L'univers des étoiles massives

Dimension: px
Commencer à balayer dès la page:

Download "L'univers des étoiles massives"

Transcription

1 Université d'aix-marseille L'univers des étoiles massives Habilitation à Diriger des Recherches 12 Mars 2013 Présentée par Delphine Russeil Jury composé de: P. Amram V. Buat G. Joncas (rapporteur) E. Le Coarer Q. Parker (rapporteur) R. Stamm A. zavagno LAM/OAMP Université d'aix-marseille 1

2 Table des matières Cadre Général...3 I) Les étoiles massives comme traceurs de la structure de notre Galaxie...4 I. 1) Notre Galaxie: historique...4 I. 2) Notre Galaxie une Galaxie spirale...5 Caractéristiques des galaxies spirales...6 I. 3) Notre Galaxie: sa structure spirale...7 Généralités...7 Tracer les bras spiraux de notre Galaxie...8 La notion de complexe...9 Les écarts à la rotation circulaire...13 Le sondage H et la structure spirale de notre Galaxie...14 La structure à 4 bras de notre Galaxie: historique et vision récente...22 Deux ou quatre bras? Notre Galaxie vue en infrarouge...24 Perspectives...24 II) La formation des étoiles massives...26 La contribution d'herschel...26 Perspectives...32 III) Les étoiles massives et leur région HII: Cinématique des régions HII...33 RCW108 (Comeron et al. 2005)...33 RCW82 (Pomarès et al. 2009)...36 RCW Perspectives...40 IV) Etude statistique de la formation des étoiles massives dans notre Galaxie...41 La contribution du sondage HiGAL...41 Perspectives...46 V) Etude statistique de la distance des étoiles OB et distance des régions HII...48 Etat de l'art...48 Etoiles OB dans la direction de NGC 6334 et NGC Perspectives...52 VI) Quel type de structure spirale pour notre Galaxie?...53 Discussion...53 Perspectives...58 CONCLUSION...59 Remerciements...60 Références

3 Cadre Général Le but de ce document est de présenter une revue des travaux auxquels j'ai participé de façon significative depuis ma thèse et qui visent à quantifier l'impact des étoiles massives dans la structuration de notre galaxie et à terme des galaxies extérieures. Ce document se présente sous la forme d'une présentation synthétique de mes principaux résultats ainsi que de leur mise en perspective dans le cadre plus général des recherches nationales et internationales sur le sujet. L'étude de la Voie Lactée en tant que galaxie a connu un fort essor dans les années avec l'arrivée des premiers sondages du plan Galactique dans le domaine radio et optique (H ). Dans ce cadre, le problème de la détermination de la distance des traceurs (régions HII plus particulièrement), de la structure des bras et de la courbe de rotation s'est vite posé notamment en ce qui concerne la résolution de l'ambiguïté des distances pour les sources à l'intérieur du cercle solaire. La combinaison des données radio et optique a permis de résoudre pour un grand nombre de régions HII cette ambiguïté. Un long et fastidieux travail de détermination des distances des régions HII a alors été mené : pour chaque région il a fallu identifier les étoiles excitatrices, déterminer la vitesse systémique, corriger des écarts à la rotation, résoudre l'incertitude des distances..etc. Ce travail mené par Y.M. Georgelin et résumé dans sa thèse a permis en 1976 le premier tracé cohérent de la structure spirale à 4 bras de notre Galaxie. Cette étude qui a été menée en partie grâce à l'interféromètre de Pérot-Fabry à ordre fixe qui permettait d'accéder à la vitesse du gaz ionisé visible en H, a ouvert la voie a un nouveau sondage : la sondage H du plan galactique Sud avec un Pérot-Fabry à balayage. Les avancées technologiques en informatique ont permis le développement de cet instrument (l'instrument CIGALE) dans les années 80 par l'équipe interférométrie de l'observatoire de Marseille. Au début des années 90 avaient lieu les premières lumières du sondage, et c'est dans ce cadre qu'en 1995 j'ai débuté ma thèse portant sur l'analyse de ces données dans le but de préciser la structure spirale de notre Galaxie. Avec Y.M. Georgelin nous avons analysé plus de 300 cubes, grâce aux programmes spécifiques développés par E. Lecoarer, complétés par des observations moléculaires au SEST (observations menées en collaboration avec A. Castets) et des données multi-longueur d'onde de la littérature. L'effort commun des différents membres de l'équipe a permis de quasiment boucler la couverture des zones prévues. Nous avons alors en 2003 pu retracer la structure spirale de notre Galaxie grâce à l'établissement d'un catalogue de 481 complexes de formation stellaire. Nous avons ainsi précisé et rallongé le tracé des 4 bras spiraux de notre Galaxie et visualisé son gauchissement spatial. En parallèle la thématique galactique commençait à revenir au centre des préoccupations de l'astronomie mondiale via l'apparition de sondages tel que le sondage photographique H du plan galactique sud à l'aao. C'est dans ce cadre que j'ai effectué mon premier post-doc pour participer à ce sondage sous la direction de Q. Parker. Les superbes images à haute résolution spatiale et à très grand champ (28deg² sur le ciel par pointé) ont permis la détection de nombreuses nouvelles nébuleuses planétaires, doublant ainsi le nombre de tels objets connus jusqu'alors (projet MASH Parker et al. 2006). Pendant ce temps, le domaine de longueur d'onde infrarouge commençait à prendre son essor grâce au développement technique notamment lié au satellite ISO. C'est dans ce cadre que j'ai effectué un post-doc a Helsinki, sous la direction de K. Matilla, sur l'étude de L1642 un nuage translucent. L'étude reposait sur l'exploitation de données ISO et de données moléculaires obtenues au SEST. J'ai notamment utilisé la méthode de décomposition en composantes principales, initialement appliquée à nos données, pour analyser les données des raies moléculaires (Russeil et Castets, 2004). L'arrivée du satellite Herschel a fini de replacer la thématique de l'étude de notre Galaxie au centre des préoccupations à travers en particulier l'étude de la formation stellaire massive. Je me suis ainsi impliquée dans les programmes galactiques d'herschel tels que HOBYS et HiGAL. Ce satellite et ses instruments sont en train de révolutionner notre vision de la structuration de la poussière dans la 3

4 Voie Lactée, de la formation des étoiles, de la structure des parties centrales de notre galaxie...etc.. En parallèle l'ère des grands sondages (e.g. HiGAL, MSX, AKARI, SPITZER, 2MASS, NANTEN, GAIA, VISTA, ATLASGAL... etc) révolutionne et révolutionnera encore dans les années à venir notre approche multi-longueur d'onde de la structure Galactique. Je propose maintenant de détailler mes contributions à ces sujets. 4

5 I) Les étoiles massives comme traceurs de la structure de notre Galaxie I. 1) Notre Galaxie: historique Cette entité a longtemps eu le statut Universel tenu aujourd'hui par l'univers et a été l'oméga de nombreux chercheurs depuis la renaissance, depuis l'époque où nous avons enfin réalisé que ni la Terre ni le Soleil n'avaient le statut de centre de l'univers. Même de nos jours, une grande partie des bases de l'astrophysique tirent leur substance du terreau galactique et il est d'ailleurs cocasse de noter que dans une bonne partie des illustrations des manifestations cosmologiques continuent de figurer des paysages galactiques. Malgré ces siècles d'étude, le sujet n'est pas clos et d'importants progrès restent à faire, même dans des sujets aussi basiques que le nombre de bras dont est pourvu cet univers-île. De fait, et depuis longtemps, les astronomes se sont penchés sur l'étude de la structure de notre Galaxie. Ce n'est qu'en 1610 que Galilée, avec l'invention de la lunette, observa pour la première fois que la Voie Lactée était en fait, non pas fluide comme on le pensait alors à l'époque, mais était constituée d'un nombre incommensurable d'étoiles. En 1750, Thomas Wright imagina que les étoiles de la Voie Lactée formaient une structure aplatie dans laquelle se trouvait notre Soleil. Il faut malgré tout attendre la fin du XVIII siècle pour que William Herschel effectue la première étude scientifique de notre Galaxie et abandonne la vision héliocentrique du système galactique. Postulant que les étoiles étaient réparties de manière uniforme et étaient toutes identiques et observables, il effectua des comptages d'étoiles dans exactement 683 directions. En effet, le nombre d'étoiles dans une direction donnée étant proportionnel à l'extension de la Galaxie dans cette direction, il était alors possible d'accéder à la distribution des étoiles et donc à la forme et l'étendue de notre Galaxie. Il montra ainsi que la Galaxie était un disque aux contours irréguliers, et que le Soleil n'occupait donc pas le centre de ce système. Avec le développement des méthodes spectroscopiques et de la photographie, de nouvelles observations devenaient possibles. Ainsi vers 1901, Kapteyn ré-appliqua la méthode des comptages d'étoiles dans quelques 200 directions à partir de plaques photographiques collectées à travers le monde, en y ajoutant des mesures de brillance, de mouvements propres, de vitesses radiales et des estimations du type spectral. Mais, ne prenant pas en compte l'absorption due au milieu interstellaire (qui vient biaiser la détermination de la distance des étoiles), son modèle était similaire à celui de W. Herschel. Il y ajouta malgré tout une échelle de distance, en estimant que notre Galaxie était 5 fois plus longue dans la direction du plan galactique que perpendiculairement à celui-ci. Ce n'est qu'en 1917 que H. Shapley, par l'étude de la distribution des amas globulaires, donna une idée correcte des dimensions de la Galaxie en estimant à 10 kpc la distance du Soleil au centre galactique. En parallèle, en 1914, V. Sliper montra que les galaxies sont en rotation et H. Hubble montra en 1923, en découvrant des céphéides dans la galaxie d'andromède, que les galaxies sont en fait des objets extra-galactiques. Ces découvertes posent les bases de l'échelle des distances et suggèrent ainsi que la Galaxie n'est qu'une entité parmi les autres. Les premiers modèles décrivant la rotation de notre Galaxie sont le travail de B. Lindblad en Il propose que le Soleil et les étoiles de faible vitesse présentent une rotation circulaire autour du centre galactique. En particulier, J.H. Oort développe une théorie cinématique en accord avec les observations, dans laquelle la rotation est différentielle. Ainsi la représentation de notre Galaxie tend vers une structure spirale. Parallèlement, dès 1920, il est communément accepté que la matière interstellaire absorbant la lumière des étoiles existe dans notre Galaxie, mais ce n'est qu'en 1930 que les travaux de R.J Trumpler, basés sur des mesures de couleurs, de brillances et de types spectraux d'amas galactiques montrent que le rayonnement est d'autant plus atténué que l'étoile est loin de nous. Les poussières, en absorbant la lumière dans le visible et l'ultra-violet, gênent la connaissance de notre Galaxie en rendant inaccessibles les régions lointaines. Heureusement, le voile put être levé grâce aux radiotélescopes et notamment la découverte en 1951 de la raie de l'hydrogène atomique à 21 cm. Les ondes radio, n'étant pas absorbées par le milieu interstellaire permettent de sonder à grande distance 5

6 notre Galaxie. C'est à la longueur d'onde 21cm que la structure spirale de notre Galaxie est pour la première fois mise en évidence. Cela donne lieu à un premier modèle à 2 bras fortement enroulés dit modèle de Leiden-Sydney. Mais cette représentation des bras n'est pas précise car l'hydrogène atomique ne présente qu'un faible contraste bras-interbras. I. 2) Notre Galaxie une Galaxie spirale L'étude des galaxies extérieures permet d'en identifier les différentes composantes. Les étoiles du noyau sont principalement des géantes rouges tandis que les étoiles bleues lumineuses sont plutôt distribuées dans les bras spiraux. Dans notre Galaxie, les objets sont classés en deux catégories: les objets de population I, associées aux bras spiraux, regroupant entres autres les jeunes étoiles chaudes (étoiles O et B), les amas et les régions d'hydrogène ionisé (régions HII) et les objets de population II peuplant la composante sphéroïdale (noyau + bulbe + halo ) dont les amas globulaire sont les principaux exemples. Les objets de population I peuvent donc être choisis comme traceurs de la structure spirale. Caractéristiques des galaxies spirales L'observation des galaxies spirales en général nous montre qu'elles peuvent être caractérisées par quatre principaux aspects. Une structure aplatie: les galaxies spirales sont des systèmes dit à disque. C'est à dire que les constituants (étoiles, gaz, poussière) de la galaxie (hors des parties centrales où se trouve le bulbe) se distribuent de manière privilégiée dans un disque dont l'épaisseur est très inférieure à son diamètre. Une composition riche en gaz: contrairement aux galaxies elliptiques, les galaxies spirales sont riches en gaz, poussière et étoiles jeunes. Des bras spiraux: les galaxies spirales présentent des zones de sur-densité du gaz où se forment en grande partie les étoiles de toutes masses (dont des étoiles massives et chaudes). Ces surdensités tracent les bras spiraux. Un système en rotation: les galaxies spirales sont en rotation. Tous les objets du disque sont en rotation autour du centre de la galaxie. Cette rotation suit une loi de vitesse (courbe vitesse en fonction de la distance au centre nommée courbe de rotation) de forme bien particulière correspondant à une rotation dite différentielle. La vision actuelle de notre Galaxie identifie, comme pour les galaxies extérieures, une composante sphéroïdale et un disque. Chacun de ces deux éléments présente des constituants stellaires et non stellaires et des propriétés dynamiques et cinématiques qui leur sont propres. La composante sphérique, qui contient la plus grande partie de la masse galactique mais qui est peu lumineuse, est elle-même divisée en trois sous structures: le noyau ( diamètre ~3pc), le bulbe (~ 3kpc de rayon) et le halo (rayon >= 30 kpc). Le bulbe est peuplé d'étoiles âgées dont la rotation est faible mais présente une grande dispersion de vitesse. Le disque quant à lui est un système plat (environ 200 pc d'épaisseur) s'étendant selon le plan galactique jusqu'à un rayon de 20 kpc, où les étoiles vieilles peu lumineuses se répartissent plus ou moins uniformément et où les étoiles jeunes se localisent préférentiellement dans les bras spiraux. Ce disque, beaucoup moins massif que la composante sphérique est pourtant beaucoup plus lumineux, grâce justement à ces étoiles jeunes et massives, sources importantes de photons ionisants aptes à rendre lumineux leur environnement par l'intermédiaire des régions HII. De plus la rotation des objets du disque est rapide et de faible dispersion de vitesse. On peut déterminer ainsi la courbe de rotation des galaxies qui a une forme typique avec une croissance linéaire du type rotation en corps solide dans la partie centrale et un plateau traduisant une rotation différentielle dans le reste du disque. Pour notre Galaxie, une telle courbe de rotation a été établie par différents moyens: vitesse tangente de la raie HI ou CO, distance stellaire de régions HII et 6

7 nébuleuses par réflexion... Nous avons comparé les différentes courbes de rotation pour notre Galaxie (Russeil, 1998) et privilégié celle établie par Brand et Blitz (1993). L'avantage de cette courbe de rotation est qu'elle est établie à partir de données localisées dans les 4 quadrants galactiques et mélange les différentes sondes (HI, CO et régions HII) ce qui permet d'avoir une courbe de rotation plus représentative de la rotation générale de notre Galaxie. Quoiqu'il en soit la courbe de rotation de notre Galaxie (fig. I.1) a de toute évidence la forme typique d'une galaxie spirale. Figure I.1: Courbe de rotation de notre Galaxie (Brand et Blitz, 1993). La vision multi-longueur d'onde des galaxies spirales nous permet de mettre en évidence les meilleurs traceurs des bras spiraux. Les bras spiraux se dessinent clairement dans les longueurs d'onde extrême UV (FUV: e.g. satellite GALEX), H, CO, et infrarouge lointain (FIR au delà de 60 m). Chaque longueur d'onde correspond à un traceur spécifique : le FUV est l'émission des étoiles OB, le H est l'émission du gaz ionisé par les étoiles OB, le CO trace les nuages moléculaires où naissent les étoiles et le FIR est l'émission des poussières froides et des poussières chauffées par les régions HII, lesquelles poussières sont étroitement mélangées avec les gaz dans les nuages moléculaires. Inversement l'émission dans le proche IR (par exemple les bandes J, H et K) est un moins bon traceur de la structure spirale. En effet les bras ne présentent qu'un faible contraste à ces longueurs d'onde à cause principalement du fait que l'émission NIR est dominée par l'émission des étoiles peu massives et largement distribuées dans l'ensemble du disque. Malgré tout le proche infrarouge (aux longueurs d'onde du satellite Spitzer: 3.5 et 4.5 m) trace les bras stellaires, source de la composante asymétrique du potentiel gravitationnel. On notera aussi qu'à 8 m, émission principale des PAHs («Polycyclic aromatic hydrocarbon»), de nombreuses structures plus ou moins filamentaires sont observées dans tout le disque. On ne peut donc pas utiliser cette longueur d'onde pourtant traceur de poussière, pour l'étude précise des bras. En parallèle, l'émission du gaz atomique HI n'est pas utilisable pour l'étude des structures spirales des bras à cause de son faible contraste bras-inter-bras. Par contre, le HI permet de visualiser les bras dans les parties externes des galaxies. Nous pouvons donc conclure que l'étude des galaxies extérieures permet de sélectionner les bons traceurs des bras: - les étoiles jeunes et massives (étoiles O,B) sous forme d'amas, d'associations ou individuelles - les régions HII excitées par ces étoiles OB qui émettent principalement la raie rouge de l'hydrogène Balmer- (n=3-2). - Les nuages moléculaires parents où se sont formées les étoiles principalement observables dans le domaine radio (e.g. par les raies de CO) 7

8 I. 3) Notre Galaxie: sa structure spirale Généralités Il est très facile de se rendre compte que notre galaxie est une galaxie spirale. L'observation seule de la Voie Lactée permet déjà de voir que notre galaxie répond aux deux premiers critères caractérisant les galaxies spirales: - La Voie Lactée est une bande lumineuse qui se détache sur le ciel. C'est en fait le disque de notre Galaxie vu depuis l'intérieur. Son épaisseur réduite par rapport à l'ensemble du ciel souligne bien «l'aspect disque» de notre Galaxie. - L'observation visuelle de la Voie Lactée montre aussi qu'elle est parsemée de zones sombres plus ou moins étendues. Ces zones correspondent à de la poussière (qui absorbe la lumière des étoiles d'arrière plan). De plus on y observe des nébuleuses brillantes (e.g. nébuleuse d'orion) qui sont du gaz ionisé par des étoiles jeunes et massives (étoiles O, B). Cela montre que notre Galaxie contient énormément de gaz et de poussière. En plus des étoiles excitatrices des nébuleuses brillantes (dites régions HII) on y observe aussi de nombreux amas ouverts. Ces étoiles sont des étoiles jeunes. La composition de notre Galaxie est donc caractéristique des galaxies spirales. De même, la courbe de rotation de notre Galaxie a la forme typique des courbes de rotation des galaxies spirales. Il n'y a donc plus aucun doute sur le fait que notre Galaxie est une spirale. Le «challenge» actuel réside maintenant dans la détermination de la structure des bras; de nombreux chercheurs s'y attèlent depuis environ 50 ans. Du fait de notre position à l'intérieur de la Voie Lactée, il est très difficile de reconstruire la structure spirale car toute l'information le long de la ligne de visée est superposée. En effet, par exemple 2 objets vus proches sur le plan du ciel ne sont, la plupart du temps, pas à la même distance. Tracer la structure des bras de notre Galaxie revient à essayer de tracer le plan d'une ville depuis une position fixe à l'intérieur. Si les observations semblent montrer que notre Galaxie possède 4 bras, cela la rend particulière, (mais pas unique) dans le sens où la majorité des galaxies spirales de l'univers local sont des galaxies avec 2 bras. Pour mieux comprendre cette problématique nous présentons ici la méthodologie utilisée pour établir la structure spirale de notre Galaxie qui se résume comme suit: (1) sélectionner les bons traceurs et (2) les replacer en distance afin d'accéder à leur distribution spatiale. Tracer les bras spiraux de notre Galaxie Pour déterminer la structure des bras de notre Galaxie il est nécessaire de reconstruire leur tracé point par point à la façon d'un géographe de l'ancien temps qui traçait les contours des côtes pour déterminer la morphologie des continents. Choix du bon traceur: L'étude des galaxies montre (voir ci-dessus) que les meilleurs traceurs des bras sont les objets jeunes: étoiles OB, régions HII (et nuages moléculaires associés), amas ouverts. A l'inverse les nébuleuses planétaires et les amas globulaires (étant des objets âgés) ne sont pas de bons traceurs et ne peuvent donc pas être utilisés pour l'étude précise des bras spiraux de notre galaxie. Méthode pour tracer les bras: La méthode pour reconstruire le tracé des bras est assez simple, au moins dans le concept: Répertorier l'ensemble des objets jeunes Calculer leur distance héliocentrique Porter les objets sur un graphique pour visualiser le résultat. On voit donc que tout repose sur la détermination des distances de ces objets. Il existe deux grandes méthodes pour calculer la distance des objets qui permettent de déterminer soit la distance dite 8

9 stellaire soit la distance dite cinématique. Notons qu'il existe une troisième méthode pour déterminer la distance d'objet en astronomie: c'est la distance basée sur la mesure de la parallaxe (telles les parallaxes mesurées par le satellite Hipparcos). Ces distances parallactiques ne sont, jusqu'à présent (voir plus loin les progrès potentiels du satellite GAIA) déterminables que pour des objets très proche (de l'ordre de quelques centaines de parsecs au maximum). Or nous voulons déterminer des distances à l'échelle de la Galaxie (~10 kpc). La distance stellaire: La distance stellaire nécessite l'observation du spectre de l'étoile et de ses magnitudes dans au moins 3 filtres différents (U, B, V). Le spectre permet de déterminer le type spectral de l'étoile (e.g. O5V) qui à partir de données tabulées permet d'accéder à sa magnitude absolue (M V). Les magnitudes apparentes mesurées permettent de déterminer le coefficient d'extinction (extinction du milieu interstellaire présent sur la ligne de vue de l'étoile) Av. La distance d est alors déterminée par la relation: mv MV = log(d) + Av Le problème de la distance stellaire est qu'il faut pouvoir identifier et mesurer les étoiles, or l'extinction interstellaire limite à 6 kpc en moyenne la portée de la détermination de distance stellaire. La distance cinématique: Quand on ne peut pas déterminer la distance stellaire la seule alternative est de déterminer la distance cinématique, c'est-à-dire la distance déterminée à partir de la mesure de la vitesse radiale systémique de l'objet. Cette méthode de calcul de la distance nécessite la connaissance de la courbe de rotation de notre Galaxie et de faire l'hypothèse que les objets sont en rotation circulaire uniforme autour du centre de la Galaxie. A partir de la vitesse radiale mesurée (Vmes) par effet Doppler, on calcul la vitesse angulaire (W) par la relation: W = (Vmes / R0sinl ) + w0 (a) ou R0 et W0 sont la distance au centre galactique du Soleil et la vitesse angulaire du Soleil qui sont des grandeurs connues et l est la longitude galactique. Notons ici que la vitesse radiale systémique peut être biaisée d'environ 10 km/s à cause des écarts à la rotation circulaire. Il convient donc au mieux d'identifier ces écarts et d'en corriger la vitesse radiale systémique avant de calculer la distance cinématique. En pratique, cela ne peut être fait que pour les régions les plus proches. Par la courbe de rotation on détermine alors la distance galacto-centrique R puis la distance héliocentrique r en résolvant l'équation suivante: r2-2 R0 r cos(l) + (R02 - R2) = 0 (b) Cette équation donne deux solutions possibles pour les objets situés à l'intérieur de l'orbite Solaire. Cette dégénérescence de la distance héliocentrique doit ensuite être résolue par des considérations astrophysiques additionnelles. La notion de complexe En pratique, pour tracer la structure spirale de notre Galaxie, nous avons suivi la stratégie initiée par Bok, 1971 et Georgelin and Georgelin, 1976 qui consiste à considérer comme traceur non pas les objets jeunes individuellement mais de les regrouper en complexes de formation stellaire. Cette notion de complexe est très importante car cela permet de réduire la dispersion spatiale et la dispersion de vitesse des objets d'un même complexe, les uns par rapport aux autres, ce qui impliquerait l'étalement des traceurs et rendrait «flou» la structure spirale que l'on veut mettre en évidence. Sachant que les étoiles se forment dans le nuage moléculaire, un complexe (fig. I.2) se définit 9

10 comme le regroupement d'un nuage moléculaire parental, observé en radio principalement en CO, et des régions HII crées par les étoiles massives qui se sont formées dans ce nuage moléculaire. Le regroupement se fait sur la base de la vitesse du nuage moléculaire et des régions HII ainsi que sur la distance apparente sur le ciel. En effet les régions HII doivent avoir une vitesse similaire au nuage moléculaire (à plus ou moins 10 km/s) et se trouver spatialement dans la direction, ou sur le bord du nuage moléculaire. La notion de complexe permet aussi d'avoir une information plus complète qui permet une meilleure détermination de la vitesse systémique du complexe et de sa distance. En effet on a, pour un même complexe, accès à la vitesse moléculaire, la vitesse du gaz ionisé des régions HII (soit par la raie H, soit par les raies dans le domaine radio (par exemple la raie H109 ), la distance des étoiles excitatrices (quand elles sont observables) et l'information des raies en absorption du milieu interstellaire présent sur la ligne de vue (qui permettent de choisir entre distance cinématique proche et lointaine). Figure I.2 : Représentation schématique d'un complexe de formation stellaire. Mais le lien physique entre régions HII et nuages moléculaires n'est pas toujours évident. En effet le gaz ionisé peut présenter des mouvements internes importants ou un champ de vitesse complexe. Par exemple quand une région HII crève son nuage moléculaire parental par effet «champagne», la vitesse du gaz éjecté peut atteindre 10 km/s par rapport au nuage et aux parties stationnaires de la région ionisée (Tenorio-Tagle 1979). Nous avons réalisé en 2004 que l'information moléculaire n'existait pas pour un grand nombre de régions HII. Les sondages moléculaires (CO) de l'époque du plan galactique sud étaient à trop basse résolution spatiale (e.g. 8.8 arcmin, Bronfman et al. 1989). Seules quelques régions avaient été observées en CO à haute résolution (e.g. Gillespie et al. 1977, Zinchenko et al. 1995). C'est donc dans ce cadre que nous avons mené des observations pointées («position switching» et «frequency switching») en 12CO(1-0) et 13CO(1-0) avec le radiotélescope SEST dans la direction de 252 régions HII du plan galactique sud (Russeil et Castets, 2004). La finesse intrinsèque des raies moléculaires par rapport aux raies H permet de lever la 10

11 dégénérescence que l'on rencontre parfois lors de la décomposition des profils H (fig I.3). Figure I.3: Profils H (en haut) et CO (en bas) de la région G La décomposition du profil H en 2 ou 3 composantes est équiprobable. Dans ce cas le profil CO permet de lever la dégénérescence en imposant une décomposition du profil H avec 3 composantes. L'information moléculaire a été comparée à l'information H (e.g. Fig. I.3 et I.4). En particulier, nous avons établi qu'il y a association entre région HII et raie moléculaire si l'écart en vitesse VcoVHII est inférieur ou égale a 10 km/s. Ainsi, nous avons pu associer plus de 81% des raies moléculaires à de l'émission H. Nous trouvons que les régions HII sont associées avec des raies moléculaires dont la largeur est supérieure à 2.5 km/s. Mais surtout nous trouvons que la différence (Vco-VHII) se situe à 0 km s 1, que les régions HII soient optiquement visibles ou non. Ceci suggère que le gaz ionisé est en expansion selon des directions aléatoires respectivement au gaz moléculaire. 11

12 Figure I.4: Profils H et CO de la source G Ce cas illustre la bonne correspondance des raies lorsque la décomposition du profil H est unique. 12

13 Les écarts à la rotation circulaire Pour établir la courbe de rotation de notre Galaxie nous supposons que les objets sont en rotation circulaire à vitesse constante autour du centre de la Galaxie. Mais quand le gaz pénètre l'onde de densité qu'est un bras, il subit non seulement une compression mais aussi un changement léger de la direction et de la norme de sa vitesse : l'influence gravitationnelle du bras fait que les objets sont tirés vers les parties centrales du bras. Ajoutés à la force de Coriolis, le gaz et les étoiles vont «couler» le long des bras («streaming motion») quand ils sont à l'intérieur pour s'éloigner des bras ensuite. Ce «streaming motion» se traduit par un écart à la rotation circulaire de l'ordre de 10 à 20 km/s du gaz (fig. I.5) mais cela peut atteindre jusqu'à 50 km/s et plus comme dans M51 (Shetty et al. 2007). Figure I.5: Les écarts à la rotation circulaire. En haut à gauche: Russeil et al. 2003, en haut à droite Brand et Blitz 1993 et en bas: McClure-Griffiths et al Ces écarts à la rotation circulaire impliquent que la mesure de la vitesse systémique est biaisée et donc des distances cinématiques sur ou sous estimées. La figure I.6 illustre l'influence des écarts à la rotation circulaire sur la reconstruction de la structure spirale. Si la structure spirale est globalement retrouvée, il apparait des structures allongées qui sont des artéfacts et qui peuvent être confondus avec des sous structures comme des éperons ou des ponts. Il apparait donc important d'identifier ces écarts à la rotation circulaire pour les corriger avant de calculer la distance cinématique. En pratique l'identification des écarts se fait de proche en proche quand on peut connaitre la distance stellaire d'un certain nombre de régions. La correction des écarts à la rotation circulaire n'a pu être faite que pour des régions proches (plus proches typiquement que 6 kpc). Une question qui se pose alors est de comprendre et de quantifier avec l'étude de galaxies extérieures les points suivants : est ce que ces écarts sont identiques tout le long des bras? Est ce qu'ils varient d'un 13

14 bras à l'autre? Varient-ils avec la distance au centre galactique? Quelle est l'influence des supernovae en expansion et de la formation stellaire induite relativement à ces écarts?... Nous avons vu dans la région à l=290 (Georgelin et al. 2000) que l'expansion d'une bulle peut engendrer des écarts à la rotation circulaire pour les régions formées sur son bord. Les réponses à toutes ces questions pourraient permettre de dire si oui ou non on peut extrapoler les écarts à la rotation circulaire mis en évidence localement à l'ensemble des régions de notre Galaxie. Figure I.6: Effet des écarts à la rotation circulaire sur la distance cinématique et la reconstruction de la structure spirale (Baba et al. 2009). A gauche le modèle et à droite la reconstruction de la structure à partir de la distance cinématique en supposant le gaz en rotation circulaire. Globalement la structure est retrouvée mais les sous structures fines sont perdues, les bras sont étirés et des structures erronées en forme d'éperons (pointant vers le Soleil) sont crées. Le sondage H et la structure spirale de notre Galaxie C'est à partir de l'étude des régions HII et de leur étoiles excitatrices que la représentation de la structure spirale est la plus cohérente. Cette méthode utilisée avec succès par Bok et al. (1970), pour l'étude du bras de la Carène a été généralisée par Georgelin et Georgelin (1976) à la Galaxie toute entière. Pour ce faire, Georgelin et Georgelin ont effectué des observations de la vitesse radiale de la raie H de quelques 268 régions HII, avec un interféromètre à ordre fixe et déterminé la distance de quelques 360 étoiles excitatrices. Comme déjà expliqué, l'examen détaillé des données optiques et radio des nébuleuses une à une, a permis de lever l'ambiguïté des distances d'un grand nombre de régions HII situées à l'intérieur du cercle Solaire, mais surtout de délimiter les complexes de formation stellaire par le regroupement des différents objets jeunes les constituant. C'est ainsi que le premier modèle de la structure de notre Galaxie a été établie par Georgelin et Georgelin (1976): notre Galaxie possède 4 bras spiraux (fig. I.7) deux à deux symétriques vus tangentiellement aux longitudes 33, 50, 283, 305 et 327. Mais le Pérot-Fabry à ordre fixe permettait seulement d'avoir une information spectrale sur quelques pour-cents du champ observé. De plus seules les régions les plus brillantes étaient accessibles et la contribution des raies du ciel nocturne ne pouvait être corrigée. Bien que les régions HII les plus brillantes soient d'excellents traceurs des complexes de formation stellaire, il s'avère important d'accéder à des régions plus faibles, plus lointaines mais aussi au milieu diffus, pour affiner l'identification des complexes et la détermination de leur vitesse systémique. 14

15 km/s km/s km/s Table I.1: configuration instrumentale de l'instrumentation du sondage H du plan Galactique Sud (Lecoarer et al. 1992). 15

16 C'est dans ce cadre qu'un nouvel instrument utilisant un interféromètre Pérot-Fabry à balayage a été élaboré à l'observatoire de Marseille pour faire un sondage H du plan galactique Sud de notre Galaxie. Débuté dans les années 80, à l'aube de l'époque des grands sondages du plan de notre Galaxie (e.g. UKST H survey, SGPS-21cm, MSX, Herschel-Hi-Gal...) le sondage H du plan de notre Galaxie de l'hémisphère Sud par l'observatoire de Marseille est resté unique en son genre: il est basé sur un interféromètre de Pérot-Fabry à balayage monté sur un télescope de type Ritchey-Chrétien de 36cm de diamètre. Cette instrumentation permet d'accéder à l'information spectrale, en particulier la raie H sur l'ensemble du champ observé (9 arcmin x 9 arcmin), avec une haute résolution spectrale. Ces caractéristiques permettent l'étude cinématique des différentes couches de gaz ionisé (régions HII et milieu diffus) présentes le long de la ligne de vue (fig. I.8). Le contexte de l'époque ne permettait pas une couverture continue du plan mais les régions principales (sélectionnées à partir de sondage radio préexistants) on pu être cartographiées. E. Lecoarer (1992) décrit avec détails l'instrument et ses premières lumières. Les spécificités instrumentales d'origine sont rappelées table I.1. La configuration favorisée pour le sondage du plan galactique était celle du Pérot-Fabry 2604 qui permettait la meilleure résolution spectrale et donc la meilleure mesure de la vitesse. Mis à part la capacité informatique qui a été améliorée au cours du temps, l'instrumentation est restée identique pour l'ensemble des observations du plan galactique. Les programmes de traitement des données ont, quant à eux, été élaborés et maintenus par E. Lecoarer. Ces programmes qui fonctionnaient à l'origine sur des machines Unix ont été portés il y quelques années sous l'environnement Linux. Le sondage H du plan galactique sud consiste en 12 zones couvrant chacune quelques 2 en longitude et de l'ordre de 1 en latitude. Seules les zones d'émission radio les plus intenses formant des complexes ont été observées. Un sondage plus complet aurait été nécessaire mais n'a pu être effectué. Notamment certaines zones n'ont pu être complétées. Les zones observées sont listées dans le tableau I.2. La plupart des zones ont donné lieu à des publications. Les régions à 351 et 353, correspondant aux complexes de formation stellaire NGC 6357 et NGC 6334, sont en cours de publication. Il ne reste donc en pratique plus que la région à 280 à être publiée. Figure I.7: Structure de notre galaxie suivant Russeil et al. (2007) (gauche) et Georgelin & Georgelin (1976) (droite) 16

17 Publication Region Russeil et al A faire 283 Georgelin et al Russeil et al à 324 Le Coarer et al Georgelin et al Russeil et al Georgelin et al Russeil et al. En prépa. 351 et 353 Table I.2: Statut des publications des zones du plan galactique observées dans le cadre du sondage H sud. Quoiqu'il en soit l'ensemble des données ont été analysées et ont permis d'établir un catalogue de 481 complexes de formation stellaire pour lesquels la distance (stellaire et/ou cinématique) a été établie. Nous avons donc grâce à ce catalogue de complexes pu accéder à leur répartition spatiale et donc à la structure spirale de notre Galaxie (Russeil, 2003). Pour l'ajustement numérique des bras spiraux nous avons choisi comme pondération le paramètre d'excitation U (qui quantifie le flux de photons ionisants et donc l'importance des complexes) des complexes établi à partir de données radio (afin de ne pas être biaisé par l'extinction interstellaire). Afin de traiter notre Galaxie comme une galaxie d'un point de vue général, nous avons, avant de tracer la structure spirale, sélectionné les complexes avec U > 70 pc cm-2. En effet la structure des bras des autres galaxies est principalement tracé par les régions dont la luminosité correspond à cette limite. Pour les directions à ±12 du centre et de l'anti-centre galactique, la détermination des distances cinématiques est impossible (forte dégénérescence). La seule alternative est donc de déterminer la distance stellaire. De nombreuses régions HII n'avaient pas de distance stellaire établie (ou trop incertaine). Nous avons donc mené une recherche et une étude systématique des étoiles excitatrices de régions HII (voir section V). Cette étude a été menée à l'ohp par des observations photométriques en U, B et V à l'ohp au télescope de T120 et des observations spectroscopiques ( Å) au T193 (Carelec). Ces observations ont permis de déterminer/re-déterminer la distance stellaire de 32 régions HII et ainsi de retracer la structure spirale (Russeil et al. 2007; voir aussi Fig. I.7). Cette nouvelle version de la structure de notre Galaxie reste cohérente avec la version de Nous avons en plus poussé l'étude des écarts à la rotation circulaire (supposés dus aux streaming motions) avec comme sous-produit une estimation du rayon de co-rotation (~13 kpc) de notre Galaxie. En plus de la structure spirale à 4 bras, il apparait que le bras du Sagittaire-Carène (bras 1) domine de par sa richesse en régions HII lumineuses. Ainsi la longueur angulaire des bras, la présence d'une barre et de compagnons (les nuages de Magellan) et la forte proéminence du bras Sagittaire-Carène permettent de déduire que notre Galaxie est probablement une galaxie à bras multiples et non Flocculente. La détermination de la distance des objets jeunes montre en plus de la structure spirale que notre galaxie est gauchie (disque tordu vers le haut dans la partie nord et vers le bas dans la partie sud). Le gauchissement de notre Galaxie (fig. I.9) est observé avec tous les traceurs: étoiles, régions HII HI, CO (e.g. Drimmel, 2000a, Nakanishi et Sofue, 2003, Levine et al., 2006, Paladini et al. 2004, Cersosimo, 2009, Smart et al. 1997, Vazquez et al. 2008). Le gauchissement des galaxies est relativement commun. 17

18 (A) Figure I.8: Illustration de l'utilisation de la vitesse pour découpler les émissions H présentes sur la ligne de visée. L'image (A) présente l'émission H (UKST) du plan galactique autour de l=290 (Georgelin et al., 2000). Sur une simple image il n'est pas possible de savoir si les différentes régions HII sont à la même distance ou non. Grâce à l'information en vitesse donné par la décomposition de la raie H il est possible de construire des images de l'émission H à deux vitesses différentes (soit à deux distance différentes). L'image (B) correspond à l'émission H de vitesse +20 km/s (d~8 kpc) tandis que l'image (C) correspond à l'émission H de vitesse -25 km/s (d~2.7kpc) (B) (C) Les autres structures remarquables de notre Galaxie: 18

19 (A) (B) Figure I.9: (A) Gauchissement de notre galaxie suivant Russeil (1998). Les cercles représentent les complexes au dessus du plan et les signes + ceux en dessous du plan. Leur taille est proportionnelle à leur distance par rapport au plan galactique. (B) Gauchissement de notre galaxie en HI (Nakanishi et Sofue, 2003). 19

20 Pour notre Galaxie l'axe de son gauchissement est aligné avec la direction des galaxies Nuages de Magellan qui sont les deux plus proches galaxies de la notre. On pense donc que ce sont les effets de marée gravitationnelle dus aux Nuages de Magellan qui impliquent ce gauchissement. Nous notons qu'un autre aspect de notre Galaxie, non développé ici et provenant d'observations en infrarouge de ses parties centrales (COBE/DIRBE) est qu'elle présente une barre centrale (e.g. Binney et al., 1997). La figure I.7 (gauche) indique la position de cette barre (trait en pointillés et tirets central). Plus récemment, à partir de comptage d'étoiles une seconde barre plus longue et avec un angle de position plus grand a été mis en évidence (e.g. Lopez-Corredoira et al. 2007, Benjamin et al. 2005). Notre Galaxie est donc une galaxie spirale barrée (voir revue récente de Athanassoula, 2012). (A) (B) (C) Bras de Persée Bras du Sagittaire-Carène Bras local ( bras d'orion) Figure I.10 : Structure spirale locale de notre Galaxie. Figure (A) : Distribution des associations (Mel nik & Efremov 1995); Figure (B): distribution des régions HII et distances stellaires d'après Crampton & Georgelin 1975); Figure (C): distribution des amas d'après Dias et Lépine (2005). 20

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire Chapitre 6 : les groupements d'étoiles et l'espace interstellaire - Notre Galaxie - Amas stellaires - Milieu interstellaire - Où sommes-nous? - Types de galaxies - Interactions entre galaxies Notre Galaxie

Plus en détail

Les objets très lointains

Les objets très lointains Les objets très lointains Lorsque les étoiles sont proches il est possible de mesurer la distance qui nous en sépare par une méthode dite abusivement directe, la trigonométrie, qui permet de déduire les

Plus en détail

Notre galaxie, la Voie lactée

Notre galaxie, la Voie lactée Chapitre 1 Notre galaxie, la Voie lactée Misha Haywood Au début du XX e siècle, alors que notre galaxie était encore désignée comme un «univers-île», expression forgée par Alexander V. Humboldt, un astronome

Plus en détail

Gaz moléculaire et formation stellaire dans les galaxies proches : maintenant et à l'époque ALMA Jonathan Braine

Gaz moléculaire et formation stellaire dans les galaxies proches : maintenant et à l'époque ALMA Jonathan Braine Gaz moléculaire et formation stellaire dans les galaxies proches : maintenant et à l'époque ALMA Jonathan Braine Laboratoire d'astrophysique de Bordeaux Scénario de base Le gaz moléculaire se forme par

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Comment dit-on qu'une étoile est plus vieille qu'une autre ou plus jeune qu'une autre?

Comment dit-on qu'une étoile est plus vieille qu'une autre ou plus jeune qu'une autre? Comment dit-on qu'une étoile est plus vieille qu'une autre ou plus jeune qu'une autre? Comment peut-on donner un âge à l'univers? Dans l'univers, il y a beaucoup de choses : des étoiles, comme le Soleil...

Plus en détail

Le monde fascinant des galaxies

Le monde fascinant des galaxies Le monde fascinant des galaxies Introduction Au XVIIIe siècle, l'anglais Thomas Wright étudie la Voie lactée et montre que le Soleil se trouve à l'intérieur d'un disque plat constitué d'étoiles: c'est

Plus en détail

NUAGES INTERSTELLAIRES ET NEBULEUSES

NUAGES INTERSTELLAIRES ET NEBULEUSES NUAGES INTERSTELLAIRES ET NEBULEUSES P. Sogorb I. INTRODUCTION Les milliards d étoiles qui forment les galaxies, baignent dans un milieu interstellaire qui représente, dans le cas de notre Galaxie, 10

Plus en détail

FORMATION ET FONCTIONNEMENT D'UNE ETOILE

FORMATION ET FONCTIONNEMENT D'UNE ETOILE Comment une étoile évolue-t-elle? Comment observe-t-on l'évolution des étoiles? Quelques chiffres (âges approximatifs) : Soleil : 5 milliards d'années Les Pléiades : environ 100 millions d'années FORMATION

Plus en détail

Rayonnements dans l univers

Rayonnements dans l univers Terminale S Rayonnements dans l univers Notions et contenu Rayonnements dans l Univers Absorption de rayonnements par l atmosphère terrestre. Etude de documents Compétences exigibles Extraire et exploiter

Plus en détail

La vie des étoiles. La vie des étoiles. Mardi 7 août

La vie des étoiles. La vie des étoiles. Mardi 7 août La vie des étoiles La vie des étoiles Mardi 7 août A l échelle d une ou plusieurs vies humaines, les étoiles, que l on retrouve toujours à la même place dans le ciel, au fil des saisons ; nous paraissent

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

Vie et mort des étoiles. Céline Reylé Observatoire de Besançon

Vie et mort des étoiles. Céline Reylé Observatoire de Besançon Vie et mort des étoiles Céline Reylé Observatoire de Besançon Qu est-ce qu une étoile? Sphère de gaz hydrogène (¾) hélium (¼) pèse sur le centre qui est alors chauffé E. Beaudoin Sphère de gaz hydrogène

Plus en détail

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques Panorama de l astronomie 7. Spectroscopie et applications astrophysiques Karl-Ludwig Klein, Observatoire de Paris Gilles Theureau, Grégory Desvignes, Lab Phys. & Chimie de l Environement, Orléans Ludwig.klein@obspm.fr,

Plus en détail

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction Activité 1 : Rayonnements et absorption par l'atmosphère - Correction Objectifs : Extraire et exploiter des informations sur l'absorption des rayonnements par l'atmosphère terrestre. Connaitre des sources

Plus en détail

Étude et modélisation des étoiles

Étude et modélisation des étoiles Étude et modélisation des étoiles Étoile Pistol Betelgeuse Sirius A & B Pourquoi s intéresser aux étoiles? Conditions physiques très exotiques! très différentes de celles rencontrées naturellement sur

Plus en détail

LE CATALOGUE MESSIER

LE CATALOGUE MESSIER LE CATALOGUE MESSIER Le Français Charles Messier ( 1730-1817 ), surnommé le furet des comètes par Louis XV, fut l un des plus brillants astronomes de son époque. De nos jours, il est surtout connu pour

Plus en détail

Les moyens d observations en astronomie & astrophysique

Les moyens d observations en astronomie & astrophysique Les moyens d observations en astronomie & astrophysique Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/fmillour cf le cours de Pierre Léna : «L

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE OBJECTIFS : - Distinguer un spectre d émission d un spectre d absorption. - Reconnaître et interpréter un spectre d émission d origine thermique - Savoir qu un

Plus en détail

INTRODUCTION À LA SPECTROSCOPIE

INTRODUCTION À LA SPECTROSCOPIE INTRODUCTION À LA SPECTROSCOPIE Table des matières 1 Introduction : 2 2 Comment obtenir un spectre? : 2 2.1 Étaller la lumière :...................................... 2 2.2 Quelques montages possibles

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

La magnitude des étoiles

La magnitude des étoiles La magnitude des étoiles 1.a. L'éclat d'une étoile L'éclat d'une étoile, noté E, est la quantité d'énergie arrivant par unité de temps et par unité de surface perpendiculaire au rayonnement. Son unité

Plus en détail

Correction ex feuille Etoiles-Spectres.

Correction ex feuille Etoiles-Spectres. Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800

Plus en détail

Le satellite Gaia en mission d exploration

Le satellite Gaia en mission d exploration Département fédéral de l économie, de la formation et de la recherche DEFR Secrétariat d Etat à la formation, à la recherche et à l innovation SEFRI Division Affaires spatiales Fiche thématique (16.12.2013)

Plus en détail

Explorons la Voie Lactée pour initier les élèves à une démarche scientifique

Explorons la Voie Lactée pour initier les élèves à une démarche scientifique Explorons la Voie Lactée pour initier les élèves à une démarche scientifique Responsables : Anne-Laure Melchior (UPMC), Emmanuel Rollinde (UPMC/IAP) et l équipe EU-HOUMW. Adaptation du travail novateur

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008 GMPI*EZVI0EFSVEXSMVIH%WXVSTL]WMUYIHI&SVHIEY\ 1. Introduction à Celestia Celestia 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 3. Exemples d Applications 3.1 Effet de l atmosphère

Plus en détail

Quelques liens entre. l'infiniment petit et l'infiniment grand

Quelques liens entre. l'infiniment petit et l'infiniment grand Quelques liens entre l'infiniment petit et l'infiniment grand Séminaire sur «les 2» au CNPE (Centre Nucléaire de Production d'électricité) de Golfech Sophie Kerhoas-Cavata - Irfu, CEA Saclay, 91191 Gif

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile Red shift or blue shift, that is the question. a) Quand une source d onde se rapproche d un observateur immobile, la longueur d onde λ perçue par l observateur est-elle plus grande ou plus petite que λo

Plus en détail

Suivi en infrarouge-moyen avec ISO

Suivi en infrarouge-moyen avec ISO Chapitre 6. Suivi en infrarouge-moyen avec ISO Chapitre 6 Suivi en infrarouge-moyen avec ISO 6.1 Introduction L observation des galaxies dans l infrarouge offre une opportunité unique d étudier le processus

Plus en détail

EXERCICE I : Où il est question de lumière (8 points) PARTIE A. Figure 2

EXERCICE I : Où il est question de lumière (8 points) PARTIE A. Figure 2 EXERCICE I : Où il est question de lumière (8 points) PARTIE A 1. Figure 2 D On observe sur l'écran un étalement du faisceau laser, perpendiculaire à la direction du fil, constitué d'une tache centrale

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Activité par les élèves : Parallaxe : À quelle distance se trouve cette étoile?

Activité par les élèves : Parallaxe : À quelle distance se trouve cette étoile? SNC1D Étude de l Univers Activité par les élèves : Parallaxe : À quelle distance se trouve cette étoile? Sujets distance / unités astronomiques année-lumière parsec parallaxe Durée préparation : 5 min

Plus en détail

Observation des modalités et performances d'accès à Internet

Observation des modalités et performances d'accès à Internet Observation des modalités et performances d'accès à Internet Avant-propos La base de cette étude est constituée par les informations collectées par l'outil Cloud Observer d'iplabel (chargement des différents

Plus en détail

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement

Plus en détail

TP 03 B : Mesure d une vitesse par effet Doppler

TP 03 B : Mesure d une vitesse par effet Doppler TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

101 Adoptée : 12 mai 1981

101 Adoptée : 12 mai 1981 LIGNE DIRECTRICE DE L OCDE POUR LES ESSAIS DE PRODUITS CHIMIQUES 101 Adoptée : 12 mai 1981 «Spectres d'absorption UV-VIS» (Méthode spectrophotométrique) 1. I N T R O D U C T I O N I n f o r m a t i o n

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

- I - Fonctionnement d'un détecteur γ de scintillation

- I - Fonctionnement d'un détecteur γ de scintillation U t i l i s a t i o n d u n s c i n t i l l a t e u r N a I M e s u r e d e c o e ffi c i e n t s d a t t é n u a t i o n Objectifs : Le but de ce TP est d étudier les performances d un scintillateur pour

Plus en détail

TP SIN Traitement d image

TP SIN Traitement d image TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types

Plus en détail

Les galaxies et leur évolution

Les galaxies et leur évolution Michel Willemin Avril 1996 Les galaxies et leur évolution 2 ème partie 9. Les galaxies proches - Le groupe local Question : Que trouve-t-on au-delà de notre disque galactique et de son essaim d amas globulaires

Plus en détail

PRINCIPE MICROSCOPIE CONFOCALE

PRINCIPE MICROSCOPIE CONFOCALE PRINCIPE MICROSCOPIE CONFOCALE Un microscope confocal est un système pour lequel l'illumination et la détection sont limités à un même volume de taille réduite (1). L'image confocale (ou coupe optique)

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

RESULTATS de MESURES et PRECISION

RESULTATS de MESURES et PRECISION Licence de physique, parcours Physique appliquée aux Sciences de la Vie et de la Planète Année 2005-2006 RESULTATS de MESURES et PRECISION Fascicule à lire avant de commencer les Travaux Pratiques Sommaire

Plus en détail

Panorama de l astronomie

Panorama de l astronomie Panorama de l astronomie 7. Les étoiles : évolution et constitution des éléments chimiques Karl-Ludwig Klein, Observatoire de Paris Gaël Cessateur & Gilles Theureau, Lab Phys. & Chimie de l Environnement

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

CHAPITRE I Modélisation d un panneau solaire 2012

CHAPITRE I Modélisation d un panneau solaire 2012 1 I.Généralités sur les cellules photovoltaïques I.1.Introduction : Les énergies renouvelables sont des énergies à ressource illimitée. Les énergies renouvelables regroupent un certain nombre de filières

Plus en détail

Chapitre 7 - Relativité du mouvement

Chapitre 7 - Relativité du mouvement Un bus roule lentement dans une ville. Alain (A) est assis dans le bus, Brigitte (B) marche dans l'allée vers l'arrière du bus pour faire des signes à Claude (C) qui est au bord de la route. Brigitte marche

Plus en détail

La technologie Ultra Vision Rigol Une solution vers le Numérique

La technologie Ultra Vision Rigol Une solution vers le Numérique La technologie Ultra Vision Rigol Une solution vers le Numérique L es améliorations de la série d oscilloscopes DS4000 vers la série MSO en ajoutant 16 entrées numériques engendre la poursuite du développement

Plus en détail

GRAPHISME SUR ORDINATEUR

GRAPHISME SUR ORDINATEUR LE GRAPHISME SUR ORDINATEUR UNE HISTOIRE DE POINTS... 1 ) L'information : Sa «dimension» : le pixel Sa profondeur 2 ) La représentation de l'information : Sur écran, sur papier Le dpi 3 ) L'acquisition

Plus en détail

Chapitre 6 La lumière des étoiles Physique

Chapitre 6 La lumière des étoiles Physique Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit

Plus en détail

"La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston

La collimation est la première cause de mauvaises images dans les instruments amateurs Walter Scott Houston "La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston F.Defrenne Juin 2009 Qu est-ce que la collimation en fait? «Newton»? Mais mon télescope est

Plus en détail

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE TEMPÉRATURE DE SURFACE D'UNE ÉTOILE Compétences mises en jeu durant l'activité : Compétences générales : Etre autonome S'impliquer Elaborer et réaliser un protocole expérimental en toute sécurité Compétence(s)

Plus en détail

IFO. Soleil. Antoine COUSYN 29/07/2012 08/02/2015. Vidéo. Manipur, Inde. Saturation du capteur CMOS. 19 Juin 2011. 15h11 heure locale.

IFO. Soleil. Antoine COUSYN 29/07/2012 08/02/2015. Vidéo. Manipur, Inde. Saturation du capteur CMOS. 19 Juin 2011. 15h11 heure locale. Rapport d expertise IPACO Nom de l expert Antoine COUSYN Date du rapport 29/07/2012 Dernière mise à jour 08/02/2015 Type IFO Classe A Explication Saturation du capteur CMOS Complément Soleil Document Lieu

Plus en détail

Magnitudes des étoiles

Magnitudes des étoiles Magnitudes des étoiles 24/03/15 Observatoire de Lyon 24/03/15 () Magnitudes des étoiles Observatoire de Lyon 1 / 14 Magnitude apparente d une étoile Avant la physique... Hipparque, mathématicien et astronome

Plus en détail

ANALYSE SPECTRALE. monochromateur

ANALYSE SPECTRALE. monochromateur ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle

Plus en détail

Temps d'exposition de la caméra Watec LCL902K

Temps d'exposition de la caméra Watec LCL902K Temps d'exposition de la caméra Watec LCL902K Lors de WETO 2006 * une discussion s'est engagée sur la possibilité de connaître le début du temps d'exposition du senseur de la caméra. Il n'y a pas eu de

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et

Plus en détail

Par Richard Beauregard. Novembre 2011

Par Richard Beauregard. Novembre 2011 Par Richard Beauregard Novembre 2011 La lutte contre le bruit et autres parasites lumineux Le temps d exposition versus le compositage Les images de prétraitement L'image de précharge (Offset ou Bias)

Plus en détail

Question 1- Quelle doit être à ton avis la force avec laquelle il faudrait jeter une pierre pour qu'elle tourne autour de la Terre?

Question 1- Quelle doit être à ton avis la force avec laquelle il faudrait jeter une pierre pour qu'elle tourne autour de la Terre? Les Satellites Introduction En astronomie, un satellite est décrit comme un corps céleste qui gravite autour d'une planète; ainsi la Lune est le satellite naturel de la Terre. En astronautique, il s'agit

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Audioprothésiste / stage i-prépa intensif - 70 Chapitre 8 : Champ de gravitation - Satellites I. Loi de gravitation universelle : (

Plus en détail

Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une

Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une Patrice Octobre 2012 Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une autre, il faut savoir où regarder dans

Plus en détail

Réussir et traiter ses photos sous UV avec Photoshop

Réussir et traiter ses photos sous UV avec Photoshop Réussir et traiter ses photos sous UV avec Photoshop par Rémi BORNET le 29/12/2009 Beaucoup de personnes n'arrivent pas à obtenir de bons résultats en photos sous UV et ne trouvent pas de conseils. Cet

Plus en détail

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse Densité de flux de photons utiles pour la photosynthèse Le rayonnement lumineux joue un rôle critique dans le processus biologique et chimique de la vie sur terre. Il intervient notamment dans sur les

Plus en détail

Moyens d'observations en astérosismologie : Etat des lieux et perspectives

Moyens d'observations en astérosismologie : Etat des lieux et perspectives Moyens d'observations en astérosismologie : Etat des lieux et perspectives Réza Samadi & Eric Michel LESIA Observatoire de Paris François Bouchy LAM / Observatoire de Genève Colloque de prospectives PNPS

Plus en détail

Introduction à la microscopie confocale

Introduction à la microscopie confocale Introduction à la microscopie confocale Sylvette CHASSEROT-GOLAZ Unité CNRS UPR 2356, Strasbourg Principe de la microscopie confocale La microscopie confocale est l'une des percées les plus notables de

Plus en détail

LLP. Seconde Univers TP Étude de mouvements ETUDE DE MOUVEMENTS

LLP. Seconde Univers TP Étude de mouvements ETUDE DE MOUVEMENTS ETUDE DE MOUVEMENTS I) OBSERVATION DU MOUVEMENT DE MARS Le mouvement de Mars dans le ciel a été observé depuis l Antiquité, notamment par les babyloniens. Les grecs avaient également observé le phénomène,

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

3.5.1 Introduction: image bitmap versus image vectorielle

3.5.1 Introduction: image bitmap versus image vectorielle 3.5.1 Introduction 3.5.2 Principe 3.5.3 Avantages et Inconvénients 3.5.4 Applications 3.5.5 Logiciels sur Internet PLAN 3.5.1 Introduction: image bitmap versus image vectorielle Lorsque l'on affiche une

Plus en détail

Forces et Interactions

Forces et Interactions Février 2013 Cours de physique sur les Forces et les Interactions page 1 1 Objectifs Forces et Interactions Le but de ce cours est d'introduire la notion de force et d'étudier la statique, c'est-à-dire

Plus en détail

Copropriété: 31, rue des Abondances 92100 Boulogne-Billancourt

Copropriété: 31, rue des Abondances 92100 Boulogne-Billancourt Eléments utilisés: Copropriété: 31, rue des Abondances 92100 Boulogne-Billancourt Notice explicative sur la ventilation de la facture EDF annuelle entre les différents postes de consommation à répartir

Plus en détail

Qu est-ce qui cause ces taches à la surface du Soleil? www.bbc.co.uk/science/space/solarsystem/solar_system_highlights/solar_cycle

Qu est-ce qui cause ces taches à la surface du Soleil? www.bbc.co.uk/science/space/solarsystem/solar_system_highlights/solar_cycle Qu est-ce qui cause ces taches à la surface du Soleil? www.bbc.co.uk/science/space/solarsystem/solar_system_highlights/solar_cycle Voyez la réponse à cette question dans ce chapitre. Durant la vie de l

Plus en détail

METEOROLOGIE CAEA 1990

METEOROLOGIE CAEA 1990 METEOROLOGIE CAEA 1990 1) Les météorologistes mesurent et prévoient le vent en attitude à des niveaux exprimés en pressions atmosphériques. Entre le niveau de la mer et 6000 m d'altitude, quels sont les

Plus en détail

INSTRUMENTS DE MESURE

INSTRUMENTS DE MESURE INSTRUMENTS DE MESURE Diagnostique d impulsions lasers brèves Auto corrélateur à balayage modèle AA-10DD Compact et facile d emploi et de réglage, l auto corrélateur AA-10DD permet de mesurer des durées

Plus en détail

A chaque couleur dans l'air correspond une longueur d'onde.

A chaque couleur dans l'air correspond une longueur d'onde. CC4 LA SPECTROPHOTOMÉTRIE I) POURQUOI UNE SUBSTANCE EST -ELLE COLORÉE? 1 ) La lumière blanche 2 ) Solutions colorées II)LE SPECTROPHOTOMÈTRE 1 ) Le spectrophotomètre 2 ) Facteurs dont dépend l'absorbance

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

Les rayons X. Olivier Ernst

Les rayons X. Olivier Ernst Les rayons X Olivier Ernst Lille La physique pour les nuls 1 Une onde est caractérisée par : Sa fréquence F en Hertz (Hz) : nombre de cycle par seconde Sa longueur λ : distance entre 2 maximum Sa vitesse

Plus en détail

MOND avec ou sans matière noire

MOND avec ou sans matière noire MOND avec ou sans matière noire Luc Blanchet Institut d Astrophysique de Paris, GRECO, 98 bis boulevard Arago, 75014 Paris, France Françoise Combes Observatoire de Paris, LERMA, 61 avenue de l Observatoire,

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

3 - Description et orbite d'un satellite d'observation

3 - Description et orbite d'un satellite d'observation Introduction à la télédétection 3 - Description et orbite d'un satellite d'observation OLIVIER DE JOINVILLE Table des matières I - Description d'un satellite d'observation 5 A. Schéma d'un satellite...5

Plus en détail

TEXT MINING. 10.6.2003 1 von 7

TEXT MINING. 10.6.2003 1 von 7 TEXT MINING 10.6.2003 1 von 7 A LA RECHERCHE D'UNE AIGUILLE DANS UNE BOTTE DE FOIN Alors que le Data Mining recherche des modèles cachés dans de grandes quantités de données, le Text Mining se concentre

Plus en détail

1S9 Balances des blancs

1S9 Balances des blancs FICHE 1 Fiche à destination des enseignants 1S9 Balances des blancs Type d'activité Étude documentaire Notions et contenus Compétences attendues Couleurs des corps chauffés. Loi de Wien. Synthèse additive.

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser TP vélocimétrie Laser, Matériaux, Milieux Biologiques Sécurité ATTENTION : le faisceau du Hélium-Néon utilisé dans cette salle est puissant (supérieur à 15 mw). Il est dangereux et peuvent provoquer des

Plus en détail

Ondes gravitationnelles de basses fréquences et relativité

Ondes gravitationnelles de basses fréquences et relativité Ondes gravitationnelles de basses fréquences et relativité numérique Jérôme Novak LUTH : Laboratoire de l Univers et de ses THéories CNRS / Université Paris 7 / Observatoire de Paris F-92195 Meudon Cedex,

Plus en détail

Exo-planètes, étoiles et galaxies : progrès de l'observation

Exo-planètes, étoiles et galaxies : progrès de l'observation Collège de France Chaire d Astrophysique Observationnelle Exo-planètes, étoiles et galaxies : progrès de l'observation Cous à Paris les mardis de Janvier et Mars cours à Marseille le 20 Février, à Nice

Plus en détail

Chapitre 4. La circulation océanique

Chapitre 4. La circulation océanique Chapitre 4 La circulation océanique Equations du mouvement Force et contraintes agissant sur l'océan Equilibre géostrophique Circulation et transport d'ekman Upwelling Les cellules de circulation subtropicales

Plus en détail

Les ondes au service du diagnostic médical

Les ondes au service du diagnostic médical Chapitre 12 Les ondes au service du diagnostic médical A la fin de ce chapitre Notions et contenus SAV APP ANA VAL REA Je maitrise Je ne maitrise pas Signaux périodiques : période, fréquence, tension maximale,

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un

Plus en détail

Chapitre 1: Facteurs d'échelle

Chapitre 1: Facteurs d'échelle Chapitre 1: Facteurs d'échelle Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur différents paramètres, permettent d'établir simplement quelques lois ou tendances,

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail