Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)

Dimension: px
Commencer à balayer dès la page:

Download "Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)"

Transcription

1 Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Stéphane Cardon Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain agrue CRI - Université d Artois FA - 5 nov Annecy

2 es jeux en IA es différents types de jeux jeux déterministes / indéterministes jeux à information complète / incomplète Quelques exemples échecs, dames anglaises, go les jeux de cartes (belote, bridge, poker) les jeux de dés (yams, pickomino)

3 es jeux en IA es différents types de jeux jeux déterministes / indéterministes jeux à information complète / incomplète Quelques exemples échecs, dames anglaises, go les jeux de cartes (belote, bridge, poker) les jeux de dés (yams, pickomino) Pourquoi Pickomino? jeu indéterministe à information complète règles très simples mécanisme de prise de risque de type «stop ou encore» décision dans l incertain

4 Plan 1 Introduction 2 Règles du jeu 3 Processus Décisionnel de Markov Description des états Description des actions Description des probabilités Description des récompenses 4 Expérimentations 5 Conclusion et travaux en cours

5 Plan 1 Introduction 2 Règles du jeu 3 Processus Décisionnel de Markov Description des états Description des actions Description des probabilités Description des récompenses 4 Expérimentations 5 Conclusion et travaux en cours

6 Pickomino Pickomino en bref Jeu allemand (Heckmeck am Bratwurmeck) Reiner Knizia (Zoch - Gigamic) de 2 à 8 joueurs à partir de 8 ans mécanismes du jeu : lancers de dés et stop ou encore

7 e matériel (1) 8 dés, numérotés de 1 à face «ver» les vers valent 5

8 e matériel (2) 16 dominos (les pickominos) numérotés de 21 à 36 de 1 à 4 vers

9 Exemple d un tour de jeu Premier jet, le joueur obtient : e joueur décide de garder les dés de valeur.

10 Exemple d un tour de jeu Premier jet, le joueur obtient : e joueur décide de garder les dés de valeur. Deuxième jet, le joueur lance les 5 dés restants et obtient : (dés gardés : ) e joueur ne peut pas choisir les dés de valeur les 2 dés de valeur., il décide de garder

11 Exemple d un tour de jeu Premier jet, le joueur obtient : e joueur décide de garder les dés de valeur. Deuxième jet, le joueur lance les 5 dés restants et obtient : (dés gardés : ) e joueur ne peut pas choisir les dés de valeur les 2 dés de valeur. Troisième jet :, il décide de garder (dés gardés : ) e joueur est obligé de prendre le.

12 Exemple d un tour de jeu Premier jet, le joueur obtient : e joueur décide de garder les dés de valeur. Deuxième jet, le joueur lance les 5 dés restants et obtient : (dés gardés : ) e joueur ne peut pas choisir les dés de valeur les 2 dés de valeur. Troisième jet :, il décide de garder (dés gardés : ) e joueur est obligé de prendre le. Score : = 23 STOP ou ENCORE?

13 STOP : Picorer un pickomino Peut picorer : a somme des valeurs des dés conservés doit être supérieure ou égale à la valeur du pickomino Au moins un dé avec la valeur «ver» a été conservé e pickomino picoré est placé en sommet de la pile du joueur Picorer le pickomino en sommet de pile d un adversaire : a somme doit obligatoirement être égale à la valeur du pickomino

14 ENCORE : Perdre son tour toutes les valeurs des dés lancés ont déjà été prises ou plus de dé à lancer et aucun ver gardé ou score insuffisant le pickomino en sommet de pile du joueur est remis dans la brochette le plus gros pickomino de la brochette est retourné on passe au joueur suivant sans prendre de pickomino

15 Remporter la victoire e joueur dont la pile contient le plus de vers est déclaré vainqueur En cas d égalité, les joueurs sont départagés par le pickomino de plus grande valeur possédé

16 Plan 1 Introduction 2 Règles du jeu 3 Processus Décisionnel de Markov Description des états Description des actions Description des probabilités Description des récompenses 4 Expérimentations 5 Conclusion et travaux en cours

17 Pourquoi? Modéliser la prise de décisions dans un tour de jeu : Faut-il continuer? Si oui, quelle valeur conserver? Faut-il s arrêter et picorer? Si oui, quel pickomino? es valeurs conservées jusqu à présent n influent pas sur le résultat du lancer des dés restants

18 Description des états Espace de recherche Un état est représenté par le résultat d un lancer de dés Conserver une valeur réduit au minimum d un le nombre de dés lancés Nombre d états : 8 i=1 i j=1 6j soit Temps de décision inacceptable

19 Description des états Structure l espace de recherche Intuitivement, deux successions de choix peuvent amener au même résultat :

20 Description des états Définition d un état σ : somme des dés conservés N : nombre de dés conservés V C : ensemble des valeurs conservées Un éventuel pickomino picoré Taille de l espace de recherche engendré : environ états

21 Description des actions Définition des actions STOP : a p : picorer le pickomino p ENCORE : a v : sélectionner la valeur v a : perdre son tour Nombre de transitions engendrées : environ 7 332

22 Description des actions Pré-ordre sur le graphe Structurer le graphe selon le cardinal de l ensemble des valeurs conservées

23 Introduction Règles du jeu Processus Décisionnel de Markov Expérimentations Conclusion et travaux en cours Description des actions Perdre son tour et cas particulier S. Cardon, N. Chetcuti-Sperandio, F. Delorme et S. agrue FA - 5 nov Annecy

24 Description des probabilités Calcul des probabilités Picorer est une action déterministe qui amène à un état final Probabilité de perdre ou conserver n valeurs v identiques : Dépend de l ordre dans lequel les résultats des dés sont considérés : le premier résultat est v, les suivants doivent avoir n 1 fois v le premier n est pas v, les suivants doivent avoir n fois v Une partie des valeurs sont conservées : y = V C Binôme de Newton sur dés lancés 6 = (y + (6 y)) = i=0 C i y i (6 y) i

25 Description des probabilités Partition induite e binôme de Newton induit une partition sur le nombre de valeurs obtenues n appartenant pas à V C Probabilité d obtenir X valeurs / V C dans un lancer de dés : M X = CX y X (6 y) X 6

26 Description des probabilités Conserver n fois la valeur v / V C parmi dés Nouvelle application du binôme de Newton n 0 valeur / V C 1 valeur / V C 2 valeurs / V C... valeurs / V C 0 1 C 0 1 y 1 y

27 Description des probabilités Conserver n fois la valeur v / V C parmi dés Nouvelle application du binôme de Newton n 0 valeur / V C 1 valeur / V C 2 valeurs / V C... valeurs / V C 0 1 C1 0 y 1 C 0 (y 1) 2 y 2... C 0 (y 1) y 2 y

28 Description des probabilités Conserver n fois la valeur v / V C parmi dés Nouvelle application du binôme de Newton n 0 valeur / V C 1 valeur / V C 2 valeurs / V C... valeurs / V C 0 1 C 0 1 y 1 y C C y C 1 2 (y 1) 2... C 0 (y 1) y 2 y y 1... C 1 (y 1) 1 y 2 y

29 Description des probabilités Conserver n fois la valeur v / V C parmi dés Nouvelle application du binôme de Newton n 0 valeur / V C 1 valeur / V C 2 valeurs / V C... valeurs / V C 0 1 C1 0 y 1 C 0 (y 1) 2 y 2... C 0 (y 1) y 2 y 1 0 C1 1 1 C 1 y 1 y 2... C 1 (y 1) 1 y 2 y C C 2 (y 1) 2 y 2 y C 1 y

30 Description des probabilités Conserver n fois la valeur v / V C parmi dés Nouvelle application du binôme de Newton n 0 valeur / V C 1 valeur / V C 2 valeurs / V C... valeurs / V C 0 1 C1 0 y 1 C 0 (y 1) 2 y 2... C 0 (y 1) y 2 y 1 0 C1 1 1 C 1 y 1 y 2... C 1 (y 1) 1 y 2 y C C 2 (y 1) 2 y 2 y C 1 y = 1 = 1 = 1... = 1

31 Description des probabilités Conserver n fois la valeur v parmi dés : P n,v, Soit v V C avec une probabilité de y 6, soit v / V C : 6 y 6 Fusion des probabilités d être dans une partie de l espace partitionné avec les probabilités d obtenir n valeurs identiques sachant que v V C ou v / V C : P n,v, = y 6 { MX X=0 C X n X 0 X < n (y 1) X n y X

32 Description des probabilités Conserver n fois la valeur v parmi dés : P n,v, Soit v V C avec une probabilité de y 6, soit v / V C : 6 y 6 Fusion des probabilités d être dans une partie de l espace partitionné avec les probabilités d obtenir n valeurs identiques sachant que v V C ou v / V C : P n,v, = y y 6 { MX X=0 MX X=0 C X n X { 0 X < n (y 1) X n y X C X n X P n,v, = 1 n=0 0 X < n (5 y) X n (6 y) X

33 Description des probabilités Intuition de la preuve P n,v, = n=0 { y MX n=0 6 X=0 C X n X 0 X < n (y 1) X n +... y X

34 Description des probabilités Intuition de la preuve P n,v, = n=0 = y 6 { y MX n=0 6 X=0 X=0 X MX n=0 C X n X C X n X 0 X < n (y 1) X n +... y X (y 1) X n +... y X } {{ } =1

35 Description des probabilités Intuition de la preuve P n,v, = n=0 = y 6 = y 6 { y MX n=0 6 X=0 X=0 X MX n=0 MX X=0 } {{ } =1 C X n X C X n X 0 X < n (y 1) X n +... y X (y 1) X n +... y X } {{ } =1 +...

36 Description des probabilités Intuition de la preuve P n,v, = n=0 = y 6 = y 6 { y MX n=0 6 X=0 X=0 X MX n=0 MX X=0 } {{ } =1 = y 6 + n=0 = y y 6 C X n X C X n X 0 X < n (y 1) X n +... y X (y 1) X n +... y X } {{ } = y 6 = 1 { MX X=0 C X n X 0 X < n (5 y) X n (6 y) X

37 Description des probabilités Probabilité de perdre son tour Probabilité d obtenir aucune valeur identique / V C Pr(a ) = M 0 = y 6

38 Description des récompenses Deux fonctions récompense Binaire (BinaryMarkov) : a récompense pour picorer un pickomino est de 1 a récompense en cas de perte est de 0 En fonction des vers (NbWormsMarkov) : Picorer un pickomino de nombre de vers x chez un adversaire rapporte 2x Picorer un pickomino de nombre de vers x dans la brochette rapporte x Perdre son tour alors que sa pile n est pas vide coûte x où x désigne le nombre de vers du pickomino en sommet de pile Perdre son tour sans conséquence ne rapporte rien

39 Plan 1 Introduction 2 Règles du jeu 3 Processus Décisionnel de Markov Description des états Description des actions Description des probabilités Description des récompenses 4 Expérimentations 5 Conclusion et travaux en cours

40 Expérimentations Utilisation de l algorithme d itération de valeurs avec somme et une variante en ne considérant que l état ayant la meilleure valeur Comparaison avec les techniques décrites dans [1] N. Chetcuti-Sperandio, F. Delorme, S. agrue, and D. Stackowiack. Determination and evaluation of efficient strategies for a stop or roll dice game : Heckmeck am bratwurmeck (pickomino). In IEEE Symposium on Computational Intelligence and Games (CIG 2008), pages , 2008.

41

42 Plan 1 Introduction 2 Règles du jeu 3 Processus Décisionnel de Markov Description des états Description des actions Description des probabilités Description des récompenses 4 Expérimentations 5 Conclusion et travaux en cours

43 Conclusion et travaux en cours Conclusion Après plus de 7 millions de matchs, NbWormsMarkov s est avéré être un adversaire redoutable... Adapter une décision Markovienne sur plusieurs coups Utiliser le graphe du PDM pour calculer la probabilité de picorer un pickomino et adapter un algorithme Min-Max pondéré...

44 Bientôt en ligne... Pickomania

45 Fête de la science le jeudi 19 novembre 2009 à partir de 14h00 faculté des sciences Jean Perrin - ens

V Recherche dans les arbres de jeux

V Recherche dans les arbres de jeux V Recherche dans les arbres de jeux Damien Olivier Damien.Olivier@univ-lehavre.fr Faculte des Sciences et Techniques du Havre Maitrise d informatique - Intelligence Artificielle p.1/30 Plan 1. Quels jeux?

Plus en détail

Curriculum Vitae. version complète

Curriculum Vitae. version complète Curriculum Vitae version complète Stéphane Cardon Juin 2013 Table des matières CV............................................ 3 Enseignement................................... 5 1 - Synthèse des activités

Plus en détail

Les Cartes et leur Valeur

Les Cartes et leur Valeur RÈGLES CANASTA Règle du Jeu de la Canasta Canasta est le nom d une combinaison de 7 cartes qui donne son nom à cette variante de Rami. Le but du Jeu: Le gagnant est le joueur qui est le premier à atteindre

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Antoine Cornuéjols AgroParisTech

Antoine Cornuéjols AgroParisTech Antoine Cornuéjols AgroParisTech antoine.cornuejols@agroparistech.fr http://www.lri.fr/~antoine Cours IA 1. Introduction 2. Cas des jeux entièrement explorables 3. L algorithme du MinMax 4. Amélioration

Plus en détail

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels 2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Avec l aide du cours de Y. Bourda Intérêt de la «normalisation»

Plus en détail

Fiche récapitulative de jeu. Fiche récapitulative de jeu BUTEUR ARCANA. Commentaires sur le jeu. Commentaires sur le jeu. Caractéristiques du jeu

Fiche récapitulative de jeu. Fiche récapitulative de jeu BUTEUR ARCANA. Commentaires sur le jeu. Commentaires sur le jeu. Caractéristiques du jeu ARCA BUT ARCANA BUTEUR REGLES EN COURS DE TRADUCTION Toute la passion et l'excitation d'un match de football grâce à un mini ballon, un plateau stade et un jeu de cartes : penalty, coup franc, tir au but!

Plus en détail

Dénombrement Probabilité uniforme sur un ensemble fini

Dénombrement Probabilité uniforme sur un ensemble fini UPV - MathsL1S1 1 II Dénombrement Dénombrement Probabilité uniforme sur un ensemble fini I Dénombrement 1) Factorielles : Pour n entier 1, il y a : n! = n.(n - 1). (n - 2) 2.1 façons d aligner n objets

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Relations Binaires Relations d équivalence sur un ensemble

Relations Binaires Relations d équivalence sur un ensemble Relations Binaires Relations d équivalence sur un ensemble MPSI 2 1 Généralités Soit E un ensemble non vide. Définition 1..1 On appelle relation binaire sur E le couple (E, G où G est un graphe de E dans

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

IFT 615 Intelligence artificielle

IFT 615 Intelligence artificielle Département d informatique IFT 615 Intelligence artificielle Plan de cours Hiver 201 Professeur Auxiliaire Froduald Kabanza Courriel : kabanza@usherbrooke.ca Local : D-1022-2 Téléphone : (819) 821-8000,

Plus en détail

Simulation centrée individus

Simulation centrée individus Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les

Plus en détail

HAPPY PIGS! RÈGLES DU JEU

HAPPY PIGS! RÈGLES DU JEU HAPPY PIGS! RÈGLES DU JEU Nombre de joueurs : 3~6 Durée : 30~45 minutes Age : 8+ L HISTOIRE Après avoir fait de l élevage de dindons (voir notre jeu précédent Happy Turkey Day ), les fermiers ont maintenant

Plus en détail

Introduction aux jeux combinatoires

Introduction aux jeux combinatoires Laurent Beaudou Institut Fourier - CNRS Université Joseph Fourier Grenoble, France Semaine Sport-Etude des MIM Les 7 Laux, Janvier 2008 1 / 39 De quoi il parle déjà? Les Jeux combinatoires : Grande famille

Plus en détail

Module GS «Numération et jeux de société»

Module GS «Numération et jeux de société» Compétences travaillées : Module GS «Numération et jeux de société» Connaître la comptine numérique Reconnaître globalement et exprimer des petites quantités organisées en configuration connues Dénombrer

Plus en détail

Jeux de dés et de dominos

Jeux de dés et de dominos Règles Jeux de dés et de dominos pour des apprentissages numériques à l école maternelle M. Massot-Leprince CPC D. Auvray - S. Oursel-Cailly PE Falaise (14) Mai 2013 1 Table des matières Jeux à 1 dé...

Plus en détail

Exe Livret Animateur_Exe Livret Animateur 01/02/11 11:10 Page1

Exe Livret Animateur_Exe Livret Animateur 01/02/11 11:10 Page1 Exe Livret Animateur_Exe Livret Animateur 01/02/11 11:10 Page1 1 Exe Livret Animateur_Exe Livret Animateur 01/02/11 11:10 Page2 Estimez les produits, tournez la roue et tentez de remporter la vitrine!

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Ce rêve est devenu réalité.

Ce rêve est devenu réalité. Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,

Plus en détail

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1.

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1. Examen Exercice 1. Soit N un entier naturel 2. On dispose de trois jeux de N cartes (numérotées de 1 à N), chaque jeu étant d une couleur différente : rouge, bleue et verte. On se propose de distribuer

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Le Pavé Mosaïque. Temple?» C est la question que je me posais la première fois que je vis le Pavé Mosaïque à

Le Pavé Mosaïque. Temple?» C est la question que je me posais la première fois que je vis le Pavé Mosaïque à Le Pavé Mosaïque «Mais à quel jeu jouent donc les francs maçons sur cet échiquier dessiné à même le sol du Temple?» C est la question que je me posais la première fois que je vis le Pavé Mosaïque à la

Plus en détail

Apprentissage par exploration

Apprentissage par exploration Apprentissage par exploration 1/32 Introduction Méthode particulière d acquisition de connaissance : apprentissage artificiel, à partir d induction. obtention des connaissances à partir d exemples. On

Plus en détail

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours ENSIIE - Intelligence Artificielle (RIIA) - 1er cours Benjamin PIWOWARSKI 28 septembre 2015 Benjamin PIWOWARSKI IA - 1er cours 28 septembre 2015 1 / 53 Introduction Plan 1 Introduction 2 Définitions 3

Plus en détail

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375 OILITES Un arbre permet de modéliser une situation et de déterminer une probabilité dans le cas où on étudie plusieurs événements. Il est particulièrement bien adapté à la répétition d expériences, aux

Plus en détail

Apprendre la stratégie de l adversaire

Apprendre la stratégie de l adversaire M1 Master d informatique 28/29 Apprentissage à Partir d Exemples janvier 29 Apprendre la stratégie de l adversaire 1 But Soit un jeu à deux joueurs quelconque. Supposons que l un des deux joueurs suive

Plus en détail

Contenu et préparation

Contenu et préparation Une palpitante chasse aux cartes à grands coups de dés Pour 2 à 6 experts en moutons à partir de 10 ans Depuis qu on lui a offert les nouveaux ciseaux «Kicoup 2010», Jacques, le coiffeur du troupeau, est

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

AT41 - «Métropoles et réseaux»

AT41 - «Métropoles et réseaux» AT41 - «Métropoles et réseaux» Une approche par la théorie des graphes Plan Problématiques Quelques définitions Théorie des graphes: 1. Partitionnement de graphe : ex. les communautés 2. Analyse des réseaux

Plus en détail

LIVRET DE RÈGLES. @AsmadiGames. facebook.com/asmadigames

LIVRET DE RÈGLES. @AsmadiGames. facebook.com/asmadigames LIVRET DE RÈGLES @AsmadiGames facebook.com/asmadigames VOUS JOUEZ À RED La règle pour gagner au Rouge est simple : avoir la plus haute carte! Mais jouerez-vous toujours au même jeu lorsque votre tour prendra

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Ce rêve est devenu réalité!

Ce rêve est devenu réalité! Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Automates Claude Moulin Université de Technologie de Compiègne Printemps 2013 Sommaire 1 Automate fini 2 Automate et langages réguliers 3 Automate à pile Automate fini déterministe

Plus en détail

Sujet à finir pour le jeudi 8 janvier 2015 23h59 À rendre par mail à aurelie.lagoutte@ens-lyon.fr

Sujet à finir pour le jeudi 8 janvier 2015 23h59 À rendre par mail à aurelie.lagoutte@ens-lyon.fr ENS Lyon L3 Info PROJ1 2014 2015 Projet Caml : Jeux de cartes 1 Consignes Sujet à finir pour le jeudi 8 janvier 2015 23h59 À rendre par mail à aurelie.lagoutte@ens-lyon.fr Forme Vous devez rendre le fichier.ml

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Inter'Action 2014 : Jeux de Nim sur les graphes.

Inter'Action 2014 : Jeux de Nim sur les graphes. Qu'est-ce qu'un jeu combinatoire 9 mai 204 Qu'est-ce qu'un jeu combinatoire 2 Le jeu de Nim : un exemple de partie. Le jeu de Nim : Deux joueurs : Plusieurs piles de jetons. On retire alternativement autant

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Alain Ollier Tony Rochon 10+ 2-6 20 /60

Alain Ollier Tony Rochon 10+ 2-6 20 /60 Alain Ollier Tony Rochon 10+ 2-6 20 /60 Un jeu d Alain Ollier Illustré par Tony Rochon A partir de 10 ans - 20 à 60-2 à 6 joueurs MATERIEL 32 cartes «ville» 9 cartes «personnage» 5 cartes «police» 1 «double»,

Plus en détail

5. Equivalences d automates

5. Equivalences d automates 5. Equivalences d automates 5.1. Le problème du déterminisme 5.2. Différentes sortes d AEF 5.3. Déterminisation d un AEF 5.4. Déterminisation d un AEF avec ɛ-transitions 5.5. Minimisation d un AEF déterministe

Plus en détail

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes. Automates à pile Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 62 Automates à pile Introduction Rappels sur les piles Automates à pile : définition Automates

Plus en détail

Championnat Départemental par équipes JEUNES 2015 2 ème et 3 ème Divisions

Championnat Départemental par équipes JEUNES 2015 2 ème et 3 ème Divisions Championnat Départemental par équipes JEUNES 2015 2 ème et 3 ème Divisions Règlement du Comité d'ille-et-vilaine Mise à jour le 1er décembre 2014 1 - ORGANISATION Ce championnat par équipes jeunes ne débouche

Plus en détail

1 Force brute. 2 Analyse. 3 Conception préliminaire. 4 Conception détaillée. 5 Développement. 6 Conclusion. Architecture des Systèmes d Information

1 Force brute. 2 Analyse. 3 Conception préliminaire. 4 Conception détaillée. 5 Développement. 6 Conclusion. Architecture des Systèmes d Information Plan Puissance 4 intelligent I3 Algorithmique Nicol Delestre 1 Force brute 2 Analyse 3 Conception préliminaire 4 Conception détaillée 5 Développement 6 Conclusion Puissance 4. v2.0 1 / 29 Puissance 4.

Plus en détail

Système suisse pour le tournoi de tennis CSP 2015

Système suisse pour le tournoi de tennis CSP 2015 Système suisse pour le tournoi de tennis CSP 2015 16 juillet 2015 Résumé Ce document décrit l utilisation du système suisse pour l organisation du tournoi de tennis CSP 2015 1. On y parle de la méthode

Plus en détail

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels 2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Avec l aide du cours de Y. Bourda Intérêt de la normalisation

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Page 2 : Règle du jeu Poker (3-4 joueurs) Page 4 : Les faces Page 5 : Tapis D-foot à imprimer (3-4 joueurs)

Page 2 : Règle du jeu Poker (3-4 joueurs) Page 4 : Les faces Page 5 : Tapis D-foot à imprimer (3-4 joueurs) Page 2 : Règle du jeu Poker (3-4 joueurs) Page 4 : Les faces Page 5 : Tapis D-foot à imprimer (3-4 joueurs) www.dfoot.fr contact@dfoot.fr Regles du jeu Dfoot Poker 3-4 joueurs D Foot, c est quoi? D Foot

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

PSR : état de l art. Algorithmes exponentiels pour les problèmes de jeux dans les graphes

PSR : état de l art. Algorithmes exponentiels pour les problèmes de jeux dans les graphes PSR : état de l art Algorithmes exponentiels pour les problèmes de jeux dans les graphes Romain Letourneur Université d Orléans 14 mai 2012 2/34 Ma thématique Algorithmique exponentielle ; Problèmes de

Plus en détail

My Poker Manager Guide Utilisateur. Guide Utilisateur

My Poker Manager Guide Utilisateur. Guide Utilisateur «My Poker Manager» Guide Utilisateur Sommaire My Poker Manager Guide Utilisateur Sommaire... 2 My Poker Manager... 3 Tous les outils... 4 1 Système d alerte... 5 2 Composant de stacking ou pile de tables...

Plus en détail

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits 1 d Automatisation de la certification formelle de systèmes critiques par instrumentation d sous la direction de Michaël Périn Soutenance de Thèse de Doctorat Université de Grenoble - Laboratoire Verimag

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Fonctions d évaluation

Fonctions d évaluation Chapitre 1 Fonctions d évaluation 1.1 In uence de la représentation du problème La façon dont on représente un jeu et les coups de ce jeu peut avoir une grande in- uence sur la dif culté d un jeu. De même,

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Couplages et colorations d arêtes

Couplages et colorations d arêtes Couplages et colorations d arêtes Complément au chapitre 5 «Une employée mécontente» et au chapitre 9 «L apprentie sudokiste» Considérons n équipes de hockey qui doivent s affronter lors d un tournoi.

Plus en détail

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud Stratégies de décision dans les arbres de recherche pour jeux basées sur des informations incomplètes Application au bridge : Apprentissage statistique des enchères et jeu de la carte optimal Sébastien

Plus en détail

Trajectoires d emploi et chômage

Trajectoires d emploi et chômage Trajectoires d emploi et chômage Séminaire SACEI 15 septembre 2011 Alice Hui PENG Bruno MASSONNET AS-Consultant b.massonnet@as-consultant.com Plan 1. L enquête emploi de l INSEE 3 2 Taux de chômage BIT

Plus en détail

Ce rêve est devenu réalité!

Ce rêve est devenu réalité! Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,

Plus en détail

Ce rêve est devenu réalité.

Ce rêve est devenu réalité. Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Random Regles du jeu. 1. Situation départ :

Random Regles du jeu. 1. Situation départ : Random Regles du jeu But : Chaque joueur a 150 PV au départ. Le dernier a qui il reste des PV a gagné OU celui qui a le plus de PV au bout d une heure de jeu a gagné. En cas d aexeco, la partie continue

Plus en détail

But du jeu. Mise en place. Déroulement du jeu

But du jeu. Mise en place. Déroulement du jeu 2-4 Joueurs - 30/45 mn Les règles qui suivent sont pour 3 et 4 joueurs. En fin de livret, vous trouverez la règle pour 4 joueurs en équipe ainsi que la règle pour 2 joueurs. 1808 Mer de Chine Jeune pirate

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Accessoires. 1 plateau de jeu où figurent les 13 salles numérotées de l abbaye. 5 cartes de référence dans chacune des 5 couleurs

Accessoires. 1 plateau de jeu où figurent les 13 salles numérotées de l abbaye. 5 cartes de référence dans chacune des 5 couleurs Accessoires 1 plateau de jeu où figurent les 13 salles numérotées de l abbaye L Ordre du Temple a été éradiqué par Philippe le Bel, mais quelques-uns des Templiers ont survécu dans une petite abbaye isolée.

Plus en détail

CI-4 PRÉVOIR ET SUPPRIMER LES

CI-4 PRÉVOIR ET SUPPRIMER LES CI-4 LES CONTRAINTES DE MONTAGE D UN SYSTÈME. Objectifs ANALYSER - OPTIMISER A la fin de la séquence de révision, l élève doit être capable de B2 Proposer un modèle de connaissance et de comportement Déterminer

Plus en détail

Faces des Dés de Donjon. Faces des Dés de Groupe

Faces des Dés de Donjon. Faces des Dés de Groupe Prototype du livre de règles Veuillez noter que ces règles ne sont pas finales. Les règles présentées ici le sont à 99.9%, mais les illustrations le sont à 0%! Ce livre de règles à l état de prototype

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Le bridge c'est quoi? Laval Du Breuil École de bridge Picatou, Québec picatou@picatou.com

Le bridge c'est quoi? Laval Du Breuil École de bridge Picatou, Québec picatou@picatou.com Le bridge c'est quoi? Laval Du Breuil École de bridge Picatou, Québec picatou@picatou.com 1. Historique Le bridge moderne fait partie de la famille du Whist, popularisé au XIX e siècle par Edmond Hoyle

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014 Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée,

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais.

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. Yongwe Jean-Luc Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. (Système ALOHA) (Sous la tutelle de Madame Anne Perrut)

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

MONOPOLY Règles de Tournoi:

MONOPOLY Règles de Tournoi: MONOPOLY Règles de Tournoi: OBJECTIF L'objectif du jeu est de devenir le joueur le plus riche en achetant, en louant et en vendant des propriétés. Essayez d acheter toutes les propriétés appartenant à

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

MISE EN PLACE. de Vital Lacerda

MISE EN PLACE. de Vital Lacerda 120 1-5 12+ de Vital Lacerda Dans les années 70, les gouvernements mondiaux font face à une demande d énergie sans précédent et des centrales de plus en plus polluantes sont construites n importe où afin

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7 Computix Matériel : grilles carrées comportant un nombre impair de cases. Quelques-unes sont données en annexe ; mais on peut aussi les construire soi-même, ou les faire construire par les élèves. Elles

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail

Le Winamax Club Trophy Saison 6 est une compétition gratuite sans obligation d achat organisée par Winamax.

Le Winamax Club Trophy Saison 6 est une compétition gratuite sans obligation d achat organisée par Winamax. Généralités Le Winamax Club Trophy Saison 6 est une compétition gratuite sans obligation d achat organisée par Winamax. L évènement se tiendra les samedi 30 mai et dimanche 31 mai 2015 au Dolce Chantilly,

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail