Apprentissage actif pour le clustering semi-supervisé

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage actif pour le clustering semi-supervisé"

Transcription

1 Apprentissage actif pour le clustering semi-supervisé Nicolas Labroche Sorbonne Universités, UPMC Univ Paris 06 CNRS, UMR 7606, LIP6 F-75005, Paris, France Atelier Clustering and Co-clustering (CluCo), EGC 2014 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

2 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

3 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

4 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

5 Plan de la présentation 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

6 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

7 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

8 Clustering Découvrir les groupes / structures / formes dans un ensemble de données non étiquetées D = {x i } 1 i n But : trouver la meilleure partition P = {C 1 C 2... C k } au sens d une fonction objectif en fonction d une métrique : distance, (dis)similarité Groupes compacts Groupes denses N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

9 Diversité des méthodes de clustering De très nombreux algorithmes [Jain, 2010] : Centres mobiles K-Means [MacQueen, 1967], FCM [Bezdek, 1981] Hiérarchiques CAH [Sneath and Sokal, 1973], BIRCH [Zhang et al., 1996] Modèles EM [Dempster et al., 1977] Densité DBSCAN [Ester et al., 1996], OPTICS [Ankerst et al., 1999] DENCLUE [Hinneburg and Keim, 1998] Flux de données Clustream [Aggarwal et al., 2003], DenStream [Cao et al., 2006] Clustree [Philipp Kranen and Seidl, 2011], SimpleTS [Angelov, 2011] Co-clustering mais qui possèdent certaines limitations! N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

10 Limite des algorithmes de clustering Sensibilité à l initialisation (K-Means... ) Choix d une métrique (normes L1, L2, Mahalanobis... ) Lenteur / qualité de la convergence Adéquation entre la partition produite et la partition souhaitée comment transférer la connaissance du domaine? Solution : Intégration de contraintes aux algorithmes non supervisés apprentissage semi-supervisé N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

11 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

12 Apprentissage semi-supervisé Considérer à la fois des données étiquetées et non étiquetées Classification semi-supervisée : semi-supervised learning ajout de données non étiquetées pour améliorer la capacité des classifieurs [Davidson and Basu, 2005] amélioration de l apprentissage de la frontière de décision avec des données non étiquetées N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

13 Clustering semi-supervisé Contraintes au niveau des instances [Wagstaff and Cardie, 2000] : étiquettes d appartenance à un cluster contraintes must-link : ML(xi, x j ) x i et x j dans le même cluster contraintes cannot-link : CL(x i, x j ) x i et x j dans deux clusters différents N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

14 Clustering semi-supervisé Contraintes au niveau des clusters : Contraintes δ : séparabilité minimale entre 2 clusters p, q P, x i p, x j q, D(x i, x j ) δ Contraintes ɛ : compacité minimale de chaque cluster p P, p > 1, x i p, x j p D(x i, x j ) ɛ N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

15 Approches pour le clustering semi-supervisé Modification directe du processus de partitionnement : modification de la fonction objectif [Demiriz et al., 1999] respect des contraintes : COP-KMeans [Wagstaff et al., 2001] Seed-KMeans [Basu et al., 2002] Constrained FCM [Grira et al., 2006] Seed-FCM [Pedrycz and Waletzky, 1997] Constrained HAC [Davidson and Ravi, 2005a] Spectral [Wang and Davidson, 2010] C-DBSCAN [Ruiz et al., 2007] SSDBSCAN [Lelis and Sander, 2009] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

16 Approches pour le clustering semi-supervisé Apprentissage de la fonction de distance : les voisins de points liés par une ML (resp. CL) doivent aussi être proches (resp. distants) [Klein et al., 2002] Distance euclidienne et plus court chemin [Klein et al., 2002] Distance de Mahanalobis [Xing et al., 2003] [Bar-Hillel et al., 2003] Divergence de Kullback Leibler [Cohn et al., 2003] Distance d édition [Bilenko and Mooney, 2003] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

17 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

18 Bénéfices du clustering semi-supervisé Stabilité de convergence [Basu et al., 2002] : Accélération de la vitesse de convergence : clustering hiérarchique [Davidson and Ravi, 2005a] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

19 Bénéfices du clustering semi-supervisé Séparation de clusters et détection des densités : I C-DBSCAN [Ruiz et al., 2010] et SS-DBSCAN [Lelis and Sander, 2009] Découverte de clusters : I que les distances standard ne peuvent pas trouver I qui tirent profit des connaissances d un domaine N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

20 Limites du clustering semi-supervisé Problème de satisfiabilité des contraintes [Davidson and Ravi, 2005b] Détérioration des performances par des contraintes correctes : [Basu et al., 2004, Wagstaff, 2007, Mallapragada et al., 2008] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

21 Qualité des contraintes Mesures a posteriori de la qualité de contraintes [Davidson and Basu, 2007] : informativeness : information présente dans les contraintes que l algorithme ne peut pas déterminer seul (a), coherence : accord entre les différentes contraintes (b) Nous nous intéressons aux méthodes de sélection active des contraintes a priori N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

22 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

23 Schéma général Données Clustering semi supervisé Clusters Algorithme d apprentissage actif Connaissances Questions Réponses Utilisateurs (Experts) N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

24 Méthode existante : MMFFQS Min-Max Farthest-First Query Strategy [Mallapragada et al., 2008] : Explore : exploration en profondeur (farthest-first) et construction de K voisinages disjoints (squelettes de clusters) Consolidate : ajout de points aux squelettes de clusters les plus proches pour une meilleure détermination des centres des clusters N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

25 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

26 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

27 Sélection active de contraintes Objectifs : détermination d un ensemble de contraintes C à partir des données D amélioration des performances de tous les types d algorithmes minimisation de l effort d annotation Solution proposée : mesure d utilité basée sur la détermination des zones où les algorithmes font le plus d erreurs d affectation mécanisme de propagation pour minimiser les interactions de l expert N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

28 Sélection active de contraintes [Vu et al., 2012, Vu et al., 2010a, Vu et al., 2010b] Etapes Déterminer les contraintes candidates Raffiner les contraintes candidates Ordonner lescontraintes candidates Etiqueter les contraintes candidates Propager les contraintes Outils Graphe des k plus proches voisins (GkPPV) Définition de la notion de Chemin Fort Définitiond une mesure d utilité d une contrainte Question à l utilisateur Définition et application de règles N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

29 Le graphe des k-plus proches voisins (GkPPV) Graphe pondéré : sommet de degré au plus k arête (u, v) si u PPV (v) et v PPV (u) où PPV (u) est l ensemble des k-plus proches voisins de u poids entre u et v : nombre de voisins communs ω(u, v) = PPV (u) PPV (v) k = N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

30 Identification des contraintes candidates Définition de l ensemble des contraintes candidates : C = {(u, v) ω(u, v) < θ} Illustration : Contraintes candidates k = 5, θ = 2, C = 16 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

31 Mécanisme de raffinement des contraintes Objectifs : réduire le nombre de contraintes candidates introduire de la diversité dans les contraintes Définition de la notion de chemin fort CF CF(u, v) : chemin tel que x0 = u,..., x n = v et i : ω(x i, x i+1 ) θ ou (x i, x i+1 ) est un must-link. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

32 Mécanisme de raffinement des contraintes Mise en œuvre : Suppression des contraintes candidates (u, v) de C telles qu il existe au moins un chemin fort entre u et v Avant raffinement C = 16 Après raffinement C = Contraintes candidates N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

33 Mesure d utilité d une contrainte Ability to Separate Clusters (ASC) : ASC(u, v) = k ω(u, v) min{lds(u), LDS(v)} ω(u, v) : proximité entre u et v dans le GkPPV LDS() : Local Density Score [Le and Satoh., 2008] q PPV (u) ω(u, q) LDS(u) = k Mise en œuvre : demander à l utilisateur l étiquette de la contrainte candidate qui maximise ASC N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

34 Mécanisme de propagation des contraintes Objectif : augmenter la connaissance minimiser les interactions utilisateurs Méthode : créer de nouvelles contraintes à partir de contraintes existantes définition de règles de propagation de contraintes Règles de propagation : Notations : ML must-link ; CL cannot-link ; CF chemin fort ML(u, v) ML(v, w) ML(u, w) ML(u, v) CL(v, w) CL(u, w) CL(u, v) CF(u, t) CF(v, l) CL(t, l) ML(u, v) CF(u, t) CF(v, l) ML(t, l) N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

35 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

36 Protocole expérimental Algorithmes de clustering : hiérarchique AHCC [Davidson and Ravi, 2005a] : repose sur la détection des frontières entre clusters centres mobiles MPCK Means [Bilenko et al., 2004] : détermine des clusters hypersphériques bien séparés Stratégie de sélection des contraintes : MMFFQS [Mallapragada et al., 2008] : favorise k-means Proposé ASC : G-kPPV + ASC Proposé Aléatoire : G-kPPV + tirage aléatoire Aléatoire : utilisation des étiquettes de données Évaluation des résultats : indice de Rand [Rand, 1971] N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

37 Algorithme AHCC Résultats comparatifs Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Soybean Iris Breast Proposé ASC > Proposé aléatoire > MMFFQS > Aléatoire ASC permet de détecter les frontières de clusters cohérent avec le principe du clustering agglomératif N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

38 Algorithme AHCC Influence du mécanisme de propagation MMFFQS + génération aléatoire : 1 requête = 1 contrainte ASC + proposé aléatoire : 1 requête = plusieurs contraintes Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de contraintes collectées Proposé ASC Proposé aléatoire MMFFQS, Aléatoire Nombre de requêtes Nombre de requêtes Nombre de requêtes Soybean Iris Breast Proposé aléatoire propage plus de contraintes que ASC ASC génère des contraintes de meilleure qualité N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

39 Algorithme MPCK-Means Résultats comparatifs Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Indice de Rand Proposé ASC Proposé aléatoire MMFFQS Aléatoire Nombre de requêtes Soybean Iris Breast MMFFQS dédié à méthode de type K-Means Proposé ASC meilleur pour un faible nombre de questions cohérent avec le principe de l apprentissage actif N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

40 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

41 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

42 Problématique [Vu et al., 2010c] [Vu, 2011] But : proposer des données étiquetées (graines) qui couvrent l ensemble des clusters Proposition de 3 algorithmes actifs : Deux méthodes basées sur une stratégie Min-Max : Min-Max "simple" Min-Max-D basée sur la densité Une méthode basée sur la densité et utilisant le GkPPV N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

43 Principe de la stratégie Min-Max Sélection du point y qui maximise la distance minimale aux points déjà choisis Y : ( ) y = arg max x X Y min d(x, y) y Y Génération de l ensemble Y N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

44 Stratégie Min-Max active S-Min-Max : étiquetage par l utilisateur des points de Y : Étiquetage Seed K-Means N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

45 Algorithmes actifs basés sur une stratégie Min-Max S-Min-Max-D : variante de S-Min-Max basée sur la densité : ajouter un filtrage à l aide de la mesure de densité LDS remplacer X par X ɛ : X ɛ = {p X : LDS(p) ɛ} où ɛ est un seuil de densité N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

46 Influence du paramètre ɛ Illustration : X ɛ contient les points rouges Remarque : ɛ = 0, S-Min-Max-D S-Min-Max N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

47 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

48 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

49 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

50 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

51 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

52 Méthode de collecte de graines basée sur un GkPPV Idée principale de la méthode S-GkPPV : définition de régions denses (composantes connexes) X δ = {u X : v ω(u, v) δ} ordonnancement des composantes selon leur cardinal sélection aléatoire d une graine candidate dans chaque composante et propagation de l étiquette Illustration : sommets des arêtes en rouge : ω(u, v) 3 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

53 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

54 Résultats comparatifs Indice de Rand Seed K-Means SSDBSCAN S Random S Min Max S Min Max D S GkPPV Indice de Rand Indice de Rand Thyroid Protein LetterIJL 0 Thyroid Protein LetterIJL S-GkPPV > S-Min-Max-D > S-Min-Max > Random S-GkPPV détecte les graines dans les régions denses cohérent avec SS-DBSCAN N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

55 Résultats comparatifs Nombre d itérations Nombre d itérations moyen avant convergence pour l algorithme Seed K-means Nombre d itérations S Random S Min Max S Min Max D S GkPPV 2 0 Iris Soybean Zoo Thyroid Protein LetterIJL Meilleures performances : S-Min-Max-D sélection des graines proches des centres des clusters N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

56 Résultats comparatifs Nombre de requêtes Nombre de questions posées à l utilisateur de façon à garantir qu il y ait au moins une graine par cluster Nombre de questions S Random S Min Max S Min Max D S GkPPV 0 Iris Soybean Zoo Thyroid Protein LetterIJL Meilleures performances : S-GkPPV couverture des clusters plus efficace N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

57 Plan 1 Problématique du clustering semi-supervisé Motivations Formalisation Bénéfices et limites Apprentissage actif de contraintes 2 Sélection active de contraintes ML et CL Présentation de notre méthode Expérimentations 3 Sélection active de données étiquetées Présentation de nos méthodes Expérimentations 4 Conclusions et perspectives N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

58 Conclusions Sélection active de contraintes : première mesure d utilité d une contrainte : ASC règles de propagation des contraintes Sélection active de données étiquetées : 2 méthodes de type Min-Max une méthode basée sur un G-kPPV Autres propositions [Vu, 2011] : algorithme de clustering avec des contraintes : MCLA algorithme de clustering avec des graines : SSGC N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

59 Perspectives Amélioration des performances du GkPPV Étude de nouvelles mesures d utilité de contraintes Passage à l échelle (big data) Lien fort avec la visualisation de données : solution au problème d interrogation de l expert N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

60 Perpectives Algorithmes mixtes : contraintes et/ou données étiquetées mesure d utilité mixte pour données étiquetées ou ML / CL mécanismes de propagation N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

61 Perpectives Contraintes plus expressives : cas où l expert n est pas sûr de sa réponse gradualité : degrés d appartenance, de possibilité, de croyance N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

62 Perpectives Algorithmes de clustering interactif : récupération des contraintes ou étiquettes pendant le processus de clustering clustering + apprentissage actif + visualisation N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

63 Apprentissage actif pour le clustering semi-supervisé Nicolas Labroche Sorbonne Universités, UPMC Univ Paris 06 CNRS, UMR 7606, LIP6 F-75005, Paris, France Atelier Clustering and Co-clustering (CluCo), EGC 2014 N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

64 Références I Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering evolving data streams. In In VLDB, pages Angelov, P. (2011). Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Transactions on Systems, Man and Cybernetics - Part B : Cybernetics, 41(4) : Ankerst, M., Breunig, M., Kriegel, H., and Sander, J. (1999). Optics : Ordering points to identify clustering structure. In Proc. of the ACM SIGMOD, pages 49 60, Philadenphia, USA. Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2003). Learning distance functions using equivalence relations. In In Proceedings of the Twentieth International Conference on Machine Learning, pages Basu, S., Banerjee, A., and Mooney, R. (2004). Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM International Conference on Data Mining, pages N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

65 Références II Basu, S., Banerjee, A., and Mooney., R. J. (2002). Semi-supervised clustering by seeding. In In Proceeding of the 19th International Conference on Machine Learning (ICML), pages Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. In Intl. Conference on Machine Learning, ICML 2004, pages Bilenko, M. and Mooney, R. J. (2003). Adaptive duplicate detection using learnable string similarity measures. In In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003), pages Cao, F., Ester, M., Qian, W., and Zhou, A. (2006). Density-based clustering over an evolving data stream with noise. In In 2006 SIAM Conference on Data Mining, pages Cohn, D., Caruana, R., and Mccallum, A. (2003). Semi-supervised clustering with user feedback. Technical report. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

66 Références III Davidson, I. and Basu, S. (2005). Clustering with constraints : Incorporating prior knowledge into clustering. In Tutorial from SIAM 2005 Conference. Davidson, I. and Basu, S. (2007). A survey of clustering with instance level constraints. ACM Transactions on Knowledge Discovery from data, pages Davidson, I. and Ravi, S. (2005a). Agglomerative hierarchical clustering with constraints : Theoretical and empirical results. In Proceeding of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD-2005, pages Davidson, I. and Ravi, S. (2005b). Clustering with constraints : Feasibility issues and the k-means algorithm. In Proceedings of the SIAM International Conference on Data Mining. Demiriz, A., Bennett, K., and Embrechts, M. (1999). Semi-supervised clustering using genetic algorithms. In Proceedings of ANNIE, pages Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39 (1) :1 38. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

67 Références IV Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. of 2nd International Conference on Knowledge Discovery and Data Mining, pages , USA. AAAI Press. Grira, N., Crucianu, M., and Boujemaa, N. (2006). Fuzzy clustering with pairwise constraints for knowledge-driven image categorization. IEEE Vision, Image and Processing, 153(3) : Hinneburg, A. and Keim, A. (1998). An efficient approach to clustering in large multimedia databases with noise. In Proc. of Knowledge Discovery and Data Mining, pages Jain, A. K. (2010). Data clustering : 50 years beyond k-means. Pattern Recognition Letters, 31(8) : Klein, D., Kamvar, S., and Manning, C. (2002). From instance-level constraints to space-level constraints : Making the most of priori knowledge in data clustering. In Proceedings of the 22nd International Conference on Machine Learning. Le, D.-D. and Satoh., S. (2008). Unsupervised face annotation by mining the web. In In Proceedings of the IEEE International Conference on Data Mining (IEEE-ICDM). N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

68 Références V Lelis, L. and Sander, J. (2009). Semi-supervised density-based clustering. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM 09, pages , Washington, DC, USA. IEEE Computer Society. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In of California Press, U., editor, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages , Berkeley. Mallapragada, P., Jin, R., and Jain, A. (2008). Active query selection for semi-supervised clustering. In Proceedings of the 19th International Conference on Pattern Recognition, pages 1 4. Pedrycz, W. and Waletzky, J. (1997). Fuzzy clustering with partial supervision. IEEE Transactions on systems, Man, and Cybernetics, 27(5) : Philipp Kranen, Ira Assent, C. B. and Seidl, T. (2011). The clustree : indexing micro-clusters for anytime stream mining. Knowledge and Information Systems, 29(2) : Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of American Statistical Association, vol. 66. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

69 Références VI Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2007). C-dbscan : Density-based clustering with constraints. In Proceedings of the International Conference on Rough Sets Fuzzy Sets Data Mining and Granular Computing, pages Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2010). Density-based semi-supervised clustering. Data Mining and Knowledge Discovery, 21(3) : Sneath, P. H. A. and Sokal, R. R. (1973). Numerical taxonomy - the principles and practice of numerical classification. Technical report, W. H. Freeman, San Francisco. Vu, V., Labroche, N., and Bouchon-Meunier, B. (2010a). Boosting clustering by active constraint selection. In Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-2010), pages , Lisbon, Portugal. IOI Press. Vu, V., Labroche, N., and Bouchon-Meunier, B. (2010b). An efficient active constraint selection algorithm for clustering. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR-2010), pages , Istanbul, Turkey. IEEE. N. Labroche (UPMC - LIP6 - CNRS) CluCo / 63

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Clustering par optimisation de la modularité pour trajectoires d objets mobiles

Clustering par optimisation de la modularité pour trajectoires d objets mobiles Clustering par optimisation de la modularité pour trajectoires d objets mobiles Mohamed K. El Mahrsi, Télécom ParisTech, Département INFRES 46, rue Barrault 75634 Paris CEDEX 13, France Fabrice Rossi,

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes Mohamed Moussaoui,Wajdi Dhifli,Sami Zghal,Engelbert Mephu Nguifo FSJEG, Université de Jendouba,

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes.

Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes. Parallélisation de l algorithme des k-médoïdes. Application au clustering de courbes. Benjamin Auder 1 & Jairo Cugliari 2 1 Laboratoire LMO. Université Paris-Sud. Bât 425. 91405 Orsay Cedex, France. benjamin.auder@math.u-psud.fr

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Résumé hybride de flux de données par échantillonnage et classification automatique

Résumé hybride de flux de données par échantillonnage et classification automatique Résumé hybride de flux de données par échantillonnage et classification automatique Nesrine Gabsi,, Fabrice Clérot Georges Hébrail Institut TELECOM ; TELECOM ParisTech ; CNRS LTCI 46, rue Barrault 75013

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Analyse des variations entre partitions générées par différentes techniques de classification automatique de textes

Analyse des variations entre partitions générées par différentes techniques de classification automatique de textes Analyse des variations entre partitions générées par différentes techniques de classification automatique de textes Jean-François Chartier, Jean-Guy Meunier, Choukri Djellali LANCI UQAM - C.P. 8888, Succ.

Plus en détail

Apprentissage symbolique et statistique à l ère du mariage pour tous

Apprentissage symbolique et statistique à l ère du mariage pour tous Apprentissage symbolique et statistique à l ère du mariage pour tous Stéphane Canu asi.insa-rouen.fr/enseignants/~scanu RFIA 2014, INSA Rouen 2 juillet 2014 Apprentissage : humain vs. machine Les apprentissages

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

Contrôle stochastique d allocation de ressources dans le «cloud computing»

Contrôle stochastique d allocation de ressources dans le «cloud computing» Contrôle stochastique d allocation de ressources dans le «cloud computing» Jacques Malenfant 1 Olga Melekhova 1, Xavier Dutreilh 1,3, Sergey Kirghizov 1, Isis Truck 2, Nicolas Rivierre 3 Travaux partiellement

Plus en détail

VISUALISATION DE NUAGES DE POINTS

VISUALISATION DE NUAGES DE POINTS ARNAUD BLETTERER MULTI-RÉSOLUTION 1/16 VISUALISATION DE NUAGES DE POINTS MULTI-RÉSOLUTION AU TRAVERS DE CARTES DE PROFONDEUR Arnaud Bletterer Université de Nice Sophia Antipolis Laboratoire I3S - Cintoo

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Fig.1. Structure d un AGQ

Fig.1. Structure d un AGQ Evolution d Automate Cellulaire par Algorithme Génétique Quantique Zakaria Laboudi 1 - Salim Chikhi 2 Equipe SCAL, Laboratoire MISC Université Mentouri de Constantine. E - Mail : 1 laboudizak@yahoo.fr;

Plus en détail

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d

Plus en détail

Une méthode d apprentissage pour la composition de services web

Une méthode d apprentissage pour la composition de services web Une méthode d apprentissage pour la composition de services web Soufiene Lajmi * Chirine Ghedira ** Khaled Ghedira * * Laboratoire SOIE (ENSI) University of Manouba, Manouba 2010, Tunisia Soufiene.lajmi@ensi.rnu.tn,

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux

Plus en détail

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal Plan de cours ADM 992C Page 1 École des sciences de la gestion Département de management et technologie Université du Québec à Montréal ADM-992C LES TECHNOLOGIES D'AIDE À LA PRISE DE DÉCISION DANS LES

Plus en détail

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique.

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Université de Mons Faculté des Sciences Institut d Informatique Service d Algorithmique Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Mémoire réalisé par Xavier DUBUC

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air.

Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air. Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air. Michel Bobbia 1 & Michel Misiti 2 & Yves Misiti 2 & Jean-Michel Poggi 3 & Bruno Portier 4 1 Air Normand,

Plus en détail

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain

Plus en détail

Propriétés du Document EMA. Résumé

Propriétés du Document EMA. Résumé Propriétés du Document Source du Document FSN OpenPaaS Titre du Document Définition et exploitation d un référentiel de processus collaboratifs : Rapport de synthèse quant aux référentiels existants Module(s)

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale

R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale Boulbaba BEN AMOR, Karima OUJI, Mohsen ARDABILIAN, et Liming CHEN Laboratoire d InfoRmatique en Images et

Plus en détail

Post-processing of multimodel hydrological forecasts for the Baskatong catchment

Post-processing of multimodel hydrological forecasts for the Baskatong catchment + Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:

Plus en détail

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière

Plus en détail

RI sociale : intégration de propriétés sociales dans un modèle de recherche

RI sociale : intégration de propriétés sociales dans un modèle de recherche RI sociale : intégration de propriétés sociales dans un modèle de recherche Ismail Badache 1 Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS, SIG 118 Route de Narbonne F-31062 Toulouse

Plus en détail

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE Jean-Paul Valois, Claude Mouret & Nicolas Pariset Total, 64018 Pau Cédex MOTS CLEFS : Analyse spatiale, ACP, Lissage, Loess PROBLEMATIQUE En analyse multivariée,

Plus en détail

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013 Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,

Plus en détail

TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN

TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN Marie Cottrell, Smaïl Ibbou, Patrick Letrémy SAMOS-MATISSE UMR 8595 90, rue de Tolbiac 75634 Paris Cedex 13 Résumé : Nous montrons

Plus en détail

Détection d utilisateurs malveillants dans les réseaux sociaux

Détection d utilisateurs malveillants dans les réseaux sociaux Détection d utilisateurs malveillants dans les réseaux sociaux Luc-Aurélien Gauthier Patrick Gallinari Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie 4, place Jussieu 75005 Paris

Plus en détail

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Principaux contributeurs: Zhang Xiaopeng (CASIA-NLPR-LIAMA Coordinateur Groupe Image) Li HongJun (CASIA-NLPR-LIAMA

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

Projet de thèse. Intitulé de la thèse. Spécialité du doctorat. Problématique scientifique générale

Projet de thèse. Intitulé de la thèse. Spécialité du doctorat. Problématique scientifique générale Projet de thèse Intitulé de la thèse Détection automatisée de signaux en pharmacovigilance : Exploitation conjointe de données de notifications spontanées et médico- administratives. Spécialité du doctorat

Plus en détail

DATAMINING C4.5 - DBSCAN

DATAMINING C4.5 - DBSCAN 14-16 rue Voltaire 94270 Kremlin Bicêtre Benjamin DEVÈZE Matthieu FOUQUIN PROMOTION 2005 SCIA DATAMINING C4.5 - DBSCAN Mai 2004 Responsable de spécialité SCIA : M. Akli Adjaoute Table des matières Table

Plus en détail

Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH

Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

Etude comparative de différents motifs utilisés pour le lancé de rayon

Etude comparative de différents motifs utilisés pour le lancé de rayon Etude comparative de différents motifs utilisés pour le lancé de rayon Alexandre Bonhomme Université de Montréal 1 Introduction Au cours des dernières années les processeurs ont vu leurs capacités de calcul

Plus en détail

Equilibrage de charge (Load

Equilibrage de charge (Load Equilibrage de charge (Load balancing) dans les MPSoCs Présenté Le : 02 Décembre 2013 Par : A. AROUI Encadreur : A.E. BENYAMINA 01/12/2013 1 Problématique Comportement dynamique des applications et la

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Sélection de Caractéristiques pour le Filtrage de Spams

Sélection de Caractéristiques pour le Filtrage de Spams Sélection de Caractéristiques pour le Filtrage de Spams Kamilia MENGHOUR, Labiba SOUICI-MESLATI Laboratoire LRI, Université Badji Mokhtar, BP 12, 23000, Annaba, Algérie. k_menghour@yahoo.fr, souici_labiba@yahoo.fr

Plus en détail

http://blog.khaledtannir.net

http://blog.khaledtannir.net Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net these@khaledtannir.net 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

Equilibrage de charge pour les grilles de calcul : classe des tâches dépendantes et indépendantes.

Equilibrage de charge pour les grilles de calcul : classe des tâches dépendantes et indépendantes. Equilibrage de charge pour les grilles de calcul : classe des tâches dépendantes et indépendantes. Meriem Meddeber 1 et Belabbas Yagoubi 2 1 Université de Mascara, Faculté des sciences, Département des

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée Nicolas Creff Du 1er février au 31 juillet 2011 Promotion 2011 Majeure SCIA Rapport de Stage Titre : Clustering à l aide d une représentation supervisée Sujet : Personnalisation de scores à l aide de la

Plus en détail

Étude de données multisources par simulation de capteurs et clustering collaboratif

Étude de données multisources par simulation de capteurs et clustering collaboratif Étude de données multisources par simulation de capteurs et clustering collaboratif Germain Forestier, Cédric Wemmert, Pierre Gançarski Université de Strasbourg - LSIIT - CNRS - UMR 75 Pôle API, Bd Sébastien

Plus en détail

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Mostafa HANOUNE*, Fouzia BENABBOU* *Université Hassan II- Mohammedia, Faculté des sciences

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

ORDONNANCEMENT DES RÉSULTATS SUR LES MOTEURS DE RECHERCHE : PRINCIPES, LIMITES ET APPLICATIONS AU GÉORÉFÉRENCEMENT

ORDONNANCEMENT DES RÉSULTATS SUR LES MOTEURS DE RECHERCHE : PRINCIPES, LIMITES ET APPLICATIONS AU GÉORÉFÉRENCEMENT ORDONNANCEMENT DES RÉSULTATS SUR LES MOTEURS DE RECHERCHE : PRINCIPES, LIMITES ET APPLICATIONS AU GÉORÉFÉRENCEMENT Léa LAPORTE (*,**) laporte@irit.fr, lea@nomao.com (*)Institut de Recherche en Informatique

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

Ré-ordonnancement adaptatif de messages dans un réseau ad hoc de véhicules

Ré-ordonnancement adaptatif de messages dans un réseau ad hoc de véhicules Ré-ordonnancement adaptatif de messages dans un réseau ad hoc de véhicules M. Shawky, K. Chaaban, P. Crubillé Heudiasyc UMR 6599 CNRS, Univ. Tech. De Compiègne 1 ADAS (Advanced Driving Aid System) Reactive

Plus en détail

THESE DE DOCTORAT. Informatique, Fouille de données

THESE DE DOCTORAT. Informatique, Fouille de données THESE DE DOCTORAT Informatique, Fouille de données THEME PRINCIPAL DE LA SOUMISSION : Contenus, Connaissances, Interactions TITRE DE LA THESE : Fouille de graphes avec attributs RESPONSABLES DE LA THESE

Plus en détail

Atelier CluCo : Clustering et Co-clustering. Organisateurs : Vincent Lemaire (Orange Labs), Pascal Cuxac (CNRS-inist), Jean-Charles Lamirel (Loria)

Atelier CluCo : Clustering et Co-clustering. Organisateurs : Vincent Lemaire (Orange Labs), Pascal Cuxac (CNRS-inist), Jean-Charles Lamirel (Loria) i Atelier CluCo : Clustering et Co-clustering Organisateurs : Vincent Lemaire (Orange Labs), Pascal Cuxac (CNRS-inist), Jean-Charles Lamirel (Loria) Organisé conjointement à la conférence EGC (Extraction

Plus en détail

Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique

Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique Détection de têtes dans un nuage de points 3D à l aide d un modèle de mélange sphérique Denis Brazey & Bruno Portier 2 Société Prynɛl, RD974 290 Corpeau, France denis.brazey@insa-rouen.fr 2 Normandie Université,

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing Présentation d Oracle 10g Chapitre VII Présentation d ORACLE 10g 7.1 Nouvelles fonctionnalités 7.2 Architecture d Oracle 10g 7.3 Outils annexes 7.4 Conclusions 7.1 Nouvelles fonctionnalités Gestion des

Plus en détail

Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation

Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation Vincent Lemaire, R&D France Telecom 2 avenue Pierre Marzin, 2300 Lannion France email : vincent.lemaire@orange-ftgroup.com

Plus en détail

1 - PRESENTATION GENERALE...

1 - PRESENTATION GENERALE... Contenu PREAMBULE... 2 INTRODUCTION... 2 1 - PRESENTATION GENERALE... 4 Qualité et optimalité... 8 2 - AGREGATION AUTOUR DE CENTRES MOBILES... 9 2.1 LES BASES DE L'ALGORITHME... 10 2.2 TECHNIQUES CONNEXES...

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

APPROCHE DE LA SURVEILLANCE DES SYSTEMES PAR RESEAUX DE PETRI SYNCHRONISES FLOUS

APPROCHE DE LA SURVEILLANCE DES SYSTEMES PAR RESEAUX DE PETRI SYNCHRONISES FLOUS THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 2/2008, pp. 000 000 APPROCHE DE LA SURVEILLANCE DES SYSTEMES PAR RESEAUX DE PETRI SYNCHRONISES

Plus en détail

Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)

Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Stéphane Cardon Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain agrue CRI - Université d Artois {cardon,chetcuti,delorme,lagrue}@cril.univ-artois.fr

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

EXPLORATION DES BASES DE DONNÉES INDUSTRIELLES À L AIDE DU DATA MINING PERSPECTIVES

EXPLORATION DES BASES DE DONNÉES INDUSTRIELLES À L AIDE DU DATA MINING PERSPECTIVES EXPLORATION DES BASES DE DONNÉES INDUSTRIELLES À L AIDE DU DATA MINING PERSPECTIVES Bruno Agard (1), Andrew Kusiak (2) (1) Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal,

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard

Curriculum Vitae - Emmanuel Hebrard. Emmanuel Hebrard Emmanuel Hebrard Adresse 5 Tuckey Street Cork, Ireland emmanuel.hebrard@gmail.com http ://4c.ucc.ie/ ehebrard/home.html Adresse Professionnelle Cork Constraint Computation Centre Cork, Ireland Telephone

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

Application de K-Means à la définition du nombre de VM optimal dans un Cloud

Application de K-Means à la définition du nombre de VM optimal dans un Cloud Application de K-Means à la définition du nombre de VM optimal dans un Cloud Khaled Tannir; Hubert. Kadima ; Maria Malek Laboratoire LARIS/EISTI Ave du Parc 95490 Cergy-Pontoise France contact@khaledtannir.net,

Plus en détail

Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons

Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Ahmad OSMAN 1a, Valérie KAFTANDJIAN b, Ulf HASSLER a a Fraunhofer Development Center

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

Un système multi-agents sensible au contexte pour les environments d intelligence ambiante

Un système multi-agents sensible au contexte pour les environments d intelligence ambiante sensible au contexte pour les Andrei Olaru Directeurs de thèse: Adina Magda Florea, AI-MAS Lab, UPB Amal El Fallah Seghrouchni, LIP6, UPMC 27062011 Rapport d avancement Paris, France, 27062011 0/ 13 Positionnement

Plus en détail

Agrégation de traces d exécution pour la visualisation de grands systèmes distribués

Agrégation de traces d exécution pour la visualisation de grands systèmes distribués Agrégation de traces d exécution pour la visualisation de grands systèmes distribués Robin Lamarche-Perrin 1, Lucas M. Schnorr 2, Jean-Marc Vincent 2, Yves Demazeau 1 1. Laboratoire d Informatique de Grenoble

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Etude d Algorithmes Parallèles de Data Mining

Etude d Algorithmes Parallèles de Data Mining REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE

Plus en détail

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection

ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data

Plus en détail

RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire

RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire Actes JFPC 2015 RLBS: Une stratégie de retour arrière adaptative basée sur l apprentissage par renforcement pour l optimisation combinatoire Ilyess Bachiri 1,2 Jonathan Gaudreault 1,2 Brahim Chaib-draa

Plus en détail

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche

Plus en détail

Modélisation d objets mobiles dans un entrepôt de données

Modélisation d objets mobiles dans un entrepôt de données Tao Wan, Karine Zeitouni Laboratoire PRISM, Université de Versailles 45, avenue des Etats-Unis, 78035 Versailles Cedex, France Tao.Wan@prism.uvsq.fr, Karine.Zeitouni@prism.uvsq.fr http://www.prism.uvsq.fr/users/karima/

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail