Capacité Métal-Isolant-Semiconducteur (MIS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Capacité Métal-Isolant-Semiconducteur (MIS)"

Transcription

1 apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé une couche isolante sur laquelle on a déposé une électrode métallique. On réalise de plus un contact sur le substrat, noté généralement B (bulk en anglais). On appelle tension de grille la différence de potentiel G entre la grille et le substrat. La figure 1 représente la coupe d'une structure MS où l isolant est un oxyde (structure MOS) et où la localisation et la nature des différentes charges qui peuvent s'y trouver sont indiquées. Rappelons que les atomes d'impureté sont fixes et que les électrons et les trous peuvent bouger sous l'effet d'un champ électrique. On peut également avoir des pièges à électrons ou à trous. Dans tout ce qui suit, on suppose que l'isolant empêche tout passage de courant entre la grille métallique et le substrat. Nous allons analyser les différents régimes de fonctionnement de la structure MS pour un semiconducteur de type P. On notera par la suite e l épaisseur de l isolant et N A le dopage du substrat. -Les différents régimes de fonctionnement Nous allons tout d'abord définir le régime de bandes plates qui est l'état de référence. et état correspond au cas où il n'y a pas de champ électrique induit dans le semiconducteur. La densité de trous est alors constante et égale à la densité d'atomes d'impuretés ionisées négativement dans tout le semiconducteur. La neutralité électrique est partout assurée. Dans un premier temps, nous supposerons la structure idéale : pas de charges ni de pièges dans l'isolant et régime de bande plate en l'absence de polarisation sur la grille. Les trois régimes que nous allons analyser sont décrits ci-après. Quand la polarisation appliquée sur la grille G est négative, le champ électrique dans l oxyde est orienté du semiconducteur vers la grille et attire les charges positives vers la surface du semiconducteur, créant ainsi une accumulation de trous contre l'interface isolant- 1

2 semiconducteur. Des charges négatives sont alors induites sur l'électrode métallique comme schématisé sur la figure. Nous sommes en régime d'accumulation. Pour 0 < G < T, où T est un seuil (threshold en anglais) défini plus loin, on repousse les trous de la surface du semiconducteur, créant ainsi une zone de charge d'espace (ZE) avec des accepteurs ionisés négativement représentant une charge globale Q comme défini sur la figure 3. Des charges positives sont alors induites sur l'électrode métallique. Nous sommes en régime de désertion. Quand G > T appelée tension de seuil, non seulement on repousse les trous, mais de plus on induit une couche d'inversion riche en électrons près de la surface du semiconducteur, par exemple par génération de paires électrons-trous dans la ZE (les électrons générés s accumulent à l interface avec l isolant sous l influence du champ dans la ZE alors que les trous en sont chassés). Nous sommes en régime d'inversion quand la densité d électrons à l interface semiconducteur/isolant dépasse celle en trous dans la portion à l équilibre du substrat, c est-à-dire N A. Nous avons fait l'analyse précédente pour un semiconducteur de type P. Dans le cas d'un semiconducteur de type N, la tension appliquée doit être positive pour être en accumulation, négative pour être en régime de désertion et la charge d'espace est positive. Pour être en inversion, la tension doit être inférieure à la tension de seuil T et la couche d'inversion est constituée de trous. 3-Régime d'accumulation 3.1-harges et potentiel Dans ce cas, la densité de trous dans le semiconducteur est partout au moins égale à la concentration d'équilibre. On peut alors considérer que le semiconducteur se comporte comme un

3 conducteur et que le potentiel y est constant. Toute la tension appliquée se retrouve aux bornes de l'isolant. Si on note Q M la densité surfacique de charges sur l'électrode métallique et Q A la densité surfacique de charges dans la couche d'inversion (voir figure ), on a: Q M + Q A = 0 (1) 3.-apacité La structure se comporte comme un condensateur plan dont la capacité est celle de la couche isolante: e () où est la permittivité absolue de l'isolant ( 0 = 8, F.m -1 est celle du vide). 4-Régime de déplétion/désertion 4.1-harges et potentiel Dans ce cas on a création d'une zone de charge d'espace dans le semiconducteur. Le potentiel appliqué se répartit entre l'isolant (chute de potentiel ) et la zone de charge d'espace (hauteur de barrière S ) (voir figure 3). Si on note x D l'épaisseur de la zone de charge d'espace et en faisant l'hypothèse de complète désertion, la densité surfacique de charge dans le semiconducteur est donnée par: Q = - q.n A.x D (3) Pour calculer le potentiel aux bornes de la ZE, nous allons intégrer deux fois l'équation de Poisson: d x en ( ) A (4) dx où est la permittivité absolue du semiconducteur. En prenant un champ nul dans le substrat en bordure de la ZE (où on suppose que le semiconducteur retrouve son étant d équilibre), il vient : et d( x) qn A x x D (5) dx en A S x D (6) 3

4 La continuité du vecteur déplacement permet de déterminer le champ électrique dans l'isolant: d(0) en AxD E (7) dx et d'en déduire le potentiel : en AxD E e (8) On peut alors déterminer l'expression de l'épaisseur de la zone de charge d'espace en fonction du potentiel appliqué. Elle est donnée par: en AxD en AxD (9) G S e qui conduit à par résolution du polynôme au second degré en x D à : x D en A G (10) (l autre solution est clairement physiquement impossible). 4.-apacité La structure se comporte comme un condensateur plan dont la capacité est la mise en série de la capacité de la couche isolante et de la capacité de transition T due à la modulation de l épaisseur de la ZE par G. La capacité résultante est donnée par: x D 1 G en DES ZE A (11) 5-Régime d'inversion Dans ce cas, on a apparition d'une couche d'inversion constituée d'électrons, avec la charge densité Q N définie sur la figure 4 ci-dessous. ette charge écrante l influence du champ dans l isolant par rapport au reste du substrat. L épaisseur de la ZE ne varie alors quasiment plus et reste fixée à x T. 4

5 5.1-harges et potentiel On définit le régime d'inversion comme celui pour lequel la densité volumique d'électrons en surface (n s ) est supérieure à la densité volumique de trous dans le semiconducteur à l'équilibre (p b ). omme pour la jonction PN, le champ électrique dans la zone de charge d'espace induit un potentiel qui s'oppose à la diffusion des électrons de la couche d'inversion vers le volume et des trous du volume vers la couche d'inversion. Par intégration de 0 = j p = epµ p E - ed p (dp/dx), on peut comme dans une jonction PN exprimer le potentiel de diffusion D = S sous la forme : kt B p s S ln e pb (1) où p s est la densité de trous en surface avec l isolant et p b celle en bordure de la ZE côté substrat. Les conditions d'inversion étant n s = p b = N A, il vient compte tenu de la relation n p n : S S i kbt N A S( seuil) T ln e ni (13) L'épaisseur x T de la zone de charge d'espace est donnée par: x T T (14) en A 5.-Tension de seuil Au seuil de l'inversion, on a T = G = + T où la chute de potentiel dans l oxyde est lié à l épaisseur x D = x T de la ZE via l équation (8) et donc : T e N A T T (15) 5.3-apacité En supposant que l'épaisseur de la zone de charge d'espace ne varie plus, la capacité résultante est donnée par : 1 1 T en N A (19) 6-aractéristique capacité-tension On a calculé l'expression de la capacité de la structure dans tous les (équations, 10 et 11). La caractéristique typique capacité-tension d'une structure MS est représentée sur la figure 5. 5

6 l est à noter que cette caractéristique est celle mesurée quand la capacité MS est soumise à une tension alternative v G (t) de haute fréquence (HF) autour d un point de polarisation continu G0. Dans ce cas en effet, le phénomène de génération est trop lent par rapport aux variations de v G (t) pour que la densité de porteurs dans la couche d inversion puisse varier dans le temps. La modulation de la charge Q + Q N accumulée sur «l armature semiconductrice» de la capacité est assurée par une modification de l épaisseur de ZE due au transport de majoritaires. Si en revanche les variations de v G (t) sont de suffisamment basse fréquence (BF), c est Q N qui varie et alors tend vers pour G assez grand. 7-Tension de bandes plates Sur la figure 6(a) est tracée une allure typique du diagramme de bandes d énergie en fonction de la distance x à G = 0. Le niveau de Fermi FM dans le métal de grille est alors à la même énergie F que dans le semiconducteur. Dans la zone à l'équilibre loin de l'interface avec l'oxyde, on peut placer le niveau de Fermi intrinsèque i à e F = k B T.ln(N A /n i ) au dessus du niveau de Fermi F. Le haut de la bande de valence v et le bas de la bande de conduction s en déduise. Pour raccorder ces niveaux d énergie jusqu à ceux du métal en passant par l isolant, il est nécessaire de définir un niveau d énergie de référence commun aux trois matériaux. On choisit en général le «niveau du vide» N, c est-à-dire l énergie que doivent atteindre les électrons dans un matériau pour qu ils puissent être extraits vers le vide. e niveau doit être a priori continu quand on passe d un matériau à l autre. Dans un métal, on le référence par rapport au niveau de Fermi et on définit alors m, le travail de sortie du matériau de grille. Dans un semiconducteur, l énergie pertinente est, l affinité électronique, qui sépare N de. es deux paramètres, m et, sont des caractéristiques des matériaux en jeu (de l ordre de quelques e, on a ainsi = 4 e dans Si). L isolant est un matériau à grande bande interdite, également caractérisé par une affinité électronique (égale à 0,9 e pour SiO par exemple). Dans le cas schématisé sur la figure 6(c), l écart entre N et F, soit EG sc ef, est plus grand que celui équivalent m dans le cas du métal. Pour que le raccord de N entre les différents matériaux s opère, on doit avoir dans le semiconducteur une décroissance du niveau du vide, et donc de, et i, quand on se rapproche de l interface avec l isolant. On a en fait formation d une zone de charge d espace et on se situe en régime de désertion à G = 0 dans ce cas. Si au contraire on avait < m, alors on serait en régime d accumulation à polarisation nulle appliquée. Pour rendre constant le niveau du vide d un bout à l autre de la MS, il faut appliquer une tension de grille qui dans le premier cas relève le niveau de Fermi du métal par rapport au semiconducteur, c est-à-dire G < 0, et dans le deuxième qui l abaisse. On est alors comme illustré sur la figure 6(b) en régime de bandes plates, ou flat band en anglais. En calculant 6

7 l écart entre F et N côté métal et côté semiconducteur, on aboutit facilement au fait que cette tension de bande plate est donnée par : 1 1 Eg e e e FB ms m sc F (0) ette tension varie donc en fonction des caractéristiques matériaux du couple métal de grille/semiconducteur dopé. Tous les raisonnements précédents sont corrects, à condition de remplacer, à partir de l équation (9), G par G FB. Ainsi, l expression de la tension de seuil devient : T FB T e N A T (1) Figure 6 Sur la figure 6(c) est également illustré le cas où G est égal à la tension de seuil T. La forte tension appliquée entre grille et substrat permet de faire passer dans le semiconducteur à l interface avec l isolant le niveau de Fermi intrinsèque i sous le niveau de Fermi F, rendant ainsi les électrons majoritaires par rapport aux trous. On a en fait F - i = k B T.ln(n S /n i ) =e F = k B T.ln(N A /n i ) où n S est la densité d électrons à l interface semiconducteur/isolant. On est bien à l inversion. 7

8 8-harges dans l'isolant 8.1-Généralités Nous avons négligé toute présence de charge dans l'isolant. En réalité, celui-ci peut comporter des charges fixes, des charges mobiles et/ou des pièges. On note la densité surfacique de charges dans l'isolant exprimée en.m -. Si les charges sont sous l'électrode métallique, elles n'auront aucun effet sur l'équilibre de la structure. Si en revanche elles sont au niveau de l'interface isolant-semiconducteur, leur effet est maximum. Elles induiront alors une charge surfacique - sur l'électrode métallique et, pour être en régime de bande plate, il faudra appliquer une tension : FB () Les charges ont pour effet de translater la courbe (), vers les tensions positives pour des charges négatives et vers les tensions négatives pour les charges positives. 8.-harges mobiles Supposons que l'isolant renferme des charges positives mobiles. Si on polarise négativement la structure, les charges seront attirées sous l'électrode et elles n'auront aucun effet sur la courbe () (voir figure 7). Si par contre on polarise positivement, les charges seront repoussées contre l'interface et la courbe () sera décalée vers les tensions négatives. On a alors un d'hystérésis dit "normal" oooo GB GB Figure 7 Figure Pièges Supposons que l'isolant renferme des pièges à trous à proximité de l'interface. Si on polarise négativement la structure, les charges positives seront attirées vers l'électrode et les pièges se rempliront. L'effet sur la courbe () sera alors maximum (voir figure 8, décalage vers les tensions négatives). Si par contre on polarise positivement, les pièges se videront et on n aura aucun effet sur la courbe (). On a alors un d'hystérésis dit "anormal". 8

Etude de cas sur la mémoire non volatile

Etude de cas sur la mémoire non volatile Etude de cas sur la mémoire non volatile 1. Introduction Objectif Le but de cette étude de cas est de montrer comment une information peut être mémorisée de façon durable et conservée même sans alimentation.

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE Journal of Electron Devices, ol. 5, 2007, pp. 22-26 JED [ISSN: 682-3427 ] Journal of Electron Devices ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE I. Sari-Ali, B. Benyoucef,

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

Table Des Matières. 1 - Les semi-conducteurs 4. 1.1 Conducteurs électriques...4. 1.2 Les semi-conducteurs...5. 1.3 La jonction PN...

Table Des Matières. 1 - Les semi-conducteurs 4. 1.1 Conducteurs électriques...4. 1.2 Les semi-conducteurs...5. 1.3 La jonction PN... TP Matériaux Table Des Matières 1 - Les semi-conducteurs 4 1.1 Conducteurs électriques...4 1.2 Les semi-conducteurs...5 1.3 La jonction PN...6 1.4 Les cellules photoélectriques...7 1.5 TP semi-conducteurs...9

Plus en détail

CONTACT MÉTAL SEMI- CONDUCTEUR. Diode Schottky

CONTACT MÉTAL SEMI- CONDUCTEUR. Diode Schottky 1 CONTACT MÉTAL SEMI- CONDUCTEUR Diode Schottky 2 Contact Métal/SC: diode Schottky Plusieurs applications: Interconnexions Contact Ohmique Diode à barrière Schottky Survol des jonctions Isolant/SC Comparaison

Plus en détail

1 Conducteurs et semi-conducteurs

1 Conducteurs et semi-conducteurs Séance de Spécialité n o 20 Diode et redressement Mots-clefs «conducteurs» et «semi-conducteurs». 1 Conducteurs et semi-conducteurs Les semi-conducteurs sont des matériaux qui ont une conductivité électrique

Plus en détail

Les symboles des deux types de transistors sont représentés sur la figure 3.1. (i)

Les symboles des deux types de transistors sont représentés sur la figure 3.1. (i) hapitre 3 Les transistors bipolaires 3.1 Introduction Les transistors bipolaires ont été très utilisés au début (années 60, 70). Leur importance a diminuée avec l apparition des transistors à effet de

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Notions sur l électrochimie des semi-conducteurs

Notions sur l électrochimie des semi-conducteurs Notions sur l électrochimie des semiconducteurs UE 824 Électrochimie et énergie Cours de É. Mahé 4h I.BASES DE L ÉLECTROCHIMIE DES SEMI CONDUCTEURS 1 Couple rédox, énergétique à l interface 2 Équilibre

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne.

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne. MODUL 1 MODUL 1. ésistance interne (générateur). Pertes par effet Joule. Pertes en ligne. Performances-seuils. L élève sera capable 1. d expliquer l effet qu occasionne la résistance interne d une source

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Dans ce matériau, la mobilité des porteurs en fonction de la température est donnée par les expressions suivantes où T 0.

Dans ce matériau, la mobilité des porteurs en fonction de la température est donnée par les expressions suivantes où T 0. 1 EXERCICE 1 : RESISTIVITE DU GERMANIUM PUR On considère un barreau de germanium pur dont les propriétés essentielles sont données dans le tableau suivant : Masse molaire Masse volumique Hauteur de bande

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

4. Indices de précipitations

4. Indices de précipitations 4. Indices de précipitations Cette partie présente les évolutions prévues de cinq indices de précipitations. Il s agit de moyennes annuelles (voir annexes 1 à 4 pour les valeurs saisonnières). Il est à

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

TD n 1 : Dopage des semiconducteurs

TD n 1 : Dopage des semiconducteurs TD n 1 : Dopage des semiconducteurs Exercice 1 : Silicium intrinsèque : On s intéresse au Silicium dans cet exercice On considère le semiconducteur intrinsèque 10 3 qui a une densité n i = 10 cm à T=300K

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

EP 2 141 741 A2 (19) (11) EP 2 141 741 A2 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 06.01.2010 Bulletin 2010/01

EP 2 141 741 A2 (19) (11) EP 2 141 741 A2 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 06.01.2010 Bulletin 2010/01 (19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 2 141 741 A2 (43) Date de publication: 06.01. Bulletin /01 (21) Numéro de dépôt: 0916496.0 (1) Int Cl.: H01L 27/07 (06.01) H01L 21/761 (06.01) H01L 29/861 (06.01)

Plus en détail

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B. Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant. - Le régime linéaire. Le courant collecteur est proportionnel

Plus en détail

III.1. Introduction III.2. Théorie du transistor bipolaire III.2.1. Principe de fonctionnement [74-75]

III.1. Introduction III.2. Théorie du transistor bipolaire III.2.1. Principe de fonctionnement [74-75] III.1. Introduction Depuis sa première réalisation en 1947 par J. Bardeen et W. H. Brattain, et le développement théorique et physique de son fonctionnement par W. B. Shockley, le transistor bipolaire

Plus en détail

Chapitre II Les semi-conducteurs et les diodes

Chapitre II Les semi-conducteurs et les diodes PHYS-F-314 Electronique Chapitre II Les semi-conducteurs et les diodes G. De Lentdecker & K. Hanson 1 Rappels de la structure atomique Table des matières Semi-conducteurs (intrinsèques et extrinsèques)

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points)

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Afrique 2007 http://labolycee.org 1.La batterie : principe de fonctionnement La batterie d'une voiture est un accumulateur au plomb constitué

Plus en détail

3 Charges électriques

3 Charges électriques 3 Charges électriques 3.1 Electrisation par frottement Expérience : Frottons un bâton d ébonite avec un morceau de peau de chat. Approchonsle de petits bouts de papier. On observe que les bouts de papier

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur 2 I. Génération des matrices : Le code de Golay, comme le code de

Plus en détail

a) les barreaux constituent deux résistances en série : =3,5Ω. =1,4Ω ; R 2 =ρ l 2 S 2 R 1 =ρ l 1 S 1

a) les barreaux constituent deux résistances en série : =3,5Ω. =1,4Ω ; R 2 =ρ l 2 S 2 R 1 =ρ l 1 S 1 Questions de type examen sur la matière d'électricité PHYS-F-104 BA1 biologie, géographie, géologie et pharmacie, année 2014-2015 P.Vanlaer 1. Une pile qui fournit une tension continue de 2,2 V est raccordée

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 )

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Présentation du sujet La recherche de miniaturisation est actuellement un domaine important dans

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Les graphes planaires

Les graphes planaires Les graphes planaires Complément au chapitre 2 «Les villas du Bellevue» Dans le chapitre «Les villas du Bellevue», Manori donne la définition suivante à Sébastien. Définition Un graphe est «planaire» si

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Problème d'hydrodynamique.

Problème d'hydrodynamique. Problème d'hydrodynamique. On s'intéresse au réseau hydraulique d'un système de plancher chauffant de bâtiment. Ce système se compose de plusieurs éléments (de haut en bas, voir Figure 1) : -Un réservoir

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

DIODES ET TRANSISTORS

DIODES ET TRANSISTORS 73 E4 DIODE ET TRANITOR I. INTRODUTION Dans cette expérience, nous allons étudier deux éléments qui sont à la base de la majorité des montages électroniques modernes; la diode et le transistor. es éléments

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons.

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. OXYDO-REDUCTION I) Définitions 1) Oxydant et Réducteur Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. 2) Couple rédox On parle de

Plus en détail

ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1

ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1 ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1 Le schéma de principe d'un multimètre numérique est donné ci-dessous Il met en œuvre un montage comparateur (dont le rôle sera défini

Plus en détail

MICRO-ÉCONOMIE TD 5 Exercice 1

MICRO-ÉCONOMIE TD 5 Exercice 1 LICENCE DROIT ECONOMIE GESTION MENTION ÉCONOMIE LICENCE 1 MICRO-ÉCONOMIE TD 5 Exercice 1 Soit une entreprise dont l évolution de la production en fonction du nombre d unités de travail utilisée est donnée

Plus en détail

J AUVRAY Systèmes Electroniques

J AUVRAY Systèmes Electroniques LE TRANITOR MO Un transistor MO est constitué d'un substrat semiconducteur recouvert d'une couche d'oxyde sur laquelle est déposée une électrode métallique appelée porte ou grille (gate).eux inclusions

Plus en détail

De la cellule au champ PV

De la cellule au champ PV De la cellule au champ PV 1- De la cellule au module Tous les modules PV, quelque soit leur technologie fonctionnent grâce au même principe : l effet photoélectrique. Je ne vais pas entrer dans les détails

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points)

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Afrique 2007 http://labolycee.org 1.La batterie : principe de fonctionnement La batterie d'une voiture est un accumulateur au plomb constitué

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Cours 7. Introduction des composants à semiconducteur

Cours 7. Introduction des composants à semiconducteur Cours 7. Introduction des composants à semiconducteur Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 2005 1 Rappel sur la structure atomique des isolants

Plus en détail

Projet Calcul Etude d un étau Annexes

Projet Calcul Etude d un étau Annexes Projet Calcul Etude d un étau Annexes TUTEUR D ÉTUDE Stephane BOCHARD ENSEIGNANT ENSIBS RAPPORT REALISE PAR Neji EL KHAIRI Alexis GERAY Année universitaire 2014-2015 Tables des annexes Annexes 1 : Étude

Plus en détail

Conductivité conductimétrie

Conductivité conductimétrie Conductivité conductimétrie I. Généralités sur les milieux conducteurs Le courant électrique est dû à un mouvement d'ensemble des porteurs de charges sous l'action d'un champ électrique. Ils sont de trois

Plus en détail

TRANSISTORS bipolaires, MOS et à effet de champ

TRANSISTORS bipolaires, MOS et à effet de champ TRANSSTORS bipolaires, MOS et à effet de champ Deux transistors sont principalement utilisés en électronique : le transistor bipolaire et le transistor MOS. Dans une proportion moindre, on trouvera également

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

LE BRUIT COMPOSANTS ELECTRONIQUES

LE BRUIT COMPOSANTS ELECTRONIQUES LE BRUIT DANS LES COMPOSANTS ELECTRONIQUES Richard HERMEL LAPP Ecole d électronique INP3 : Du détecteur à la numérisation Cargèse Mars 004 Sommaire Introduction Sources physique du bruit Influence des

Plus en détail

Introduction au béton armé selon l Eurocode 2

Introduction au béton armé selon l Eurocode 2 Jean-Louis Granju Introduction au béton armé selon l Eurocode 2 Afnor et Groupe Eyrolles, 2012 ISBN Afnor : 978-2-12-465375-1 ISBN Eyrolles : 978-2-212-13528-2 Le béton armé : comment ça marche? 25 soudure

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

De la composition de taux à l'espace vectoriel des taux

De la composition de taux à l'espace vectoriel des taux De la composition de taux à l'espace vectoriel des taux Marcel Délèze, Collège du Sud, 630 Bulle Dans la majorité des livres scolaires, les chapitres consacrés à l'utilisation des taux font intensément

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Le transistor bipolaire

Le transistor bipolaire IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Logiciel de vote pour amphi RAPPORT DE CONCEPTION

Logiciel de vote pour amphi RAPPORT DE CONCEPTION Logiciel de vote pour amphi RAPPORT DE CONCEPTION I. Cahier des charges Notre projet consiste à créer un programme et des interfaces qui permettent à un professeur (en amphi) d interagir avec ses élèves.

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes etour au menu La diode 1 La diode : un dipôle non linéaire 1.1 Diode idéale 1.2 Diode réelle à semi-conducteur C est un dipôle électrique unidirectionnel dont les bornes sont l anode (A) et la cathode

Plus en détail

FONCTION DE DEMANDE : REVENU ET PRIX

FONCTION DE DEMANDE : REVENU ET PRIX FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Les formules de proratisation, de décote et de surcote. Secrétariat général du Conseil d orientation des retraites

Les formules de proratisation, de décote et de surcote. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 25 septembre 2012 à 14 h 30 «I - Avis technique sur la durée d assurance de la génération 1956 II - Réflexions sur les règles d acquisition des droits

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Projet Calcul Machine à café

Projet Calcul Machine à café Projet Calcul Machine à café Pierre-Yves Poinsot Khadija Salem Etude d une machine à café, plus particulièrement du porte filtre E N S I B S M é c a t r o 3 a Table des matières I Introduction... 2 Présentation

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

CONSEILS D INSTALLATION

CONSEILS D INSTALLATION CONSEILS D INSTALLATION L installation des toilettes Ecodomeo nécessite la création d une pièce pour le compostage (local de compostage), adaptée à votre habitation. Il est important de prêter une attention

Plus en détail

CHAPITRE VI ALEAS. 6.1.Généralités.

CHAPITRE VI ALEAS. 6.1.Généralités. CHAPITRE VI ALEAS 6.1.Généralités. Lors de la synthèse des systèmes logique (combinatoires ou séquentiels), nous avons supposé, implicitement, qu une même variable secondaire avait toujours la même valeur

Plus en détail