TP : Polarisation. Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TP : Polarisation. Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier."

Transcription

1 TP : Polarisation Le but de ce TP est d'analyser la polarisation de la lumière et de mettre en évidence quelques phénomènes qui peuvent la modifier. I. Rappels sur la polarisation 1. Définition La polarisation de la lumière est la direction du champ électrique dans un plan perpendiculaire à la direction de propagation quand on regarde l'onde arriver. La polarisation est une propriété du champ électromagnétique due à sa nature vectorielle. 2. Etats de polarisation Lumière polarisée ou non polarisée : On dit que la lumière est polarisée si dans n'importe quel plan perpendiculaire à la direction de propagation la direction du champ électrique est bien définie, c est à-dire qu elle ne varie pas aléatoirement au cours du temps. Dans le cas contraire, on dit que la lumière n est pas polarisée ou non polarisée. La lumière fournie par les lampes à incandescence est non polarisée, de même que celle fournie par les lampes spectrales. Certains lasers fournissent quant à eux une lumière totalement polarisée. Etats de polarisation d une lumière polarisée : La polarisation totale de la lumière peut être de trois sortes : polarisation rectiligne : la direction du champ électrique est constante au cours du temps et de la propagation. polarisation circulaire : la direction du champ électrique tourne au cours du temps mais son amplitude reste constante polarisation elliptique : la direction du champ électrique tourne au cours du temps avec une amplitude non constante

2 Une polarisation circulaire ou elliptique est qualifiée de droite lorsqu on la voit tourner dans le sens horaire (donc vers la droite) lorsqu elle nous vient dans l œil. Au contraire, une polarisation circulaire ou elliptique est qualifiée de gauche lorsqu on la voit tourner dans le sens trigonométrique (donc vers la gauche) lorsqu elle nous vient dans l œil. Nous n aborderons dans ce TP que le cas de la polarisation rectiligne. II. Action d'un polariseur sur la lumière 1. Polarisation par dichroïsme Pour obtenir une onde polarisée dans un état donné, et à défaut de source polarisée, on utilise un polariseur, c est-à dire un dispositif susceptible d agir soit sur la lumière naturelle, soit sur de la lumière dans un état de polarisation différent. Les polariseurs les plus utilisés sont les polariseurs rectilignes, qui permettent de transformer la lumière incidente en lumière polarisée rectilignement. Principe du polariseur dichroïque : Le dichroïsme correspond à l absorption sélective de la lumière en fonction de sa direction de polarisation. Il est à la base du polariseur rectiligne le plus couramment utilisé à l heure actuelle : le polaroïd ou polariseur dichroïque. Un polariseur dichroïque se présente sous la forme d une feuille en matière plastique de quelques dixièmes de millimètres d épaisseur, généralement de teinte gris neutre. Cette feuille est constituée de longues chaînes de polymères étirées majoritairement dans une direction. Le polariseur dichroïque absorbe la lumière lorsque celle-ci est polarisée selon la direction de l axe des chaînes de polymères, mais presque pas lorsque celle-ci est polarisée selon la direction perpendiculaire à l axe des chaînes de polymères, appelée axe passant du polariseur. De cette façon, l absorption du polariseur dichroïque dépend très fortement de la direction de polarisation. Remarque : les polymères n interagissent plus avec la lumière si la longueur d onde de celle ci est trop loin d une transition électronique, ce qui explique le très mauvais fonctionnement des polaroïds dans l infrarouge. 2. Action d un polariseur sur une onde non polarisée Expérience : Placer un polariseur dichroïque entre une lampe blanche et un écran. Faire tourner le polariseur dans le plan perpendiculaire à la direction de propagation de l onde lumineuse et observer l'intensité lumineuse sur l'écran. Que constatez-vous? Interprétation : La lumière provenant de la lampe étant non polarisée, la direction du polariseur ne modifie en rien les observations faites à l écran puisqu il n y a pas de direction privilégiée dans la lumière incidente. Par contre, en sortie du polariseur rectiligne, la lumière est désormais polarisée rectilignement selon la direction de l axe passant du polariseur.

3 3. Action d un polariseur sur une onde polarisée rectilignement Expérience : En laissant le premier polariseur dichroïque P1 en place, placer un second polariseur P2 dichroïque sur le trajet du faisceau. Tourner P2, et observer l'intensité lumineuse sur l'écran. Que constatez-vous? Plus précisément, par combien de maxima et de minima passe l intensité lumineuse lorsqu on fait un tour complet avec P2? Pour quelles valeurs d'angles entre P1 et P2 a-t-on ces extrema? Que vaut l'intensité lumineuse des minima? Faire tourner P1 au lieu de P2, qu'observe-t-on? Interprétation : Le polariseur dichroïque P1 sert de polariseur, c est-à dire qu il permet d obtenir en sortie une polarisation rectiligne selon l axe passant de P1. Le second polariseur P2 sert d analyseur, c est-à dire qu il ne laisse quant à lui passer que la projection de la polarisation issu de P1 selon son axe passant : ainsi la lumière sur l écran est maximale lorsque les axes passants des deux polariseurs sont parallèles et minimale (extinction) lorsque les axes passants des deux polariseurs sont perpendiculaires. III. Analyse de la lumière par un polariseur 1. Analyse de la polarisation des sources usuelles Expérience : Observer les différentes sources de lumière usuelles (éclairages, ciel, écran de téléphone, d'ordinateur...). Lesquelles sont polarisées rectilignement, partiellement polarisées et non polarisées? 2. Loi de Malus Expérience : Reprendre l'expérience du paragraphe I.3 en remplaçant l'écran par un luxmètre. Mesurer l'intensité lumineuse I en fonction de l'angle θ entre les deux polariseurs. Tracer à l'aide d'un tableur la courbe I(θ).

4 On écrit l'intensité lumineuse sous la forme I(θ) = I 0 f(θ) où I 0 est l'intensité lumineuse maximale. Quelle fonction f modélise le mieux l'allure de l'intensité lumineuse? 3. Lunette 3D Expérience : Proposer et réaliser un protocole pour déterminer l'axe de polarisation de chaque verre d'une paire de lunette 3D. 4. Polarisation par réflexion vitreuse L observation d une scène quotidienne à travers un polaroïd permet de se rendre compte qu une quantité importante de la lumière naturelle (non polarisée) est polarisée par réflexion sur des surfaces lisses diélectriques, c est-à dire non métalliques (par exemple vitres, peintures, matières plastiques, surfaces des liquides ). Si on observe soigneusement, on constate que cette polarisation est partielle (on ne parvient pas à obtenir une extinction complète comme c était le cas dans l expérience précédente), rectiligne selon la direction parallèle à la surface. Expérience : Envoyer une onde lumineuse plane non polarisée (le vérifier au préalable à l aide d un polariseur dichroïque) sur un milieu homogène diélectrique (verre ou plastique). D après les lois de Snell-Descartes, le rayon incident donne naissance à un rayon réfléchi et à un rayon réfracté. Nous nous intéressons ici à la polarisation de la lumière réfléchie. Placer un polariseur dichroïque entre le rayon réfléchi et l écran et observer l intensité transmise en fonction de l orientation du polariseur dichroïque, qui sert ici d analyseur. Que constatez-vous? La lumière réfléchie est-elle polarisée rectilignement? Faire varier l angle d incidence sur le milieu homogène et montrer que pour une incidence particulière, appelée incidence de Brewster ou angle de Brewster, on obtient une extinction totale avec l analyseur. Interprétation : L expérience précédente nous permet d affirmer que la lumière réfléchie est polarisée rectilignement alors que la lumière incidente n était pas polarisée : il y a donc phénomène de polarisation par réflexion. Cette polarisation par réflexion est totale pour un angle d incidence particulier, appelé angle de Brewster, correspondant à un angle droit entre le rayon réfléchi et le rayon transmis. Grâce à la relation de Snell-Descartes, on peut calculer la valeur de l angle de Brewster :

5 Pour une réflexion air-verre : n 1 = 1,0 et n 2 = 1,5 => i B = 56. Application : en photographie, on peut utiliser un filtre polarisant (qui n est rien d autre qu un polariseur) pour éliminer les réflexions sur les surfaces vitrées, les reflet sur l eau, la neige 5. Polarisation par diffusion Le phénomène de diffusion par des molécules, et plus généralement par des particules en suspension, constitue une autre source de polarisation de la lumière naturelle. Lorsqu une onde se propage dans un tel milieu, elle provoque un mouvement oscillatoire forcé des charges électriques des molécules (ou des particules en suspension). Ces dernières se comportent comme des dipôles électriques oscillants qui émettent un rayonnement polarisé dans des directions perpendiculaires à la direction de propagation de l onde incidente. (Cadre de la diffusion de Rayleigh, pour laquelle la lumière bleue est beaucoup plus diffusée que la lumière rouge). Par exemple, partant de la lumière non polarisée émise par le Soleil, la diffusion permet d obtenir dans certaines directions privilégiées une onde polarisée rectilignement.

6 Expérience : Eclairer une suspension de lait dans l eau à l aide d un faisceau parallèle de lumière blanche et observer simultanément la lumière transmise par la solution et la lumière diffusée latéralement. On "voit" le faisceau qui traverse la solution, ce qui veut dire qu il y a diffusion par la solution. Le faisceau diffusé est bleu alors que le faisceau transmis par la solution est orange/rouge. Utiliser un analyseur pour étudier la polarisation des lumières transmise et diffusée. Que constatez-vous? Interprétation : L interprétation qualitative de l expérience précédente repose sur le phénomène de diffusion par les particules microscopiques de la solution. On qualifie cette diffusion de diffusion Rayleigh, car la taille des particules diffusantes, nommés dipôles, est beaucoup plus faible que la longueur d onde de la lumière incidente. La puissance diffusée en diffusion Rayleigh est proportionnelle à 1/λ 4 : la lumière bleue est diffusée plus efficacement que la lumière rouge, ce qui explique pourquoi la lumière diffusée nous paraît bleue alors que la lumière transmise est quant à elle rouge (car c est ce qui reste de la lumière incidente après avoir ôté la lumière diffusée). La lumière diffusée est polarisée rectilignement selon l axe d oscillations des dipôles, qui est la direction verticale dans notre expérience. Application : en photographie, on a vu qu on peut utiliser un filtre polarisant pour éliminer les réflexions sur les surfaces vitrées, les reflets sur l eau, la neige Ce filtre polarisant permet également de réduire le voile atmosphérique en éteignant la composante polarisée rectilignement de la lumière diffusée par l atmosphère. On obtient ainsi des paysages lumineux sur fond de ciel bleu profond. 6. Activité optique d'une substance chirale : polarisation rotatoire Certaines substances, dites «optiquement actives» possèdent la propriété de faire tourner d un angle α le plan de polarisation d une lumière incidente qui traverse la substance.

7 On distingue les substances : - dextrogyres : l observateur «voit» tourner l analyseur dans le sens des aiguilles d une montre, sens choisi pour α algébriquement positif. - lévogyres : l observateur «voit» tourner dans le sens trigonométrique. Le pouvoir rotatoire : l'angle α dépend de : - la longueur d'inde de la lumière incidente - la température T - la longueur l de la cuve traversée - la concentration massique C de la substance active selon la loi de Biot : α = α 0 l C où α 0 est appelé pouvoir rotatoire spécifique. Quelques exemples de valeur du pouvoir rotatoire spécifique pour quelques sucres : Substance active α 0 (.ml.g -1.dm -1 ) à λ = 589,3 nm α-d Glucose +112 Fructose -92,2 Expérience : Proposer et réaliser un protocole pour mesurer la concentration massique des solutions proposées à l'aide de la loi de Biot.

TP Cours : Polarisation rectiligne de la lumière

TP Cours : Polarisation rectiligne de la lumière TP Cours : Polarisation rectiligne de la lumière Les ondes lumineuses sont des ondes électromagnétiques vectorielles. Certains systèmes physiques, comme par exemple les lunettes de soleil polarisantes,

Plus en détail

Des lunettes trois D pour le confiseur

Des lunettes trois D pour le confiseur Partie A Des lunettes trois D pour le confiseur La cuisine pour s approprier la polarimétrie Ou comprendre la polarisation de la lumière grâce à la cuisine. Un écran, des lunettes pour connaître les sucres.

Plus en détail

TP 1 Polarisation et biréfringence

TP 1 Polarisation et biréfringence TP 1 Polarisation et biréfringence PARTIE THEORIQUE I.1 Filtres polarisants rectilignes : polaroïds et prisme de Glan On utilisera un filtre polarisant soit pour créer une polarisation rectiligne (on appellera

Plus en détail

POLARISATION DE LA LUMIÈRE.

POLARISATION DE LA LUMIÈRE. POLARISATION D LA LUMIÈR. POLARISATION D LA LUMIÈR. Objectifs Connaître la structure transverse d une onde électromagnétique. Savoir écrire le champ électrique associé à une onde plane progressive. Relier

Plus en détail

1.1 Description d'une onde électromagnétique plane harmonique

1.1 Description d'une onde électromagnétique plane harmonique 1 Rappels théoriques Les états de polarisation de la lumière 1.1 Description d'une onde électromagnétique plane harmonique Le champ électrique d'une onde plane harmonique en un point M au cours du temps

Plus en détail

Polarisation Polarization (Adj polarized) le 20/04/2008

Polarisation Polarization (Adj polarized) le 20/04/2008 Polarisation Polarization (Adj polarized) le 20/04/2008 Lumière non polarisée : La polarisation est un phénomène provenant du caractère ondulatoire de la lumière. La lumière est une onde, c'est à dire

Plus en détail

Fiche cours. Polarisation de la lumière, polarimétrie 15/11/2007 STL BGB

Fiche cours. Polarisation de la lumière, polarimétrie 15/11/2007 STL BGB En 1808, Malus découvre que la lumière du Soleil subit une modification d état lors d une réflexion sur une surface de verre. Cette modification constitue le phénomène de polarisation de la lumière. 1.

Plus en détail

1 TP : Polarisation Sciences Physiques MP. TP : Polarisation.

1 TP : Polarisation Sciences Physiques MP. TP : Polarisation. 1 TP : Polarisation Sciences Phsiques MP TP : Polarisation. L étude s effectuera pour les ondes électromagnétiques dans le domaine visible. l ensemble des phénomènes que nous allons aborder est la conséquence

Plus en détail

Préparation à l agrégation de Sciences-Physiques ENS Physique. Polarisation I

Préparation à l agrégation de Sciences-Physiques ENS Physique. Polarisation I Préparation à l agrégation de Sciences-Physiques NS Physique Polarisation I FRANCON : Vibrations lumineuses, p. 240 à 256 MATHIU : Optique, tome I, p. 93 à 121 et 261 à 283 BRUHAT-KASTLR : Optique, 170

Plus en détail

POLARISATION DE LA LUMIÈRE

POLARISATION DE LA LUMIÈRE TRAVAUX PRATIQUES POLARISATION DE LA LUMIÈRE Cette séance de travaux pratiques propose quelques expériences sur l étude et la manipulation de la polarisation d un faisceau. Ces expériences se concentrent

Plus en détail

E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés

E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés E - Application de la spectrométrie à l étude des couleurs interférentielles spectres cannelés Nous allons voir ici différentes expériences où l utilisation d un spectromètre à CCD permet de réaliser des

Plus en détail

Corrigés de la séance 16 Chap 27: Optique ondulatoire

Corrigés de la séance 16 Chap 27: Optique ondulatoire Corrigés de la séance 16 Chap 27: Optique ondulatoire Questions pour réfléchir : Q. p.10. Une onde de lumière naturelle tombe sur une vitre plate sous un angle de 5 o. Décrivez l état de polarisation du

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

3 Polarisation. 3.1 Introduction. 3.2 Détection et mesure de la polarisation OPTIQUE 1 OPTIQUE

3 Polarisation. 3.1 Introduction. 3.2 Détection et mesure de la polarisation OPTIQUE 1 OPTIQUE OPTIQUE 1 OPTIQUE 3 Polarisation 3.1 Introduction La théorie n est pas donnée dans ce chapitre. Il vous faudra donc l étudier avant de faire l expérience. References Hecht et Zajac, Optics page 219 Fowles,

Plus en détail

PHYSIQUE I. Partie I - Phénomène de polarisation de la lumière

PHYSIQUE I. Partie I - Phénomène de polarisation de la lumière PHYSIQUE I Le problème s intéresse à différents aspects de la polarisation de la lumière Les applications de ces phénomènes sont multiples et les dispositifs associés sont des composants de base dans les

Plus en détail

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges Chapitre VI Polarisation de la lumière Ludovic Grossard Département Mesures Physiques, IUT du Limousin Université de Limoges 1 Dénition 2 Types de polarisation 3 Polariseurs / analyseurs 4 Les lames de

Plus en détail

Collection pour l étude de la lumière polarisée

Collection pour l étude de la lumière polarisée Collection pour l étude de la lumière polarisée OP 1610 10005 Mode d emploi Version 02 Lumière polarisée Les expériences qui sont proposées décrivent les moyens de produire de la lumière polarisée. Elles

Plus en détail

Propriétés optiques Sujet 1

Propriétés optiques Sujet 1 Sujet 1 Thème : retrouver les axes neutres d une lame. On prend du saphir, matériau anisotrope de structure hexagonale. Question 1 : Ce matériau est uniaxe négatif avec l axe optique orienté selon l axe

Plus en détail

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant CHABOU Moulley Charaf Ecole Nationale Polytechnique Département Génie Minier Cours - - 1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant 1.1. Généralités sur la lumière La lumière

Plus en détail

Lunettes 3D devant un écran d ordinateur portable à cristaux liquides non réciprocité entre les deux sens d utilisation des lunettes

Lunettes 3D devant un écran d ordinateur portable à cristaux liquides non réciprocité entre les deux sens d utilisation des lunettes Composants et dispositifs Expériences présentées en cours Lunettes 3D devant un écran d ordinateur portable à cristaux liquides non réciprocité entre les deux sens d utilisation des lunettes Propagation

Plus en détail

Polarisation de la lumière

Polarisation de la lumière Polarisation de la lumière Mise en évidence : L'étude de la polarisation de la lumière va permettre de déterminer l'orientation du vecteur champ électrique par rapport à la direction de propagation. On

Plus en détail

Polarisation de la lumière

Polarisation de la lumière Polarisation de la lumière lumière polarisée linéairement circulairement Notre œil ne perçoit pas la polarisation de la lumière, contrairement à bcp d animaux (abeilles, pigeons..). 1 Les polariseurs :

Plus en détail

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display)

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) La partie A décrit la structure et le fonctionnement d une cellule LCD. La partie B décrit le dispositif d étude et les observations

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

FSAB1203 Réflexion et réfraction - exercices S4

FSAB1203 Réflexion et réfraction - exercices S4 FSAB1203 Réflexion et réfraction - exercices S4 Les solutions de ces exercices sont reprises sur le site web de FSAB1203. Ne consultez les solutions qu après avoir tenté sérieusement de résoudre l exercice.

Plus en détail

FSAB1203 - Physique 3 Partie "Ondes"

FSAB1203 - Physique 3 Partie Ondes FSAB13 - Physique 3 Partie "Ondes" Module S4 Polarisation, réflexion, réfraction Matière traitée dans le 4ème module d'apprentissage de physique 3 1. Concept de polarisation d'une onde transverse (électromagnétique,

Plus en détail

P O L A R I S AT I O N

P O L A R I S AT I O N P O L A R I S AT I O N P o l a r i s e u r d e P r e c i s i o n e n v e r r e Plébiscité par ses utilisateurs Athermiques, ces polariseurs peuvent être exposés à des faisceaux intenses. La monture à bille

Plus en détail

ETUDE ELEMENTAIRE DE LA LUMIERE POLARISEE

ETUDE ELEMENTAIRE DE LA LUMIERE POLARISEE TUD LMNTAIR D LA LUMIR LARIS ARTI THRIQU 1 - Les différentes sortes de vibrations lumineuses 1.1 - Lumière naturelle et lumière polarisée rectilignement Une onde lumineuse est une onde électromagnétique

Plus en détail

Exercices Ch.1 p : 28 29 LES MÉCANISMES OPTIQUES DE LA VISION

Exercices Ch.1 p : 28 29 LES MÉCANISMES OPTIQUES DE LA VISION Exercices Ch.1 p : 28 29 LES MÉCANISMES OPTIQUES DE LA VISION P : 28 n 1 Tester ses connaissances Définissez les mots ou expressions. Accommodation, punctum remotum, punctum proximum, œil réduit, distance

Plus en détail

Optique géométrique et physique

Optique géométrique et physique J.Hormière / 2 Optique géométrique et physique I Un objectif de distance focale f 320 mm est constitué par un doublet (L, L 2 ) de formule 8, 5, 4 (f 8a, e 5a, f 2 4a). La lumière rencontre d abord la

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer?

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? www.digital-photography-tips.net/stay_focussed-newsletter-march-2013.html

Plus en détail

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures ÉCOE POYTECHNIQUE Promotion 2009 CONTRÔE DU COURS DE PHYSIQUE PHY311 undi 12 juillet 2010, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des diapositives, notes de PC Indiquer

Plus en détail

Chapitre 2 Couleur des objets (17 exercices corrigés)

Chapitre 2 Couleur des objets (17 exercices corrigés) Chapitre 2 Couleur des objets (17 exercices corrigés) Exercice 6 page 40 1. Au niveau de la rétine de l œil humain, on trouve des cellules nerveuses en cônes et en bâtonnets. Ce sont les cellules en cônes

Plus en détail

E et B sont : Une onde électromagnétique peut être représentée comme la superposition d un champ électrique E et d un champ magnétique B.

E et B sont : Une onde électromagnétique peut être représentée comme la superposition d un champ électrique E et d un champ magnétique B. La polarisation 1 Une onde électromagnétique peut être représentée comme la superposition d un champ électrique E et d un champ magnétique B. E et B sont : perpendiculaires à la direction de propagation;

Plus en détail

Polarisation des ondes lumineuses

Polarisation des ondes lumineuses 1 Cours Sciences Phsiques MP Polarisation des ondes lumineuses L onde lumineuse est caractérisée par deu grandeurs vectorielles : son champ électrique E et son champ magnétique B. Le contete de ce cours

Plus en détail

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Les matériaux utilisés pour réaliser des composants optiques sont ± absorbants (pertes énergétiques selon le trajet Flux

Plus en détail

U D. I D = I so e - 1 - I I. INTRODUCTION

U D. I D = I so e - 1 - I I. INTRODUCTION H7. Photovoltaïsme : énergie solaire I. INTRODUCTION Le soleil est une source d énergie pratiquement inépuisable. La plus grande partie de l énergie utilisée par l homme jusqu à présent a son origine dans

Plus en détail

Devoir Surveillé n 3

Devoir Surveillé n 3 Devoir Surveillé n 3 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire

Une fois la lunette réglée, escamotez le miroir semi-rééchissant. Corrigez l'horizontalité de la lunette si nécessaire TP 06 - Spectroscope à réseau Comment analyser la lumière émise par une source? 1 Principe et réglages du spectrogoniomètre à lunette autocollimatrice Figure 1: Goniomètre Le goniomètre est un appareil

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

Phénomènes vibratoires et optique

Phénomènes vibratoires et optique Travaux dirigés Phénomènes vibratoires et optique K. F. Ren L3 IUP ME 2015 1 Oscillations 1.1 Etude d un oscillateur harmonique Un oscillateur harmonique est décrit par l équation : u(t) = 0, 4 cos(5πt

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

TP cristaux liquides

TP cristaux liquides TP cristaux liquides Master pro Laser, Matériaux, Milieux Biologiques Phénomènes de polarisation de la lumière: Étude d un afficheur à cristaux liquides Année 2008 2009 Le but de ce TP est de comprendre

Plus en détail

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique Programme de khôlle - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique 1. Savoir que la lumière est une onde électromagnétique, se propagent de manière omnidirectionnelle à partir d une

Plus en détail

Lycée Guez de Balzac Angoulême

Lycée Guez de Balzac Angoulême 1 Lycée Guez de Balzac Angoulême 2 Sommaire 1. Nature de la lumière 2. Polarisation par dichroïsme 3. Loi de Malus 4. Réalisation d un synthétiseur élémentaire à partir de la loi de Malus 5. Polarisation

Plus en détail

Les ondes lumineuses. http://plateforme.sillages.info

Les ondes lumineuses. http://plateforme.sillages.info Les ondes lumineuses 1 Les ondes lumineuses I) Préliminaires : 1 Quelques notions qualitatives sur l optique ondulatoire * Rappels d optique géométrique : * Traversée de rayons à travers une lentille CV

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

CELLULE DE POCKELS : MESURE DU DEPHASAGE

CELLULE DE POCKELS : MESURE DU DEPHASAGE CELLULE DE POCKELS : MESURE DU DEPHASAGE Durée : 3H. Ce T.P. comporte 5 pages. 1. MATERIEL / LOGICIELS / DOCUMENTATION Laser He-Ne polarisé - Polariseurs - Lame /4 - Puissancemètre - Cellule de Pockels

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

OBSERVER Couleurs et images Comment l œil fonctionne-t-il? D où vient la lumière colorée? Comment créer de la couleur?

OBSERVER Couleurs et images Comment l œil fonctionne-t-il? D où vient la lumière colorée? Comment créer de la couleur? OBSERVER Couleurs et images Comment l œil fonctionne-t-il? D où vient la lumière colorée? Comment créer de la couleur? Notions et contenus Compétences attendues Couleur, vision et image Couleur des objets.

Plus en détail

1 Rappels sur les champs électriques

1 Rappels sur les champs électriques Rappels sur les champs électriques. Cadre de l étude On considère un diélectrique homogène ie ayant les mêmes propriétés dans tout le volume). On note E le champ électrique global et D le champ excitation

Plus en détail

Chapitre 1 : (Cours) Ondes et particules, supports d information

Chapitre 1 : (Cours) Ondes et particules, supports d information Chapitre 1 : (Cours) Ondes et particules, supports d information Depuis plus d un siècle, les scientifiques étudient les rayonnements invisibles provenant de l Univers. C est ainsi que l on a pu mieux

Plus en détail

1 Introduction générale : spectre électromagnétique, lumière polarisée

1 Introduction générale : spectre électromagnétique, lumière polarisée Expérience n 12 Polarisation de la lumière Domaine: Optique, ondes électromagnétiques Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale:

Plus en détail

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées.

i) Source ponctuelle Quel que soit le type d'interféromètre (division du front d'onde ou d'amplitude), les interférences sont non-localisées. Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Polarisation [6] Diffraction [7] Interférences

Plus en détail

Activité expérimentale

Activité expérimentale STi2D STL Thème Santé Activité expérimentale Les dangers du laser pour les yeux THÈME du programme : SANTÉ Sous thème : prévention et soin. Type d activité : Activité documentaire (1,5h) Les dangers du

Plus en détail

Optique : expériences de base

Optique : expériences de base Préparation à l agrégation de Sciences-Physiques ENS Physique Optique : expériences de base Sextant, Optique expérimentale 1 I) Sources lumineuses 1) Sources thermiques Elles ont un spectre continu dont

Plus en détail

1 Le flux lumineux. C'est aussi cette énergie, transportée par le faisceau lumineux, qui impressionne la rétine et provoque le mécanisme de la vision.

1 Le flux lumineux. C'est aussi cette énergie, transportée par le faisceau lumineux, qui impressionne la rétine et provoque le mécanisme de la vision. Photométrie Nous allons voir dans ce chapitre comment les phénomènes d'émission et d'absorption de lumière par les atomes ou les molécules peuvent être utilisés pour le dosage de certaines solutions les

Plus en détail

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale Automne 2011 Nom : Chaque question à choix multiples vaut 3 points 1. Une lentille convergente dont l indice de réfraction est de 1,5 initialement

Plus en détail

Didier Christophe. Grégoire Brian. Groupe C 3

Didier Christophe. Grégoire Brian. Groupe C 3 Didier Christophe Grégoire Brian Groupe C 3 Compte-rendu Spectroscopie TP n 1 : Monochromateurs A. Outils de diffraction l Plusieurs méthodes de diffraction sont possibles : q Par une fente : On fait traverser

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures SESSION 2013 PCP1003 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

Séance 7 : Les couleurs de polarisation

Séance 7 : Les couleurs de polarisation Séance 7 : Les couleurs de polarisation A. Notions théoriques sur la polarisation de la lumière (TD7a) 1. Introduction Les ondes électromagnétiques, qui constituent, dans le domaine des longueurs d onde

Plus en détail

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique et et 1/21 1 / 21 et Lumière blanche Lampe à incandescence : lumière blanche Source thermique : Fonctionnement basé sur le rayonnement électromagnétique spontané d un corps chauffé à haute température,

Plus en détail

Oraux : optique géométrique

Oraux : optique géométrique Extraits de rapports de jury : - Le tracé de rayons, dans des cas les plus triviaux, engendre de nombreuses erreurs et imprécisions, même avec une seule lentille (tracé de l'émergent pour un incident quelconque,

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Travaux Pratiques d Optique

Travaux Pratiques d Optique Travaux Pratiques d Optique Polarisation Préparation des TPs 1 1 Polarisation : notions de base 3 2 Mesures de biréfringence 17 3 Polarimètre à analyseur tournant 25 4 Etude d un modulateur électro-optique

Plus en détail

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3)

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3) L optique (Chap 3)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. La lumière : La lumière est une onde électromagnétique, caractérisé par sa fréquence f. Les ondes électromagnétiques

Plus en détail

Chapitre 2 : La couleur des objets (p. 29)

Chapitre 2 : La couleur des objets (p. 29) PRTIE 1 - OSERVER : OULEURS ET IMGES hapitre 2 : La couleur des objets (p. 29) onnaissances : Phénomènes d absorption, de diffusion et de transmission. Savoir-faire : Utiliser les notions de couleur blanche

Plus en détail

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 FACULTE De PHARMACIE TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 Optique 1 Pr Mariano-Goulart Séance préparée par Inès BOULGHALEGH, Hélène GUEBOURG DEMANEUF, Karim HACHEM, Jeff VAUTRIN

Plus en détail

TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien

TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien TP n 4 : Etude de sources de lumière Spectre de corps noir et loi de Wien I. Etude de quelques sources de lumière Objectif : - Obtenir expérimentalement les spectres de quelques sources de lumière, et

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

Optique Propagation d un rayon lumineux

Optique Propagation d un rayon lumineux Optique Propagation d un rayon lumineux Réf : 202 389 Français p 1 Version : 3112 1. Introduction Aujourd hui de nombreuses attractions utilisent l eau et la lumière. Fontaine lumineuse à Salou en Espagne

Plus en détail

Ouverture au monde quantique

Ouverture au monde quantique Ouverture au monde quantique I Les forces newtoniennes Les forces d interaction gravitationnelle et électrostatique ont une propriété commune : leur 1 valeur est proportionnelle à, où r représente la distance

Plus en détail

LASER A SEMI-CONDUCTEUR (DIODE LASER).

LASER A SEMI-CONDUCTEUR (DIODE LASER). LASER A SEMI-CONDUCTEUR (DIODE LASER). I-THEORIE I - 1 Spécificité du laser à semi-conducteur. La faisabilité d'une émission laser au sein d'un semi-conducteur fut démontrée expérimentalement dans l'arséniure

Plus en détail

2/Focalisation des lasers

2/Focalisation des lasers 2/Focalisation des lasers L utilisation d un laser à distance élevé est donc inutile car la divergence du faisceau est non négligeable. L intérêt d un laser est sa capacité à transporter de l énergie dans

Plus en détail

Chapitre 3.10 La polarisation

Chapitre 3.10 La polarisation Chapitre 3. La polarisation La polarisation de l onde électromagnétique La lumière est une onde électromagnétique généralement transersale dont le champ électrique E et le champ magnétique oscillent perpendiculairement

Plus en détail

FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais

FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais FICHE 5A LES LENTILLES MINCES. Définition d une lentille Une lentille est un milieu transparent limité par deux dioptres dont l'un au moins est sphérique. D: diamètre d'ouverture. e: épaisseur. Une lentille

Plus en détail

POLARISATION RECTILIGNE (TP-COURS)

POLARISATION RECTILIGNE (TP-COURS) Nom : 25/01/17 TP 13 POLARISATION RECTILIGNE (TP-COURS) Matériel : 1 banc optique muni de cavaliers 1 lampe avec condendeur 1 diaphragme circulaire et 1 fente réglable 1 lentille f = 20 cm et 1 miroir

Plus en détail

TP 1 : Spectrophotométrie UV-visible - Correction

TP 1 : Spectrophotométrie UV-visible - Correction TP 1 : Spectrophotométrie UV-visible - Correction Objectifs : Comprendre le principe de fonctionnement d un spectrophotomètre. Mettre en œuvre un protocole expérimental pour caractériser une espèce colorée.

Plus en détail

PHYSIQUE-CHIMIE Terminale Scientifique

PHYSIQUE-CHIMIE Terminale Scientifique PHYSIQUE-CHIMIE Terminale Scientifique Fiches PROGRAMME 2012 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

CORRIGE. Objectifs : Exploiter des spectres UV-visible pour caractériser et doser une espèce colorée

CORRIGE. Objectifs : Exploiter des spectres UV-visible pour caractériser et doser une espèce colorée Partie Observer : Ondes et matière CHAP 04-ACT EXP Spectroscopie UV-Visible CORRIGE Objectifs : Exploiter des spectres UV-visible pour caractériser et doser une espèce colorée Problématique : Un sirop

Plus en détail

II. LA LUMIERE BLANCHE

II. LA LUMIERE BLANCHE CHAPITRE 3 COULEURS ET ARTS I. LA, COULEUR. DE. LA.. MATIERE La couleur d'un matériau ou d'un objet dépend de : - sa matière, par les colorants et pigments qu'elle contient; - la lumière qui l'éclaire.

Plus en détail

TP3 Réseaux et synthèse de diagramme d antennes

TP3 Réseaux et synthèse de diagramme d antennes TP3 Réseaux et synthèse de diagramme d antennes Pour des antennes decommunication, oncherche à optimiser le ratio P U P T, oùp U est la puissance reçue par l utilisateur, et P T est la puissance totale

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

F - Optique de Fourier, filtrage d images (détramage et strioscopie)

F - Optique de Fourier, filtrage d images (détramage et strioscopie) F - Optique de Fourier, filtrage d images (détramage et strioscopie) I - Montage : Il comporte 3 parties : le banc de mise en forme du faisceau (réalisation d un faisceau parallèle, large et homogène),

Plus en détail

Chapitre B3a. Spectroscopie infrarouge (IR)

Chapitre B3a. Spectroscopie infrarouge (IR) Chapitre B3a. Spectroscopie infrarouge (IR) 1 Chapitre B3a. Spectroscopie infrarouge (IR) Pour déterminer la formule développée d une molécule, on peut utiliser diverses méthodes : Des méthodes chimiques

Plus en détail

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques.

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Notions et contenus : Transferts quantiques d énergie Émission et absorption quantiques.

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Exercice n 1 : Les taches solaires

Exercice n 1 : Les taches solaires Vendredi 14 octobre Contrôle de physique TS spé Sauf indication contraire, tout résultat doit être justifié. Calculatrice autorisée Exercice n 1 : Les taches solaires On se propose d étudier une lunette

Plus en détail

Lycée Viette TSI 1. T.D. 02 optique miroir plan lentilles minces

Lycée Viette TSI 1. T.D. 02 optique miroir plan lentilles minces Ex 01 Ex 02 Catadioptre T.D. 02 optique miroir plan lentilles minces O Deux miroirs rectangulaires M et M forment un C angle de 70, AC = AC = 50 cm. 1. Un point lumineux P se trouve entre les miroirs.

Plus en détail

Titre SEANCE «Dis! Tu m entends?» TP COURS Expérimenter les lois de la réflexion et mettre en évidence le phénomène d absorption.

Titre SEANCE «Dis! Tu m entends?» TP COURS Expérimenter les lois de la réflexion et mettre en évidence le phénomène d absorption. FICHE 1 PRÉSENTATION Titre SEANCE «Dis! Tu m entends?» Type d'activité Objectifs de l activité Références par rapport au programme TP COURS Expérimenter les lois de la réflexion et mettre en évidence le

Plus en détail

TS1 - DST de Physique-Chimie 04/11/2013-2 h

TS1 - DST de Physique-Chimie 04/11/2013-2 h NOM : PRÉNOM : CLASSE : TS1 - DST de Physique-Chimie 04/11/2013-2 h COMPETENCES EVALUEES (A = acquis ; E = en cours d acquisition ; N = non acquis) Ex1 Ex2 Ex3 Rédiger et présenter son devoir. Restituer

Plus en détail

I- Formation des images dans l œil

I- Formation des images dans l œil Chap. 1 Mécanismes optiques de la vision I- Formation des images dans l œil 1- Condition de vision d un objet A quelle condition Julien peut il lire son journal? Il faut que le journal soit éclairé, qu

Plus en détail

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet.

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet. nom : TS 6 CONTRÔLE DE SCIENCES PHYSIQUES 14/11/11 Lors de la correction il sera tenu compte de la présentation et de la rédaction de la copie Les réponses seront justifiées et données sous forme littérale

Plus en détail