101 : annales

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Les automates Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Avril 2015 Retour sur l île et le barman Deux problèmes similaires: Des îles, des bateaux et un trésor à trouver

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Langage C. Présentation générale et instructions de base. 2007/2008 Info2, 1ère année SM/SMI 1

Langage C. Présentation générale et instructions de base. 2007/2008 Info2, 1ère année SM/SMI 1 Langage C Présentation générale et instructions de base 2007/2008 Info2, 1ère année SM/SMI 1 Langage C Créé en 1972 (D. Ritchie et K. Thompson), est un langage rapide et trés populaire et largement utilisé.

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

Baccalauréat L spécialité Métropole La Réunion septembre 2008

Baccalauréat L spécialité Métropole La Réunion septembre 2008 Baccalauréat L spécialité Métropole La Réunion septembre 2008 L usage d une calculatrice est autorisé Ce sujet ne nécessite pas de papier millimétré 3 heures EXERCICE 1 4 s Un magasin de matériels informatiques

Plus en détail

Visual Basic pour Applications

Visual Basic pour Applications Visual Basic pour Applications Les concepts de base de la programmation, 2ème partie Romain Tavenard Kévin Huguenin Christophe Avenel Romain.Tavenard@irisa.fr Kevin.Huguenin@gmail.com Christophe.Avenel@irisa.fr

Plus en détail

IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C

IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C IN 102 - Cours 1 Qu on le veuille ou non, les systèmes informatisés sont désormais omniprésents. Même si ne vous destinez pas à l informatique, vous avez de très grandes chances d y être confrontés en

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani La récursivité 2 Définition Une procédure ou une fonction est dite récursive si elle fait appel à elle même, directement ou indirectement. 3 Exemple : Réalisation

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

Algorithmique et programmation : les bases (VBA) Corrigé

Algorithmique et programmation : les bases (VBA) Corrigé PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 1 mai juin 2006 Corrigé Résumé Ce document décrit l écriture dans le langage VBA des éléments vus en algorithmique. Table des matières 1 Pourquoi

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail

Tous les exercices des analyses d aptitudes Multicheck Junior

Tous les exercices des analyses d aptitudes Multicheck Junior Capacité de mémorisation: Mémorisation des pictogrammes/images/ vêtements/objets/personnes Capacité de mémorisation: Se souvenir d un texte Capacité de mémorisation: Mémoriser les personnes 1 Français:

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

Par combien de zéros se termine N!?

Par combien de zéros se termine N!? La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail