Apprentissage actif pour le clustering semi-supervisé

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage actif pour le clustering semi-supervisé"

Transcription

1 Apprentissage actif pour le clustering semi-supervisé Nicolas Labroche Sorbonne Universités, UPMC Univ Paris 06 CNRS, UMR 7606, LIP6 F-75005, Paris, France Atelier Clustering and Co-clustering (CluCo), EGC 2014 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

2 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

3 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

4 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

5 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

6 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

7 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

8 Clustering Découvrir les groupes / structures / formes dans un ensemble de données non étiquetées D = {x i } 1 i n But : trouver la meilleure partition P = {C 1 C 2... C k } au sens d une fonction objectif en fonction d une métrique : distance, (dis)similarité Groupes compacts Groupes denses N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

9 Diversité des méthodes de clustering De très nombreux algorithmes [Jain, 2010] : Centres mobiles K-Means [MacQueen, 1967], FCM [Bezdek, 1981] Hiérarchiques CAH [Sneath and Sokal, 1973], BIRCH [Zhang et al., 1996] Modèles EM [Dempster et al., 1977] Densité DBSCAN [Ester et al., 1996], OPTICS [Ankerst et al., 1999] DENCLUE [Hinneburg and Keim, 1998] Flux de données Clustream [Aggarwal et al., 2003], DenStream [Cao et al., 2006] Clustree [Philipp Kranen and Seidl, 2011], SimpleTS [Angelov, 2011] Co-clustering mais qui possèdent certaines limitations! N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

10 Limite des algorithmes de clustering Sensibilité à l initialisation (K-Means... ) Choix d une métrique (normes L1, L2, Mahalanobis... ) Lenteur / qualité de la convergence Adéquation entre la partition produite et la partition souhaitée comment transférer la connaissance du domaine? Solution : Intégration de contraintes aux algorithmes non supervisés apprentissage semi-supervisé N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

11 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

12 Apprentissage semi-supervisé Considérer à la fois des données étiquetées et non étiquetées Classification semi-supervisée : semi-supervised learning ajout de données non étiquetées pour améliorer la capacité des classifieurs [Davidson and Basu, 2005] amélioration de l apprentissage de la frontière de décision avec des données non étiquetées N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

13 Clustering semi-supervisé Contraintes au niveau des instances [Wagstaff and Cardie, 2000] : étiquettes d appartenance à un cluster contraintes must-link : ML(xi, x j ) x i et x j dans le même cluster contraintes cannot-link : CL(x i, x j ) x i et x j dans deux clusters différents N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

14 Clustering semi-supervisé Contraintes au niveau des clusters : Contraintes δ : séparabilité minimale entre 2 clusters p, q P, x i p, x j q, D(x i, x j ) δ Contraintes ɛ : compacité minimale de chaque cluster p P, p > 1, x i p, x j p D(x i, x j ) ɛ N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

15 Approches pour le clustering semi-supervisé Modification directe du processus de partitionnement : modification de la fonction objectif [Demiriz et al., 1999] respect des contraintes : COP-KMeans [Wagstaff et al., 2001] Seed-KMeans [Basu et al., 2002] Constrained FCM [Grira et al., 2006] Seed-FCM [Pedrycz and Waletzky, 1997] Constrained HAC [Davidson and Ravi, 2005a] Spectral [Wang and Davidson, 2010] C-DBSCAN [Ruiz et al., 2007] SSDBSCAN [Lelis and Sander, 2009] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

16 Approches pour le clustering semi-supervisé Apprentissage de la fonction de distance : les voisins de points liés par une ML (resp. CL) doivent aussi être proches (resp. distants) [Klein et al., 2002] Distance euclidienne et plus court chemin [Klein et al., 2002] Distance de Mahanalobis [Xing et al., 2003] [Bar-Hillel et al., 2003] Divergence de Kullback Leibler [Cohn et al., 2003] Distance d édition [Bilenko and Mooney, 2003] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

17 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

18 Bénéfices du clustering semi-supervisé Stabilité de convergence [Basu et al., 2002] : Accélération de la vitesse de convergence : clustering hiérarchique [Davidson and Ravi, 2005a] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

19 Bénéfices du clustering semi-supervisé Séparation de clusters et détection des densités : I C-DBSCAN [Ruiz et al., 2010] et SS-DBSCAN [Lelis and Sander, 2009] Découverte de clusters : I que les distances standard ne peuvent pas trouver I qui tirent profit des connaissances d un domaine N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

20 Limites du clustering semi-supervisé Problème de satisfiabilité des contraintes [Davidson and Ravi, 2005b] Détérioration des performances par des contraintes correctes : [Basu et al., 2004, Wagstaff, 2007, Mallapragada et al., 2008] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

21 Qualité des contraintes Mesures a posteriori de la qualité de contraintes [Davidson and Basu, 2007] : informativeness : information présente dans les contraintes que l algorithme ne peut pas déterminer seul (a), coherence : accord entre les différentes contraintes (b) Nous nous intéressons aux méthodes de sélection active des contraintes a priori N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

22 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

23 Schéma général Données Clustering semi supervisé Clusters Algorithme d apprentissage actif Connaissances Questions Réponses Utilisateurs (Experts) N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

24 Méthode existante : MMFFQS Min-Max Farthest-First Query Strategy [Mallapragada et al., 2008] : Explore : exploration en profondeur (farthest-first) et construction de K voisinages disjoints (squelettes de clusters) Consolidate : ajout de points aux squelettes de clusters les plus proches pour une meilleure détermination des centres des clusters N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

25 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

26 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

27 Sélection active de contraintes Objectifs : détermination d un ensemble de contraintes C à partir des données D amélioration des performances de tous les types d algorithmes minimisation de l effort d annotation Solution proposée : mesure d utilité basée sur la détermination des zones où les algorithmes font le plus d erreurs d affectation mécanisme de propagation pour minimiser les interactions de l expert N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

28 Sélection active de contraintes [Vu et al., 2012, Vu et al., 2010a, Vu et al., 2010b] Etapes Déterminer les contraintes candidates Raffiner les contraintes candidates Ordonner lescontraintes candidates Etiqueter les contraintes candidates Propager les contraintes Outils Graphe des k plus proches voisins (GkPPV) Définition de la notion de Chemin Fort Définitiond une mesure d utilité d une contrainte Question à l utilisateur Définition et application de règles N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

29 Le graphe des k-plus proches voisins (GkPPV) Graphe pondéré : sommet de degré au plus k arête (u, v) si u PPV (v) et v PPV (u) où PPV (u) est l ensemble des k-plus proches voisins de u poids entre u et v : nombre de voisins communs ω(u, v) = PPV (u) PPV (v) k = N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

30 Identification des contraintes candidates Définition de l ensemble des contraintes candidates : C = {(u, v) ω(u, v) < θ} Illustration : Contraintes candidates k = 5, θ = 2, C = 16 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

31 Mécanisme de raffinement des contraintes Objectifs : réduire le nombre de contraintes candidates introduire de la diversité dans les contraintes Définition de la notion de chemin fort CF CF(u, v) : chemin tel que x0 = u,..., x n = v et i : ω(x i, x i+1 ) θ ou (x i, x i+1 ) est un must-link. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

32 Mécanisme de raffinement des contraintes Mise en œuvre : Suppression des contraintes candidates (u, v) de C telles qu il existe au moins un chemin fort entre u et v Avant raffinement C = 16 Après raffinement C = Contraintes candidates N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

33 Mesure d utilité d une contrainte Ability to Separate Clusters (ASC) : ASC(u, v) = k ω(u, v) min{lds(u), LDS(v)} ω(u, v) : proximité entre u et v dans le GkPPV LDS() : Local Density Score [Le and Satoh., 2008] q PPV (u) ω(u, q) LDS(u) = k Mise en œuvre : demander à l utilisateur l étiquette de la contrainte candidate qui maximise ASC N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

34 Mécanisme de propagation des contraintes Objectif : augmenter la connaissance minimiser les interactions utilisateurs Méthode : créer de nouvelles contraintes à partir de contraintes existantes définition de règles de propagation de contraintes Règles de propagation : Notations : ML must-link ; CL cannot-link ; CF chemin fort ML(u, v) ML(v, w) ML(u, w) ML(u, v) CL(v, w) CL(u, w) CL(u, v) CF(u, t) CF(v, l) CL(t, l) ML(u, v) CF(u, t) CF(v, l) ML(t, l) N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

35 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

36 Protocole expérimental Algorithmes de clustering : hiérarchique AHCC [Davidson and Ravi, 2005a] : repose sur la détection des frontières entre clusters centres mobiles MPCK Means [Bilenko et al., 2004] : détermine des clusters hypersphériques bien séparés Stratégie de sélection des contraintes : MMFFQS [Mallapragada et al., 2008] : favorise k-means Proposé ASC : G-kPPV + ASC Proposé Aléatoire : G-kPPV + tirage aléatoire Aléatoire : utilisation des étiquettes de données Évaluation des résultats : indice de Rand [Rand, 1971] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

37 Algorithme AHCC Résultats comparatifs Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Soybean Iris Breast Proposé ASC > Proposé aléatoire > MMFFQS > Aléatoire ASC permet de détecter les frontières de clusters cohérent avec le principe du clustering agglomératif N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

38 Algorithme AHCC Influence du mécanisme de propagation MMFFQS + génération aléatoire : 1 requête = 1 contrainte ASC + proposé aléatoire : 1 requête = plusieurs contraintes Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de requêtes Nombre de requêtes Nombre de requêtes Soybean Iris Breast Proposé aléatoire propage plus de contraintes que ASC ASC génère des contraintes de meilleure qualité N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

39 Algorithme MPCK-Means Résultats comparatifs Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Soybean Iris Breast MMFFQS dédié à méthode de type K-Means Proposé ASC meilleur pour un faible nombre de questions cohérent avec le principe de l apprentissage actif N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

40 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

41 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

42 Problématique [Vu et al., 2010c] [Vu, 2011] But : proposer des données étiquetées (graines) qui couvrent l ensemble des clusters Proposition de 3 algorithmes actifs : Deux méthodes basées sur une stratégie Min-Max : Min-Max "simple" Min-Max-D basée sur la densité Une méthode basée sur la densité et utilisant le GkPPV N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

43 Principe de la stratégie Min-Max Sélection du point y qui maximise la distance minimale aux points déjà choisis Y : ( ) y = arg max x X Y min d(x, y) y Y Génération de l ensemble Y N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

44 Stratégie Min-Max active S-Min-Max : étiquetage par l utilisateur des points de Y : Étiquetage Seed K-Means N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

45 Algorithmes actifs basés sur une stratégie Min-Max S-Min-Max-D : variante de S-Min-Max basée sur la densité : ajouter un filtrage à l aide de la mesure de densité LDS remplacer X par X ɛ : X ɛ = {p X : LDS(p) ɛ} où ɛ est un seuil de densité N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

46 Influence du paramètre ɛ Illustration : X ɛ contient les points rouges Remarque : ɛ = 0, S-Min-Max-D S-Min-Max N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

47 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

48 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

49 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

50 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

51 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

52 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

53 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

54 Résultats comparatifs Indice de Rand Seed K-Means SSDBSCAN S Random S Min Max S Min Max D S GkPPV Indice de Rand Indice de Rand Thyroid Protein LetterIJL 0 Thyroid Protein LetterIJL S-GkPPV > S-Min-Max-D > S-Min-Max > Random S-GkPPV détecte les graines dans les régions denses cohérent avec SS-DBSCAN N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

55 Résultats comparatifs Nombre d itérations Nombre d itérations moyen avant convergence pour l algorithme Seed K-means Nombre d itérations S Random S Min Max S Min Max D S GkPPV 2 0 Iris Soybean Zoo Thyroid Protein LetterIJL Meilleures performances : S-Min-Max-D sélection des graines proches des centres des clusters N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

56 Résultats comparatifs Nombre de requêtes Nombre de questions posées à l utilisateur de façon à garantir qu il y ait au moins une graine par cluster Nombre de questions S Random S Min Max S Min Max D S GkPPV 0 Iris Soybean Zoo Thyroid Protein LetterIJL Meilleures performances : S-GkPPV couverture des clusters plus efficace N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

57 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

58 Conclusions Sélection active de contraintes : première mesure d utilité d une contrainte : ASC règles de propagation des contraintes Sélection active de données étiquetées : 2 méthodes de type Min-Max une méthode basée sur un G-kPPV Autres propositions [Vu, 2011] : algorithme de clustering avec des contraintes : MCLA algorithme de clustering avec des graines : SSGC N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

59 Perspectives Amélioration des performances du GkPPV Étude de nouvelles mesures d utilité de contraintes Passage à l échelle (big data) Lien fort avec la visualisation de données : solution au problème d interrogation de l expert N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

60 Perpectives Algorithmes mixtes : contraintes et/ou données étiquetées mesure d utilité mixte pour données étiquetées ou ML / CL mécanismes de propagation N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

61 Perpectives Contraintes plus expressives : cas où l expert n est pas sûr de sa réponse gradualité : degrés d appartenance, de possibilité, de croyance N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

62 Perpectives Algorithmes de clustering interactif : récupération des contraintes ou étiquettes pendant le processus de clustering clustering + apprentissage actif + visualisation N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

63 Apprentissage actif pour le clustering semi-supervisé Nicolas Labroche Sorbonne Universités, UPMC Univ Paris 06 CNRS, UMR 7606, LIP6 F-75005, Paris, France Atelier Clustering and Co-clustering (CluCo), EGC 2014 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

64 Références I Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering evolving data streams. In In VLDB, pages Angelov, P. (2011). Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Transactions on Systems, Man and Cybernetics - Part B : Cybernetics, 41(4) : Ankerst, M., Breunig, M., Kriegel, H., and Sander, J. (1999). Optics : Ordering points to identify clustering structure. In Proc. of the ACM SIGMOD, pages 49 60, Philadenphia, USA. Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2003). Learning distance functions using equivalence relations. In In Proceedings of the Twentieth International Conference on Machine Learning, pages Basu, S., Banerjee, A., and Mooney, R. (2004). Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM International Conference on Data Mining, pages N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

65 Références II Basu, S., Banerjee, A., and Mooney., R. J. (2002). Semi-supervised clustering by seeding. In In Proceeding of the 19th International Conference on Machine Learning (ICML), pages Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. In Intl. Conference on Machine Learning, ICML 2004, pages Bilenko, M. and Mooney, R. J. (2003). Adaptive duplicate detection using learnable string similarity measures. In In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003), pages Cao, F., Ester, M., Qian, W., and Zhou, A. (2006). Density-based clustering over an evolving data stream with noise. In In 2006 SIAM Conference on Data Mining, pages Cohn, D., Caruana, R., and Mccallum, A. (2003). Semi-supervised clustering with user feedback. Technical report. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

66 Références III Davidson, I. and Basu, S. (2005). Clustering with constraints : Incorporating prior knowledge into clustering. In Tutorial from SIAM 2005 Conference. Davidson, I. and Basu, S. (2007). A survey of clustering with instance level constraints. ACM Transactions on Knowledge Discovery from data, pages Davidson, I. and Ravi, S. (2005a). Agglomerative hierarchical clustering with constraints : Theoretical and empirical results. In Proceeding of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD-2005, pages Davidson, I. and Ravi, S. (2005b). Clustering with constraints : Feasibility issues and the k-means algorithm. In Proceedings of the SIAM International Conference on Data Mining. Demiriz, A., Bennett, K., and Embrechts, M. (1999). Semi-supervised clustering using genetic algorithms. In Proceedings of ANNIE, pages Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39 (1) :1 38. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

67 Références IV Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. of 2nd International Conference on Knowledge Discovery and Data Mining, pages , USA. AAAI Press. Grira, N., Crucianu, M., and Boujemaa, N. (2006). Fuzzy clustering with pairwise constraints for knowledge-driven image categorization. IEEE Vision, Image and Processing, 153(3) : Hinneburg, A. and Keim, A. (1998). An efficient approach to clustering in large multimedia databases with noise. In Proc. of Knowledge Discovery and Data Mining, pages Jain, A. K. (2010). Data clustering : 50 years beyond k-means. Pattern Recognition Letters, 31(8) : Klein, D., Kamvar, S., and Manning, C. (2002). From instance-level constraints to space-level constraints : Making the most of priori knowledge in data clustering. In Proceedings of the 22nd International Conference on Machine Learning. Le, D.-D. and Satoh., S. (2008). Unsupervised face annotation by mining the web. In In Proceedings of the IEEE International Conference on Data Mining (IEEE-ICDM). N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

68 Références V Lelis, L. and Sander, J. (2009). Semi-supervised density-based clustering. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM 09, pages , Washington, DC, USA. IEEE Computer Society. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In of California Press, U., editor, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages , Berkeley. Mallapragada, P., Jin, R., and Jain, A. (2008). Active query selection for semi-supervised clustering. In Proceedings of the 19th International Conference on Pattern Recognition, pages 1 4. Pedrycz, W. and Waletzky, J. (1997). Fuzzy clustering with partial supervision. IEEE Transactions on systems, Man, and Cybernetics, 27(5) : Philipp Kranen, Ira Assent, C. B. and Seidl, T. (2011). The clustree : indexing micro-clusters for anytime stream mining. Knowledge and Information Systems, 29(2) : Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of American Statistical Association, vol. 66. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

69 Références VI Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2007). C-dbscan : Density-based clustering with constraints. In Proceedings of the International Conference on Rough Sets Fuzzy Sets Data Mining and Granular Computing, pages Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2010). Density-based semi-supervised clustering. Data Mining and Knowledge Discovery, 21(3) : Sneath, P. H. A. and Sokal, R. R. (1973). Numerical taxonomy - the principles and practice of numerical classification. Technical report, W. H. Freeman, San Francisco. Vu, V., Labroche, N., and Bouchon-Meunier, B. (2010a). Boosting clustering by active constraint selection. In Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-2010), pages , Lisbon, Portugal. IOI Press. Vu, V., Labroche, N., and Bouchon-Meunier, B. (2010b). An efficient active constraint selection algorithm for clustering. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR-2010), pages , Istanbul, Turkey. IEEE. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

Comparaison de critères de pureté pour l intégration de connaissances en clustering semi-supervisé

Comparaison de critères de pureté pour l intégration de connaissances en clustering semi-supervisé Comparaison de critères de pureté pour l intégration de connaissances en clustering semi-supervisé Germain Forestier, Cédric Wemmert, Pierre Gançarski Université de Strasbourg - LSIIT - CNRS - UMR 7005

Plus en détail

Comparaison de bornes théoriques pour l accélération du clustering incrémental en une passe

Comparaison de bornes théoriques pour l accélération du clustering incrémental en une passe Comparaison de bornes théoriques pour l accélération du clustering incrémental en une passe Nicolas Labroche, Marcin Detyniecki Thomas Baerecke UPMC Paris 6, LIP6 UMR CNRS 7606 BC 169, 4 place Jussieu

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

arxiv:1211.6851v1 [cs.lg] 29 Nov 2012

arxiv:1211.6851v1 [cs.lg] 29 Nov 2012 Classification Recouvrante Basée sur les Méthodes à Noyau arxiv:1211.6851v1 [cs.lg] 29 Nov 2012 Chiheb-Eddine Ben N Cir & Nadia Essoussi LARODEC,Institut Supérieur de Gestion de Tunis, Université de Tunis

Plus en détail

Génération d une visualisation personnalisée

Génération d une visualisation personnalisée Génération d une visualisation personnalisée Mohamed Mouine RALI-DIRO Université de montréal mouinemo@iro.umontreal.ca Résumé. Nous présentons une méthode permettant de calculer les besoins et les préférences

Plus en détail

Détection de changements de distribution dans un flux de données : une approche supervisée

Détection de changements de distribution dans un flux de données : une approche supervisée Détection de changements de distribution dans un flux de données : une approche supervisée Alexis Bondu, Marc Boullé EDF R&D ICAME/SOAD, 1 avenue du Général de Gaulle, 92140 Clamart. alexis.bondu@edf.fr

Plus en détail

CLUSTERING DE FLUX DE DONNÉES

CLUSTERING DE FLUX DE DONNÉES Université Paris 13, Sorbonne Paris Cité, LIPN, UMR 7030 du CNRS 99 Avenue J-B. Clément - 93430 Villetaneuse - France CLUSTERING DE FLUX DE DONNÉES Mustapha LEBBAH MCF, HdR LIPN Univ. Paris 13 H. Azzag,

Plus en détail

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro]

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro] [] Indexation conceptuelle application au domaine biomédical Mesures de similarité dans les ontologies Sylvie Ranwez Sébastien Harispe LGI2P de l école des mines d Alès équipe KID (Knowledge and Image

Plus en détail

Département d'informatique. Apprentissage Automatique IFT-65764A. S y l l a b u s. Guy Mineau mineau@ift.ulaval.ca, 656-5189, PLT-3908C

Département d'informatique. Apprentissage Automatique IFT-65764A. S y l l a b u s. Guy Mineau mineau@ift.ulaval.ca, 656-5189, PLT-3908C Département d'informatique Apprentissage Automatique IFT-65764A S y l l a b u s Guy Mineau mineau@ift.ulaval.ca, 656-5189, PLT-3908C Automne 2001 Page 2 A. Cours Titre : Apprentissage automatique Sigle

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

2 Traitement des exceptions

2 Traitement des exceptions Extraction de concepts descriptifs avec exceptions par classification non supervisée hybride Descriptive concept extraction with exceptions by hybrid clustering Marie-Jeanne Lesot Bernadette Bouchon-Meunier

Plus en détail

Apprentissage interactif et collaboratif pour la recherche dans les bases multimédia

Apprentissage interactif et collaboratif pour la recherche dans les bases multimédia Apprentissage interactif et collaboratif pour la recherche dans les bases multimédia Philippe-Henri Gosselin Habilitation à Diriger des Recherches Université de Cergy-Pontoise 10 novembre 2011 La recherche

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Fouille de données de mobilité

Fouille de données de mobilité Fouille de données de mobilité Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Laurent Etienne Ecole Navale (Brest) Laurent.etienne@ecole-navale.fr La fouille de donnée

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification et Philippe LERAY, Laboratoire LITIS, Rouen. Rencontres Inter-Associations La classification

Plus en détail

Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite

Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite Denis HAMAD ULCO LASL Denis.Hamad@laslIuniv-littoral.fr Présenté dans la journée

Plus en détail

Le clustering dans les réseaux ad-hoc

Le clustering dans les réseaux ad-hoc Le clustering dans les réseaux ad-hoc Auteur : Florent NOLOT Florent NOLOT 1 Présentation Le modèle et les motivations Le clustering à 1 saut et à k sauts Quelques résultats de simulation L'adaptation

Plus en détail

Construction d un chemin Hamiltonien unique et robuste descripteur d un maillage

Construction d un chemin Hamiltonien unique et robuste descripteur d un maillage Construction d un chemin Hamiltonien unique et robuste descripteur d un maillage V. Itier 1,2, W. Puech 1, G. Gesquière 3, J.P. Pedeboy 2 and G. Subsol 1 LIRMM UMR 5506 CNRS, University of Montpellier

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

DataHighDim. ACI «Masse de Données» - 2003. Analyse exploratoire et discriminante de données en grande dimension

DataHighDim. ACI «Masse de Données» - 2003. Analyse exploratoire et discriminante de données en grande dimension ACI «Masse de Données» - 2003 DataHighDim Analyse exploratoire et discriminante de données en grande dimension Anne Guérin-Dugué Laboratoire CLIPS Grenoble UJF, CNRS UMR 5524 Communication Langagière et

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Extraction de règles d association pour la prédiction de valeurs manquantes

Extraction de règles d association pour la prédiction de valeurs manquantes Cari 2004 7/10/04 12:00 Page 487 Extraction de règles d association pour la prédiction de valeurs manquantes Sylvie Jami 1, Tao-Yan Jen 2, Dominique Laurent 3, George Loizou 1, Oumar Sy 3,4 1. Birkbeck

Plus en détail

Mélanges de gaussiennes distribués et incrémentaux

Mélanges de gaussiennes distribués et incrémentaux Mélanges de gaussiennes distribués et incrémentaux CRP Gabriel Lippmann, Luxembourg Pierrick Bruneau Plan Introduction Algorithme EM Variationnel Bayesien pour les GMM Estimation automatique de la complexité

Plus en détail

Analyse qualitative et quantitative des Systèmes Automatisés de Production

Analyse qualitative et quantitative des Systèmes Automatisés de Production Analyse qualitative et quantitative des Systèmes Automatisés de Production Jean-Luc Cojan Laboratoire LISyC Université de Bretagne Occidentale Encadrants : M. Philippe Le Parc M. Loïc Plassart M. Franck

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013 PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF Ianis Lallemand, 21 janvier 2013 APPRENTISSAGE INTERACTIF definition Contours encore assez flous dans le champ de l apprentissage automatique. Néanmoins,

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Datamining. Glossaire. Xavier Dubuc (xavier.dubuc@umons.ac.be)

Datamining. Glossaire. Xavier Dubuc (xavier.dubuc@umons.ac.be) Datamining Glossaire Xavier Dubuc (xavier.dubuc@umons.ac.be) 3 juin 2011 1 Table des matières 1 Classification 3 2 Règles d association 3 2.1 Introduction............................................ 3

Plus en détail

VISUALISATION DE NUAGES DE POINTS

VISUALISATION DE NUAGES DE POINTS ARNAUD BLETTERER MULTI-RÉSOLUTION 1/16 VISUALISATION DE NUAGES DE POINTS MULTI-RÉSOLUTION AU TRAVERS DE CARTES DE PROFONDEUR Arnaud Bletterer Université de Nice Sophia Antipolis Laboratoire I3S - Cintoo

Plus en détail

Annotation Semi-automatique de Grandes BD Images : Approche par Graphes de Voisinage

Annotation Semi-automatique de Grandes BD Images : Approche par Graphes de Voisinage Lyon - France Annotation Semi-automatique de Grandes BD Images : Approche par Graphes de Voisinage Hakim Hacid Université Lumière Lyon 2 Laboratoire ERIC - 5, avenue Pierre Mendès-France 69676 Bron cedex

Plus en détail

Introduction à l Intelligence Artificielle

Introduction à l Intelligence Artificielle 1 / 14 Introduction à l Intelligence Artificielle Présentation de l option 2 nd semestre 2014-15 Philippe Chatalic chatalic@lri.fr Université Paris Sud Laboratoire de Recherche en Informatique (UMR CNRS

Plus en détail

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Anne Tchounikine, Maryvonne Miquel, Usman Ahmed LIRIS CNRS UMR 5205, INSA-Université de Lyon, France 1 Motivations Motivé

Plus en détail

Architecture des bases d images généralistes organisées en clusters

Architecture des bases d images généralistes organisées en clusters Architecture des bases d images généralistes organisées en clusters Z.Guellil 1 et L.Zaoui 2 1,2 Université des sciences et de la technologie d Oran MB, Université Mohamed Boudiaf USTO -BP 1505 El Mnaouer

Plus en détail

Regroupement d attributs en classes non-disjointes. Quel impact sur la classification de documents?

Regroupement d attributs en classes non-disjointes. Quel impact sur la classification de documents? EGC 2004 - Atelier sur la "Fouille de Textes" Regroupement d attributs en classes non-disjointes. Quel impact sur la classification de documents? Guillaume CLEUZIOU, Viviane CLAVIER, Lionel MARTIN et Christel

Plus en détail

Vers la conception interactive d une hiérarchie sémantique de descripteurs d images

Vers la conception interactive d une hiérarchie sémantique de descripteurs d images PROPOSITION DE STAGE Année 2016 Laboratoire L3i Sujet de stage : Vers la conception interactive d une hiérarchie sémantique de descripteurs d images Résumé du travail proposé : Ce travail s intéresse à

Plus en détail

Apport d une classification non supervisée floue à la segmentation par ligne de partage des eaux

Apport d une classification non supervisée floue à la segmentation par ligne de partage des eaux Apport d une classification non supervisée floue à la segmentation par ligne de partage des eaux S. Derivaux, S. Lefèvre, C. Wemmert and J. J. Korczak LSIIT - CNRS - Université Louis Pasteur - UMR 7005

Plus en détail

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements

de la classification Approche pragmatique t Editions TECHNIP 27 rue Cinoux, 75737 PARIS Cedex 15, FRANCE Arbres hiérarchiques Partitionnements Jean-Pierre NAKACHE Ingénieur de recherche CNRS détaché à l'inserm Chargé de cours à l'isup Josiane CONFAIS Ingénieur d'études chargée des enseignements pratiques à l'isup Approche pragmatique de la classification

Plus en détail

Clustering Visuel Semi-Supervisé pour des systèmes en coordonnées en étoiles 3D

Clustering Visuel Semi-Supervisé pour des systèmes en coordonnées en étoiles 3D Clustering Visuel Semi-Supervisé pour des systèmes en coordonnées en étoiles 3D Loïc Lecerf, Boris Chidlovskii Xerox Research Centre Europe 6, chemin de Maupertuis, 38240 Meylan, France {Prenom.Nom}@xrce.xerox.com,

Plus en détail

Contrôle stochastique d allocation de ressources dans le «cloud computing»

Contrôle stochastique d allocation de ressources dans le «cloud computing» Contrôle stochastique d allocation de ressources dans le «cloud computing» Jacques Malenfant 1 Olga Melekhova 1, Xavier Dutreilh 1,3, Sergey Kirghizov 1, Isis Truck 2, Nicolas Rivierre 3 Travaux partiellement

Plus en détail

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain

Plus en détail

Supervision des réseaux et services pair à pair

Supervision des réseaux et services pair à pair Supervision des réseaux et services pair à pair Présentation des travaux de Thèse Guillaume Doyen LORIA - Université Henri Poincaré pour l obtention du Doctorat en Informatique de l université Henri Poincaré

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Rmixmod Le package R de MIXMOD R

Rmixmod Le package R de MIXMOD R Rmixmod Le package R de MIXMOD R MIXMOD Rencontres R 2012 - Bordeaux Florent Langrognet Laboratoire de Mathématiques de Besançon F. Langrognet () Rmixmod Juillet 2012 1 / 41 Rmixmod 1 Contexte Le projet

Plus en détail

Évaluation d une approche de classification conceptuelle

Évaluation d une approche de classification conceptuelle Évaluation d une approche de classification conceptuelle Marie Chavent Yves Lechevallier Mathématiques Appliquées de Bordeaux, UMR 5466 CNRS Université Bordeaux 1-351, Cours de la libération 33405 Talence

Plus en détail

Une approche pour la catégorisation des objets 3D basée sur la théorie des fonctions de croyance

Une approche pour la catégorisation des objets 3D basée sur la théorie des fonctions de croyance Une approche pour la catégorisation des objets 3D basée sur la théorie des fonctions de croyance Hedi Tabia 1 Mohamed Daoudi 2 Jean-Philippe Vandeborre 2 Olivier Colot 1 1 Université Lille Nord de France

Plus en détail

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data

Plus en détail

Graphes, réseaux et internet

Graphes, réseaux et internet Graphes, réseaux et internet Clémence Magnien clemence.magnien@lip6.fr LIP6 CNRS et Université Pierre et Marie Curie (UPMC Paris 6) avec Matthieu Latapy, Frédéric Ouédraogo, Guillaume Valadon, Assia Hamzaoui,...

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

Tristan Cazenave Laboratoire d Intelligence Artificielle. cazenave@ai.univ-paris8.fr

Tristan Cazenave Laboratoire d Intelligence Artificielle. cazenave@ai.univ-paris8.fr Réflexivité et programmation du jeu de Go Tristan Cazenave Laboratoire d Intelligence Artificielle Université Paris 8, Saint Denis, France cazenave@ai.univ-paris8.fr Résumé La réflexivité peut intervenir

Plus en détail

Le problème du flot maximal avec contraintes sur le nombre de chemins

Le problème du flot maximal avec contraintes sur le nombre de chemins Le problème du flot maximal avec contraintes sur le nombre de chemins Jérôme Truffot, Christophe Duhamel, Philippe Mahey jerome.truffot@isima.fr, christophe.duhamel@isima.fr, philippe.mahey@isima.fr LIMOS,

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Université Pierre et Marie Curie. Laboratoire d Informatique de Paris 6

Université Pierre et Marie Curie. Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie Laboratoire d Informatique de Paris 6 Jean-Luc Lamotte Emmanuel Chailloux Extension d Objective Caml scientifique sur GPU pour le calcul Plan Présentation UPMC / LIP6 /

Plus en détail

Accès au Contenu Informationnel pour les Masses de Données de Documents

Accès au Contenu Informationnel pour les Masses de Données de Documents Accès au Contenu Informationnel pour les Masses de Données de Documents Grappa LILLE 3 - UR Futurs INRIA MOSTRARE Laboratoire d Informatique de Paris 6 Laboratoire de Recherche en Informatique Orsay -

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes Mohamed Moussaoui,Wajdi Dhifli,Sami Zghal,Engelbert Mephu Nguifo FSJEG, Université de Jendouba,

Plus en détail

Département d'informatique, Université Laval, IFT-63677 SBC V&V : VÉRIFICATION ET VALIDATION DES SBC

Département d'informatique, Université Laval, IFT-63677 SBC V&V : VÉRIFICATION ET VALIDATION DES SBC Assurance qualité logicielle Logiciel conventionnel SBC Fiabilité Facilité d'entretien Facilité des modifications Principales causes d erreur Absence de spécification, manque de conformité (1) Erreurs

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal Plan de cours ADM 992C Page 1 École des sciences de la gestion Département de management et technologie Université du Québec à Montréal ADM-992C LES TECHNOLOGIES D'AIDE À LA PRISE DE DÉCISION DANS LES

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

WEKA, un logiciel libre d apprentissage et de data mining

WEKA, un logiciel libre d apprentissage et de data mining WEKA, un logiciel libre d apprentissage et de data mining Yves Lechevallier INRIA-Rocquencourt Présentation de WEKA 3.4 Format ARFF WEKA Explorer WEKA Experiment Environment WEKA KnowledgeFlow E_mail :

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Combinaison de classification supervisée et non-supervisée par la théorie des fonctions de croyance

Combinaison de classification supervisée et non-supervisée par la théorie des fonctions de croyance Combinaison de classification supervisée et non-supervisée par la théorie des fonctions de croyance Fatma Karem, Mounir Dhibi Arnaud Martin Unité de Recherche PMI 09/UR/13-0 Campus Universitaire Zarouk

Plus en détail

Introduction à la Recherche en Laboratoire

Introduction à la Recherche en Laboratoire Introduction à la Recherche en Laboratoire Transferts de données pour le vol de travail Tristan Darricau tristan.darricau@ensimag.grenoble-inp.fr 26 mai 2014 Grenoble INP - ENSIMAG Ecadrement Frédéric

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN Mourad Hadjila Hervé Guyennet RGE Université Franche-Comté femto-st, DISC, Besançon

Plus en détail

Images & Open Science en bref A. Trubuil INRA/MaIAGE, Jouy en Josas

Images & Open Science en bref A. Trubuil INRA/MaIAGE, Jouy en Josas Images & Open Science en bref A. Trubuil INRA/MaIAGE, Jouy en Josas 1. Ressources ouvertes Données Logiciels Connaissances 2. Besoins Données Logiciels Connaissances Défis 3. Exemple 1. Ressources ouvertes

Plus en détail

Le Filtrage Collaboratif vu comme un problème de Consensus d Ordonnancements

Le Filtrage Collaboratif vu comme un problème de Consensus d Ordonnancements Le Filtrage Collaboratif vu comme un problème de Consensus d Ordonnancements Romaric Gaudel and Stéphan Clémençon LTCI, UMR 5141 Télécom-ParisTech / CNRS CAp, mai 2011 Filtrage Collaboratif pour le commerce

Plus en détail

Construction et analyse de résumés de données évolutives : application aux données d usage du Web

Construction et analyse de résumés de données évolutives : application aux données d usage du Web Construction et analyse de résumés de données évolutives : application aux données d usage du Web Alzennyr Da Silva, Yves Lechavellier, Fabrice Rossi, Francisco De Carvalho INRIA Domaine de Voluceau, Rocquencourt,

Plus en détail

Déploiement adaptatif des composants dans les sessions collaboratives

Déploiement adaptatif des composants dans les sessions collaboratives NOuvelles TEchnologies de la REpartition NOTERE 2005 Déploiement adaptatif des composants dans les sessions collaboratives Emir HAMMAMI, Thierry VILLEMUR {ehammami, villemur}@laas.fr LAAS-CNRS 7, avenue

Plus en détail

Vers l'orchestration de grilles de PC par les mécanismes de publicationsouscription

Vers l'orchestration de grilles de PC par les mécanismes de publicationsouscription Vers l'orchestration de grilles de PC par les mécanismes de publicationsouscription Présentée par Leila Abidi Sous la direction de Mohamed Jemni & Christophe Cérin Plan Contexte Problématique Objectifs

Plus en détail

Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique.

Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique. Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique. Mathias PAULIN LIRMM (CNRS, Univ. Montpellier II) 161

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

But du cours. Sources & références. Sources & références. Sources & références. Plan. La fouille de données (ou data mining) Principe (postulat...

But du cours. Sources & références. Sources & références. Sources & références. Plan. La fouille de données (ou data mining) Principe (postulat... But du cours Vocabulaire, principes et techniques du Data Mining Méthodes et Algorithmes Interprétation des résultats. Data Mining : Concepts and Techniques J. Han, M. Kamber Morgan Kaufmann Le Data Mining

Plus en détail

ETUDES COMPARATIVE DES METHODES DE CLUSTERING DES TEXTES ARABES

ETUDES COMPARATIVE DES METHODES DE CLUSTERING DES TEXTES ARABES ETUDES COMPARATIVE DES METHODES DE CLUSTERING DES TEXTES ARABES EL KHADIR LAMRANI, EL HABIB BEN LAHMAR, ABDELAZIZ MARZAK Université Hassan II - Mohammedia Casablanca, Faculté des Sciences Ben M sik, Laboratoire

Plus en détail

Regroupements non-disjoints de mots pour la classification de documents

Regroupements non-disjoints de mots pour la classification de documents Regroupements non-disjoints de mots pour la classification de documents Guillaume Cleuziou LIFO, Laboratoire d'informatique Fondamentale d'orléans Université d'orléans BP 6759-45067 ORLEANS Cedex 2 guillaume.cleuziou@lifo.univ-orleans.fr

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Quelle vision pour le matching à large échelle?

Quelle vision pour le matching à large échelle? Quelle vision pour le matching à large échelle? Sana Sellami, Aïcha-Nabila Benharkat, Youssef Amghar LIRIS, Institut National des Sciences Appliquées de Lyon, France {sana.sellami,nabila.benharkat,youssef.amghar}@insa-lyon.fr

Plus en détail

Visualisation d information

Visualisation d information Master SIAD 1 année Visualisation d information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine/ Master SIAD 1 année Visualisation d information Chapitre 1.0 Introduction Quand voir, c est comprendre

Plus en détail

Sujet de stage de Master 2 Informatique

Sujet de stage de Master 2 Informatique UNIVERSITE PARIS 13, Sorbonne Paris Cité Laboratoire d'informatique de Paris-Nord, UMR CNRS 7030 99, avenue Jean-Baptiste Clément - 93430 Villetaneuse France Tél : (33) 01 49 40 40 71 ; Fax : (33) 01 48

Plus en détail

Extraction de Règles de Classification à partir des Données Spatiales

Extraction de Règles de Classification à partir des Données Spatiales Extraction de Règles de Classification à partir des Données Spatiales ABDICHE Fethi, ATMANI Baghdad Equipe de recherche «Simulation, Intégration et Fouille de données (SIF)» Département d Informatique,

Plus en détail

Résumé hybride de flux de données par échantillonnage et classification automatique

Résumé hybride de flux de données par échantillonnage et classification automatique Résumé hybride de flux de données par échantillonnage et classification automatique Nesrine Gabsi,, Fabrice Clérot Georges Hébrail Institut TELECOM ; TELECOM ParisTech ; CNRS LTCI 46, rue Barrault 75013

Plus en détail

Master 2 Informatique UAG. Classification de documents/textes

Master 2 Informatique UAG. Classification de documents/textes Data Mining Master 2 Informatique UAG Classification de documents/textes Utilisée en text mining, information retrieval : amélioration du recall et de la précision Moyen de trouver les voisins les plus

Plus en détail

Séminaire. de Cédric Graf Prof. Rolf Ingold Dr. Denis Lalanne Document, Image and Voice Analysis (DIVA) University of Fribourg

Séminaire. de Cédric Graf Prof. Rolf Ingold Dr. Denis Lalanne Document, Image and Voice Analysis (DIVA) University of Fribourg Séminaire de Cédric Graf Prof. Rolf Ingold Dr. Denis Lalanne Document, Image and Voice Analysis (DIVA) University of Fribourg 1 Y. Azoz, L. Devi, and R. Sharma. Reliable of human arm dynamics by multiple

Plus en détail

Bases de données multimédia VII Bag of words

Bases de données multimédia VII Bag of words Bases de données multimédia VII Bag of words ENSIMAG 2014-2015 Matthijs Douze & Karteek Alahari Video-Google! LA référence : Josef Sivic and Andrew Zisserman «Video Google: A Text Retrieval Approach to

Plus en détail

INTERPRÉTATION DES RÉSULTATS DE SVM

INTERPRÉTATION DES RÉSULTATS DE SVM INTERPRÉTATION DES RÉSULTATS DE SVM Thanh-Nghi Do & François Poulet {dothanh poulet}@esiea-ouest.fr ESIEA Recherche 38, rue des Docteurs Calmette et Guérin Parc Universitaire de Laval-Changé 53000-Laval

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Plateforme GraMAP. 1. Description de la plateforme

Plateforme GraMAP. 1. Description de la plateforme Plateforme GraMAP 1. Description de la plateforme GraMAP (Graph Matching Algorithms Platform) est une plateforme web dédiée aux algorithmes d appariement de graphes qui implémente l ensemble des algorithmes

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail